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Abstract. Recently, a new family of massive self-organizing networks
has emerged that not only serve as a communication infrastructure, but
also mainly as a distributed query processing system. We term these
networks Querical Data Networks (QDNs). Peer-to-peer networks are
examples of QDN. In this paper, first we identify and characterize QDN
as a new family of data networks with common characteristics and ap-
plications. Subsequently, as the first step toward realizing the evolved
vision of QDN as a large-scale distributed query processing system, we
propose an efficiently searchable QDN model based on a recently de-
veloped small-world model. We discuss in details how our QDN model
enables effective location of the data relevant to a QDN query.

1 Introduction

Recently, a new family of massive self-organizing networks has emerged that not
only serve as a communication infrastructure, but also mainly as a distributed
query processing system. These networks are significantly different with classical
engineered networks (e.g., the Internet) both in the way they are applied and
in the characteristics of their components (nodes and links). We term these
networks Querical Data Networks (QDNs). Peer-to-peer networks and sensor
networks [9, 2] are examples of QDN.

This paper is organized in two parts. In the first part, we provide our overview,
where we 1) define and characterize QDN as a new family of data networks
with common characteristics and applications (Section 2), and 2) review possi-
ble database-like architectures for QDNs as querying systems, and discuss design
principles and implementation issues in realizing those architectures (Section 3).
In the second part (Section 4), as the first step toward realizing the evolved
vision of QDNs we focus on a specific problem, namely the problem of effective
data location (or search) for efficient query processing in QDNs.

We believe that with QDNs, search optimization is not limited to optimal
query routing on the unintelligently generated ad hoc network topology. Consid-
ering the flexibility (hence, controllability) of the topology of QDNs (see Section
2), a QDN can self-organize to a search-efficient topology that in combination
with an intelligent query routing/forwarding mechanism can significantly im-
prove the searchability of the QDN. Here, with our searchable QDN model, first



we propose a self-organization mechanism that generates a small-world QDN
based on a recently developed small-world model [29]. Small-world networks are
known to be extremely search-efficient [28]. Although DHTs [20, 27, 22, 31] are
also successful in creating efficient topologies, we argue that as a model they are
not compatible with characteristics/requirements of QDNs. Particularly, DHTs
enforce certain data distribution and replication schemes and impose strict con-
nectivity rules to QDN nodes. On the other hand, the small-world model is the
natural model for QDNs that completely respects the autonomy of QDN nodes.
Second, we complement the generated small-world network topology with query
forwarding mechanisms that effectively route the query toward the QDN nodes
that store target data relevant to the submitted query.

2 Querical Data Networks (QDNs)

Recently, a family of massive, self-organizing, engineered networks has emerged
that bear componental characteristics (e.g., node lifetime) that are significantly
different with those of the classical engineered networks such as the Internet, but
similar to those of their natural counterparts, so-called complex systems such as
social networks and biological networks. Besides componental differences, these
networks are also applied differently as compared with the classical networks. A
collection of interrelated data is distributed among the nodes of these networks,
where the data are naturally created, collected (e.g., by sensing the physical
world), and/or stored. Database-style queries are frequently posed (by nodes
themselves, or by an outsider) to retrieve the data or information (i.e., the pro-
cessed data) from this distributed network of data sources. Hence, the network
not only serves as the communication infrastructure, but also mainly and more
importantly as a distributed data source and a distributed query processing sys-
tem. We term these emerging networks Querical Data Networks (QDNs). Here,
we enumerate the main componental characteristics and application features of
a QDN.

2.1 Componental Characteristics

A network is an interconnection of nodes via links, usually modelled as a graph.
Nodes of a QDN are often massive in number and bear the following character-
istics:

– Peer functionality : All nodes are capable of performing a restricted but simi-
lar set of tasks in interaction with their peers and the environment, although
they might be heterogeneous in terms of their physical resources. For ex-
ample, joining the network and forwarding search queries are among the
essential peer tasks of every node in a peer-to-peer network.

– Autonomy : Aside from the peer tasks mentioned above, QDN nodes are
autonomous in their behavior. Nodes are either self-governing, or governed
by out-of-control uncertainties. Therefore, to be efficacious and applicable
the QDN engineering should avoid imposing requirements to and making



assumptions about the QDN nodes1. For example, strict regulation of con-
nectivity (i.e., number of connections and/or target of connections) might
be an undesirable feature for a QDN design.

– Intermittent presence: Nodes may frequently join and leave the network
based on their autonomous decision, due to failures, etc.

On the other hand, links in various QDNs stand for different forms of in-
teraction and communication. Links may be physical or logical, and they are
fairly inexpensive to rewire. Therefore, a QDN is “a large-scale federation of a
dynamic set of peer autonomous nodes building a transient-form interconnec-
tion”. Traditional modelling and analysis approaches used for classical networks
are either too weak (oversimplifying) or too complicated (overcomplicated) to
be effective with large-scale and topology-transient QDNs. The complex system
theory [5], on the other hand, provides a set of conceptual, experimental, and
analytical tools to contemplate, measure, and analyze systems such as QDNs2.

2.2 Application Features

A QDN is applied as a distributed source of data (a data network) with nodes
that are specialized for cooperative query processing and data retrieval. The node
cooperation can be as trivial as forwarding the queries, or as complicated as in-
network data analysis (see Section 3). In order to enable such an application,
QDN should support the following features:

– Data-centric naming, addressing, routing, and storage: With a QDN, queries
are declarative; i.e., query refers to the names of data items and is indepen-
dent of the location of the data. The data may be replicated and located
anywhere in the data network, the data holders are unknown to the querier
and are only intermittently present, and the querier is interested in data
itself rather than the location of the data. Therefore, naturally QDN nodes
should be named and addressed by their data content rather than an identi-
fier in a virtual name space such as the IP address space. Consequently, with
data-centric naming and addressing of the QDN nodes [13], routing [16] and
storage [19] in QDN are also based on the content. It is interesting to note
that non-procedural query languages such as SQL also support declarative
queries and are appropriate for querying data-centric QDNs.

– Self-organization for efficient query processing : QDNs should be organized
for efficient query processing. A QDN can be considered as a database sys-
tem with the data network as the database itself. QDN nodes cooperate in
processing the queries by retrieving, communicating, and preferably on-the-
fly processing of the data distributed across the data network (in Section 3,

1 One can consider peer tasks as rules of federation, which govern the QDN but do
not violate autonomy of individual nodes.

2 Further discussion about the complex system theory is beyond the scope of this
paper. We refer the interested reader to our work on complex-system-based modelling
of the peer-to-peer networks in [4].



we explain the benefits of adopting a database system framework to discuss
and design query processing in QDNs). To achieve efficiency in query pro-
cessing with high resource utilization and good performance (e.g., response
time, query throughput, etc.), QDN should be organized appropriately. In
Section 4, we discuss an example organization, where the topology of QDN
is structured such that search for data items is performed efficiently. Other
examples of organization are: intelligent partitioning of the query to a set
of sub-queries to enable parallel processing, or collaborative maintenance of
the data catalogue across the QDN nodes. However, the peer tasks of the
QDN nodes should be defined such that they self-organize to the appropriate
organization. In other words, organization must be a collective behavior that
emerges from local interactions (defined by peer tasks) among nodes, oth-
erwise the dynamic nature and large scale of QDN renders any centralized
micro-management of the QDN unscalable and impractical.

3 Database-System Querying Framework for QDNs

The idea of adopting a DBS querying framework was originally discussed briefly
and abstractly in two recent position papers for some specific cases of QDN
[10, 12]. Here, we define a taxonomy of approaches to generalize this querying
framework for the entire family of QDNs.

Querical Data Network (QDN)

Database

Conceptual Level

Physical Level Information

Data
Database Querical

Data Netowrk
(DB-QDN)

Conceptual Level

Physical Level
Information

a. Centralized Design b. Decentralized Design

Fig. 1. Database System Framework for Querying Querical Data Networks (QDNs)

3.1 Taxonomy

Based on the two fundamentally distinct design choices for the physical level
of the DBS framework (i.e., centralized and decentralized), we recognize two
approaches to implement a DBS-based querying system for QDNs:



1. Database for QDN (Figure 1a): This approach corresponds to the querying
systems with centralized query processing. These systems are similar to other
centralized database applications, where data are collected from some data
sources (depending on the host application, the data sources can be text
documents, media files, and in this case, QDN data) to be separately and
centrally processed.

2. Database-QDN (DB-QDN) (Figure 1b): The systems that are designed based
on this approach strive to implement query processing in a decentralized
fashion within the QDN; hence, in these systems “QDN is the database”.

3.2 Designing a Database-QDN (DB-QDN)

By definition QDNs tend to be large-scale systems and their potential benefits
increase as they grow in size. Therefore, between the two types of DBS-based
querying systems for QDNs, the database-QDNs (DB-QDNs) are more promising
because they are scalable and efficient. Here, we discuss the design issues with
these systems.

Design Principles Among the design principles for distributed query process-
ing at QDNs one can distinguish the following:

1. In-network query processing : In-network query processing is the main distinc-
tion of DB-QDNs. In-network query processing techniques should be imple-
mented in a distributed fashion, ensuring minimal communication overhead
and optimal load-balance.

2. Transaction processing with relaxed semantics: Due to the dynamic nature
of QDNs, requiring ACID-like semantics for transaction processing in DB-
QDNs is too costly to be practical and severely limits scalability of such
processing technique. Hence, transaction processing semantics should be re-
laxed for DB-QDNs.

3. Adaptive query optimization: Since QDNs are inherently dynamic structures,
optimizing query plans for distributed query execution in DB-QDNs should
also be a dynamic/adaptive process. Adaptive query optimization techniques
are previously studied in the context of central query processing systems [3].

4. Progressive query processing : Distributed query processing tends to be time-
consuming. With real-time queries, user may prefer receiving a rough es-
timation of the query result quickly rather than waiting long for the final
result. The rough estimation progressively enhances to the accurate and fi-
nal result. This approach, termed progressive query processing [24], allows
users to rapidly obtain a general understanding of the result, to observe the
progress of the query, and to control its execution (e.g., by modifying the
selection condition of the query) on the fly.

5. Approximate query processing : Approximation techniques such as wavelet-
based query processing can effectively decrease the cost of the query, while
producing highly accurate results [25]. Inherent uncertainty of the QDN
data together with the relaxation of the query semantics justify application
of approximation techniques to achieve efficiency.



Implementation Issues

Operators In DB-QDNs, the data is distributed among QDN nodes. An operator
is executed by a set of selected QDN nodes, which receive the query (or sub-
queries), and perform partial processing and communicate with each other to
generate the final result. Therefore, regardless of the type of the operator, the
mechanism that defines the implementation of an operator should address the
following questions:

1. Which QDN nodes should receive the query (or sub-query)?
2. Which sub-query should each node receive?
3. How should the nodes collaborate to process the query? Or, what is the set

of local computation and communication tasks (i.e., peer tasks) that every
QDN node should perform such that QDN nodes cooperatively compute the
result of the query with optimal cost and performance?

Query Plan Construction and Optimization With centralized database systems
the metrics for query optimization are usually user-centric; e.g., throughput and
response time. However, with QDNs physical resources of the system are se-
riously restricted. Therefore, besides user-centric metrics the query optimizer
should consider “resource utilization” as a new optimization metric (probably
with higher priority). With these systems, the query optimizer should also op-
timize the partitioning of the QDN processing power among several parallel
operators in a query plan, and in case of multi-user systems, among multiple
query plans.

4 QDN Searchability

Toward realizing a Database-QDN (DB-QDN), here we address the first imple-
mentation issue mentioned in Section 3.2, “which QDN nodes should receive the
query?”. This problem arguably reduces to the problem of locating the nodes
containing the data relevant to the query. The query declares the required data
and the QDN must be efficiently searched to locate the corresponding nodes.
We term a QDN that self-organizes for efficient search a searchable QDN.

To measure searchability, we introduce the following metrics:

1. Precision and Recall : Considering Ret as the set of QDN nodes that receive
the query during the search for data, and Rel as the set of nodes that are
intended to receive the query (because they store relevant/target data re-
quired to process the query), precision (P) and recall (R) of a search are
defined according to the classical definitions of precision and recall:

P =
|Rel ∩ Ret|

|Ret|
× 100 R =

|Rel ∩ Ret|

|Rel|
× 100

Assuming uniform distribution of the target data among the relevant QDN
nodes, P and R are correlated with the precision and recall of the retrieved



data, respectively. The limited amount of data stored at each node of a
typical QDN (e.g., sensor network) justifies such a uniform distribution.

2. Hop-count : We use hop-count (H) as an abstract measure of the search time.
Nodes forward the query to their neighbors once at each hop (or time slot).
The number of hops a search takes (or is allowed to take, otherwise it will
be terminated) to execute is the hop-count of the search.

The combination of these two metrics capture both resource-efficiency and user-
centric performance (e.g., response time) of the search. With a fixed hop-count
(i.e., limited time for search), higher precision and recall demonstrates better
use of the resources; on the other hand, the fewer hops required by a search to
achieve a target precision and/or recall, the better is the response time of the
search. For example, the flooding-based search is expected to have low precision
but high recall in low hop-count. In contrast, a search based on random walk
may result in higher precision but lower recall, and requires more hops to achieve
high recall.

Here, first we discuss how to organize a QDN for searchability and compare
two different approaches to introduce such organization into QDN. Thereafter,
we propose a searchable QDN model compatible with one of these approaches.

4.1 Organizing QDNs for Searchability

Without organization, a QDN that is generated by random interconnection of
nodes is not efficiently searchable. With such a QDN, since the required data can
be located anywhere in the network, nodes lack a sense of direction to forward the
query toward the node(s) that potentially hold the required data. All neighbors
of a node may equally lead the path to the target data. Therefore, nodes either
pick a neighbor randomly and forward the query (i.e., random walk), or forward
the query to all neighbors (i.e., flooding). In both cases, search is brute-force.

As we mentioned in Section 2, unlike classical networks, with QDNs the
topology is flexible and rewiring the links is fairly inexpensive. Therefore, search
optimization is not limited to optimal routing on the available network topology.
A QDN can self-organize to a search-efficient topology, which in combination
with an intelligent and data-centric query routing/forwarding mechanism can
significantly improve the searchability of the QDN. To create a search-efficient
topology, interconnection between nodes is correlated with “similarity” of the
data content of the nodes: the more similar the data content of two nodes,
the more likelihood of interconnection. Consequently, with sufficient correlation,
nodes with similar data content are clustered to generate highly connected com-
ponents that correspond to data localities, and the topology is a connected graph
of interwoven data localities. Such a topology enhances the searchability in two
ways:

1. Directed forwarding: Assuming that a node has (local) knowledge about the
data content of the nodes in its neighborhood, the node can selectively for-
ward the query to the neighbor with most similar data to the target data
(i.e., data required to process the query). Due to the correlation between



data similarity and node connectivity, it is more likely that the selected
neighbor lead to the data locality corresponding to the target data. There-
fore, the query is effectively routed toward the target data locality and avoids
irrelevant paths. Hence, the precision P of the search increases.

2. Batch data access: When the query approaches the target data locality, most
probably a large collection of the target data can be located all together
within a few hops. Hence, the recall R of the search is improved too.

Approaches There are two philosophically different approaches to organize a
search-efficient topology: fabricated organization, and natural organization (i.e.,
an organization approach that respects natural characteristics of the system
components)3. Distributed Hash Table (DHT) [20, 27, 22, 31], which is proposed
as a model for peer-to-peer networks, is an example of fabricated organization.
To generate data locality, with DHT both nodes and data items are randomly
assigned unique identifiers from a virtual identifer space. Each data item (or
pointer to the data item) is stored at the node with the closest identifier to the
identifier of the data item. Finally, nodes are interconnected via a regular topol-
ogy, where nodes that are close in the identifier space are highly interconnected.
DHT topology is regulated: all nodes have the same connectivity (same number
of neighbors), and selection of the neighbors is strictly dictated by the semantics
of the DHT interconnections.

Although DHTs (as the most important realization of the fabricated orga-
nization approach) are very successful in creating efficient topologies, we argue
that as a model DHT fails to respect natural characteristics/requirements of
QDNs. For example, data-to-node assignment via the virtual identifier space
violates the natural distribution and replication of the data, where each node
autonomously maintains its own and only its own data. Also, regular topology
of the DHT imposes strict connectivity rules to autonomous nodes. While simi-
larity of data content itself can be used to generate data localities, using virtual
identifier space to introduce virtual similarity is not only unnecessary but also
problematic (as mentioned above). Moreover, strict regulation of the topology
must be relaxed to allow more flexible connectivity rules that enable trading off
efficiency against natural flexibility. In Section 4.2, we provide an example of such
a natural organization, which improves searchability of QDNs while respecting
their characteristics.

4.2 Our Searchable QDN Model

To develop a natural model for searchable QDNs, we adopt and generalize a
social network model [29] that is proposed recently to explain the small-world
phenomenon in social networks4. Here, assuming a relational data model for

3 In continuation of our QDN analogy to social networks, one can compare socialistic
and capitalistic societies with fabricated and natural QDNs, respectively!

4 In social networks, where individuals are represented as nodes and the acquain-
tance relationship between them as links, the average length of acquaintance chain



DB-QDN, we use the following query template to explain the basics of the QDN
model:

SELECT *

FROM r

WHERE ANDi∈[1,d] (Ai = vi)

where R(A1, A2, ..., Ad) is a schema of degree d for the relation r stored at DB-
QDN, and vi is a constant. Later in this section, we generalize this model to
other query templates with join clauses and disjunctive predicates.

Basics We define our QDN model by explaining the following concepts in se-
quence:

1. Node identity: We define an identity for each node based on its data content;
2. Identity-based linking to create the network: We explain how nodes join the

QDN by linking to some other QDN nodes, selecting the nodes of “similar”
identity with higher probability; and

3. Identity-based routing to forward the queries: We describe how nodes, which
know about the identity of their neighbors, route/forward the query to the
neighbor that has the most similar identity to the target data content.

Node Identity The identity of a node is defined such that it represents the data
content of the node, just as the cognitive identity of a person which stands for
the knowledge-set of the person. For node n, identity In is a d-tuple < a1, a2, ...,

ai, ..., ad > defined as follows:

In = < a1, a2, ..., ai, ..., ad > = F({tk| tuple tk ∈ r is stored at n}) (1)

where F is a tuple-aggregation function defined based on a set of d attribute-
aggregation functions fi such that5:

< a1, ..., ai, ..., ad > = < f1({tk[A1]}), ..., fi({tk[Ai]}), ..., fd({tk[Ad]}) >

The selection of the aggregation functions fi is application dependent. However,
since QDN nodes often have limited storage that stores few tuples, a simple ag-
gregation function such as AVG is sufficiently accurate in generating an identity
that represents the data content of the node. Otherwise, we can avoid aggre-
gation altogether, and represent each node as multiple virtual nodes by taking

between two individuals is logarithmic to the size of the network. The fact that in-
dividuals, which only have local knowledge about the network (i.e., they know their
close acquaintances), can effectively and cooperatively find these short paths from a
source to a target individual is termed the small-world phenomenon [28]. In addition
to the small-world model we adopt here, there are other (more aged) models for
this phenomenon [6, 1, 15]; however, we found the model proposed at [29] the most
compatible model with the characteristics of QDNs.

5 Notation: tk[Ai] is the value of the i-th attribute at tuple tk. {tk[Ai]} is the set of
these values for a set of tuples.



each tuple tk as a virtual identity. The latter approach increases the size of the
QDN, but it is more accurate. Also, with dynamic data content, the identities
of the nodes is expected to change. However, since with QDN nodes the data
content is often highly autocorrelated, frequent modification of the identity is
unnecessary.

In subsequent sections, we explain how we use node identities to 1) organize
the network topology to localities of nodes with similar identities (i.e., data
content), and 2) route the queries to the node localities that store data content
similar to the target data of the query.

Identity-based Linking We assume the domain Di of the attribute Ai is a metric
space with the similarity measure Si as the distance function of the space; for
example, Hamming distance, Euclidean distance, or even the absolute difference
S(a, b) = |a − b| as the similarity measure for numbers, and Edit distance as
that of strings. We also assume that node n is potentially able to (or desired
to) connect only to nodes from a set of possible nodes Q (e.g., a range of nodes
geographically close to n). Node n selects each of its M neighbors as follows: 1)
randomly select a dimension i from [1..d], 2) probabilistically select a distance
x based on the probability distribution function pi(x) = ci exp(−αix), where
αi is a tunable parameter6 and ci is the normalization constant, and finally 3)
select the node m from Q such that |x − Si(In[Ai], Im[Ai])| is minimum. The
number of neighbors M depends on the local connectivity policy of n and is not
enforced by the linking algorithm, although with higher connectivity diameter of
the network decreases, and consequently, searchability of the QDN is expected
to improve.

Identity-based Routing According to the searchability metrics, when a query is
originated at some node, the QDN nodes should forward/route the query, one
hop at a time, such that the query: 1) traverses (as many as possible) the nodes
with tuples satisfying the selection condition of the query, and 2) preferably
avoids other nodes. With the searchable QDN model, each node is aware of the
identity of its neighbors. Assume that the selection condition of the query is
represented by the tuple t < v1, v2, ..., vd >, where vi = NULL if the attribute
Ai is not conditioned. To forward a query, the node n uses the distance measure
U to estimate the semantic distance of its neighbor m from the target data
content (hence, target node)7:

U(m, t) = min
{i|vi<>NULL}

Si(Im[Ai], t[Ai]) (2)

Since with homophilic linking, the network distance is correlated with the
semantic distance, among all neighbors, the node n selectively chooses to for-
ward the query to the neighbor with minimum semantic distance to the target

6 The parameter αi can be considered as the measure of homophily at dimension i,
i.e., tendency of associating identities that are similar at dimension i to each other.

7 The semantic distance measure U is ultrametric, i.e., it may violate the triangle
inequality.



data content. We term this routing algorithm selective walk. There are three
conditions that terminate a selective walk:

1. When the node n receives a query for the first time, it creates and maintains
a soft state (which expires, if not refreshed) for the query. If the query is
received for the second time, this time n forwards the query to the neighbor
with the second to minimum semantic distance to the target, and so on. The
(M + 1)-th time the query is received, it is terminated (i.e., discarded).

2. If the selection condition t of the query (see above) conditions a key of
the relation r, the first node that receives the query and locates the target
data locally terminates the query, because the target data is expected to be
unique.

3. The query carries a TTL (Time-To-Live) value, which is decreased by one
each time the query is forwarded. To avoid everlasting looping of the queries,
the query is terminated when its TTL equals zero.

Improvements There are many ways to improve the basic searchable QDN
model. Here, we discuss two examples:

Weighted Linking With normal linking, at step 1 of the neighbor selection pro-
cedure (see above) node n selects a dimension randomly, to link to a node with
similar identity in that dimension. If the distribution of queries conditioned on
each dimension/attribute is not uniform across all dimensions, instead of ran-
dom dimension selection, node n selects the dimension according to the query
distribution. This linking approach, termed weighted linking, strengthens the
correlation between network connectivity and data similarity in those dimen-
sions that are more frequently used at queries, and consequently, improves the
searchability of the QDN in those dimensions.

Wooding Existence of the data localities in the searchable QDN model encour-
ages a new routing algorithm that we term wooding8. Wooding starts with selec-
tive walk, which leads the query toward the target data locality. The first time
a target data item is located signifies the approach to the target locality, where
nodes with similar data content are clustered. Therefore, to take advantage of
the high recall of the flooding in minimum hop-count (while high precision is
ensured at the target data locality), it is reasonable that the routing algorithm
is switched from selective walk to flooding. Thus, with wooding the node that
receives the first hit during selective walk, marks the query for scope-limited
flooding and continues forwarding the query by originating the flooding.

As an alternative (more controlled) wooding algorithm, nodes can fork suc-
cessively more selective walkers as the semantic distance between the local node

8 “Wooding” is an abbreviation for a hybrid routing algorithm of selective walk and
flooding. The verb “to wood” also means “to rage suddenly”, which signifies the
switching from walking to flooding to rapidly embrace the target data locality when
located.



and the target data decreases. With this approach, starting with a single se-
lective walker, as the query approaches the target data locality the number of
query forwarding branches gradually increase such that close to the target the
forwarding algorithm resembles flooding. It is important to note that both wood-
ing algorithms are enabled by the linking policy that generates the data localities
in the QDN topology, otherwise wooding in random topologies is ineffective.

Other Queries We used a selection-query template to explain our searchable
QDN model. Leveraging on the main property of the search-efficient topology,
i.e., existence of distinct data localities, the model is expandable to support other
query templates. The expansion mainly involves customizing the basic routing
and applying a different routing method for each particular query template.
Also, for application-specific QDNs, the linking method can be customized to
optimize the topology for processing the most frequent query templates. Here,
we discuss two examples:

Selection The selection condition in our template query is a simple conjunc-
tion of equality literals. More generally, the selection condition is a statement in
disjunctive normal form, which consists one or more disjuncts each of which is
a conjunction of one or more equality and/or inequality literals. First, to sup-
port conjunction of both equality and inequalities literals, the semantic distance
function used with selective random walk should be customized as follows:

U(m, t) = min
{i|vi<>NULL}

{

Si(Im[Ai], t[Ai]) (Ai = vi)
(1 − Si(Im[Ai], t[Ai])) (Ai <> vi)

where the distance function Si is normalized. To process a selection query with
disjunctive condition, the source of the query partitions the query to several
sub-queries, each as a selection query conditioned by one of the disjuncts, and
originates a basic selection query for each sub-query.

Join With a multi-relation DB-QDN, each node has multiple virtual identities,
one per each relation. Consider the following join query:

SELECT *

FROM r, s

WHERE r.Ai = s.Bj

To process such a query, we adopt an approach similar to the nested-loop join.
The source initially floods the network with the query. At every node n that
receives the query (in parallel with others), for each tuple t of r stored locally a
selection query is originated with s.Bj = t[Ai] as the selection condition. Subse-
quently, node n joins the results of the selection queries with the corresponding
local tuples, and forwards the final result to the source. To optimize the query
processing for resource efficiency, it remains open to study how nodes at the
same data locality (i.e., cluster of nodes that store tuples with similar/identical
Ai values) can cooperate to share selection queries for the same Ai value. An



intelligent cooperation scheme can effectively eliminate the redundant queries.
This latter problem is an instance of the third-type implementation issues men-
tioned in Section 3.2.

4.3 Related Work

In [30] and [18], distributed query processing is discussed in the context of sen-
sor networks, but the effect of the network topology in efficiency of the process
is not considered. Also, [1] and [17] propose efficient routing schemes (without
any particular linking scheme) for search in peer-to-peer networks assuming an
ad hoc organization for the network topology; efficient routing mechanisms in
combination with the linking mechanisms that create search-efficient topologies
are expected to outperform those search schemes significantly. In [14], [21], and
[11] DHTs are adopted as the mechanism to organize the network for efficient
data access and retrieval. As we discussed in Section 4.1, DHT is an example of
fabricated organization, which is not sufficiently compatible with the character-
istics and requirements of QDNs. Similarly, [26] and [9] employ the traditional
hierarchy scheme, and [23] uses a hypercube structure to organize the network.
Here, we propose an organization scheme based on a small-world model, which
as a natural organization model completely respects componental characteristics
of the QDN nodes and allows highly efficient query processing as exemplified by
the well-known small-world phenomenon. Finally, with “semantic overlays” [8,
7], network nodes are clustered into distinct overlays based on the semantic sim-
ilarity of their data content in order to create data localities. However, this work
does not introduce any routing and intra-linking scheme for semantic overlays.

5 Future Work and Conclusion

In this paper, we identified Querical Data Networks (QDNs) as a recently emerg-
ing family of networks (such as peer-to-peer networks and sensor networks) that
not only serve as a communication infrastructure, but also mainly and more
importantly as a distributed query processing system. We discussed the design
issues with a Database-QDN (i.e., a QDN that implements distributed query
processing in network), and as a first step toward realizing a Database-QDN,
we focused on the problem of effective data location for query processing. We
proposed a searchable QDN model that self-organizes to a small-world topology
and allows effective forwarding of the queries to the nodes containing the target
data required for query processing.

We intend to continue studying QDNs extensively. In short terms, we focus
on the searchability problem by 1) experimental evaluation of our searchable
QDN model and behavioral study of the model across the parameter space (e.g.,
number of data dimensions, homophilic parameter of the linking scheme, etc.),
and 2) developing routing (and/or linking) schemes to support other query tem-
plates. In long terms, we turn our attention to other implementation problems
discussed in Section 3.2, beginning with the study of cooperative query process-
ing schemes that take advantage of the correlation between data placement and



network interconnection in the searchable QDN model to optimize the resource-
efficiency of the distributed query processing.
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