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ABSTRACT
With resource-efficient summarization and accurate reconstruction
of the historic traffic sensor data, one can effectively manage and
optimize transportation systems (e.g., road networks) to become
smarter (better mobility, less congestion, less travel time, and less
travel cost) and greener (less waste of fuel and less greenhouse
gas production). The existing data summarization (and archival)
techniques are generic and are not designed to leverage the unique
characteristics of the traffic data for effective data reduction. In this
paper, we propose and explore a family of data summaries that take
advantage of the high temporal and spatial redundancy/correlation
among sensor readings from individual sensors and sensor groups,
respectively, for effective data reduction. In particular, with these
summaries we derive and maintain a ”signature” as well as a series
of ”outliers” for the readings received from each individual sensor
or group of co-located sensors. While signatures capture the typ-
ical readings that estimate the actual readings with bounded error,
the outliers represent the actual readings where the error-bound is
violated. With the combination of signatures and outliers, our pro-
posed data summaries can effectively represent the actual data with
much smaller storage footprint, while allowing for efficient query-
ing of the sensor data with bounded error. Our experiments with a
real traffic sensor dataset shows that our proposed data summaries
use only 23% of the storage space otherwise required for storing
the actual data, while allowing for highly accurate query results
with guaranteed precision.

1. INTRODUCTION
The vast amounts of traffic data collected from the traffic sen-

sors are extremely valuable for real-time decision-making, plan-
ning and management of intelligent transportation systems (ITS).
Traffic sensors collect various readings such as traffic speed, vol-
ume, and occupancy data. In many cases, the traffic data remains
useful for historical analysis long after it is collected. For example,
the traffic data collected from Los Angeles County road networks
can be aggregated over time to estimate the effects of the newly
added traffic lights, or it could be combined geographically with
data from other cities to derive a broader picture of spatiotempo-
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ral traffic flow. Even deeper insight might be gained by integrating
historical traffic data with historical demographics data. However,
the majority of ITS deployments focus on placing the sensors in
the field to collect data and consume it immediately rather than
implementing historical data storage that enables analysis and min-
ing of the traffic data. Considering the huge number of sensors
located on the road networks and their 24/7 continuous operation
with frequent sampling, implementation of a scalable data storage
and querying system that facilitates the analysis and management
of the traffic sensor data is an intrinsically challenging data man-
agement task.

A naive approach for archiving historical traffic sensor data is
to maintain the entire data by appending every new sensor read-
ing to the historic dataset as the reading arrives at the data stor-
age systems. This approach can be implemented by using flat files
or database management systems (DBMS) such as Oracle and Mi-
crosoft SQL Server which are continuously updated with the stream-
ing datasets. However, there are two major problems with this
approach. First, a comprehensive data collection strategy is in-
feasible since the sensor data is unbounded. Second, the com-
putational overhead of historical querying and statistical analysis
of such vast amount of data is prohibitively high. An alternative
data archival approach is to employ lossy data reduction techniques
(e.g., Wavelet Decomposition [16] or SVD [17]). The main idea
behind these data reduction techniques is to leverage the redun-
dancy in data and compactly store the main patterns in the data
(i.e., data sketch) in such a way that once needed, the dataset can
be reconstructed in its entirety with a minimal loss of accuracy.
However, such data reduction techniques also have serious short-
comings. Even though these techniques offer very good data re-
duction rates on certain datasets, the reduction efficacy is highly
data-dependent. For example, high variations in the datasets can
cause these techniques to store large amount of data (hence less
data reduction) for acceptable accuracy. In addition, query pro-
cessing with these methods requires developing complex routines
to refactor the sketches and rewrite the queries. Finally, the main-
tenance of the sketches is not straightforward as they are frequently
invalidated with the streaming sensor data. Although there are sev-
eral incremental algorithms that update the sketches, they cannot
handle the frequent updates of the sensor data.

In this paper, we propose a data summarization technique that
significantly reduces the storage requirement of the traffic sensor
data and enables efficient query processing on the historical datasets.
Our proposed approach builds on the observation that there is a
strong correlation (both temporally and spatially) and redundancy
present among the measurements of the single and multiple traffic
sensor(s). For example, Figure 1(a) plots the average speed mea-
surement from a single sensor located on I-10 East for two consec-
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(a) Average Speed of a sensor for two consecutive
Mondays
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Figure 1: Examples of sensor readings

utive Mondays from 6 AM to 9 PM. As shown, both signals fol-
low almost the same trend, and hence it is obvious that maintainng
the two sets of measurements in their entirety is redundant. As
another example, Figure 1(b) depicts a scatter plot of speed mea-
surements (for Wednesday from 8 AM to 9 AM) from four differ-
ent sensors which are spatially close to each other on a segment
of I-10 East. Similarly, there exists a strong correlation among
the speed measurements of multiple sensors in spatial proximity.
Given these observations, with our data summarization technique,
we derive and maintain data signatures which represent typical pat-
terns of the sensor readings which approximates the actual read-
ings with bounded error. These data signatures, first enable us to
store the streaming sensor data more efficiently by discarding the
redundant sensor readings, and hence, provide cost effective data
growth. Second, we can evaluate the spatiotemporal queries based
on a small but informative summary of the sensor readings with
sufficiently accurate results, rather than having to scan the entire
datasets which yields unacceptable response times. Specifically,
with signature based approach, we only store the streaming data
which falls outside of the signature (i.e., outlier) within a given
error-bound; otherwise we discard the data since it is already rep-
resented by the signature. With our study, we use a large-scale
traffic sensor dataset collected from the entire Los Angeles County
highways for the past two years. Based on our experiments on this
real dataset, we observe that our proposed approach can reduce the
storage requirement up to 77% while maintaining high accuracy
(with bounded-errors) on the query results.

The remainder of this paper is organized as follows. In Section
2, we formally define the problem of sensor data summarization
and approximate querying with bounded-error rates. In Section 3,
we provide the overview of our proposed data summarization ap-
proach. In Section 4, we establish the theoretical foundation of our
proposed data summaries, followed by the corresponding process-
ing techniques in Section 5. In Section 6, we present experimental

results with real-world traffic sensor data. In Section 7, we review
the related work on data reduction techniques as well as sensor data
systems. In Section 8, we conclude and discuss our future work.

2. PROBLEM DEFINITION
In our study, we consider the readings collected from each sensor

as a time-series with each reading observed by a sensor node at time
t. Each sensor node is located on a road network segment. Each
sensor reading contains multiple attributes(i.e., speed, volume and
occupancy) describing the traffic behavior. In the rest of this paper,
we only use the speed reading to formalize our problem. In our his-
torical traffic sensor dataset, each sensor reading is represented as a
combination of sensor_id, speed value, date, and time, denoted by
<i, v, d, t>. The speed value denotes the average speed during its
sensor sampling time unit. We denote the entire dataset by D that
contains all sensor readings during the time interval [Ts, Te] where
Ts and Te represent the beginning and ending timestamp of the data
collection period. Our goal is to provide approximate results (with
a bounded-error) to the queries that ask for the speed reading for a
single sensor during time interval [ts, te], where [ts, te] ⊆ [Ts, Te].
Note that other queries for speed readings (e.g., average query, ag-
gregate query) can be answered on top of this query defined here.
We refer to such query as spatiotemporal query.

Since we are interested in answering the spatiotemporal queries
within a specified error-bound, we define precision constraint which
incorporates user specified precision parameters and enforces an
approximate result to deviate from the exact result by (at most) ±
error-bound ε with probability δ.

DEFINITION 1. Precision Constraint. Let ε and δ denote rel-
ative error and probabilistic guarantee specified by users, respec-
tively. The approximate result Y to a query should satisfy the fol-
lowing precision constraint:

P [|Y −A| ≤ ε ·A] ≥ 1− δ (1)

where A represents the exact result of the query.

Precision Constraint states that the approximate result Y should
hold a relative error of at most ε of the exact result A with prob-
ability of at least 1 − δ. For example, if a user specifies ε = 0.1
and 1 − δ = 0.9, Y should satisfy P [|Y − A| ≤ 0.1 · A] ≥ 0.9,
i.e., with 90 percent probability the approximate answer is within
the 10 percent of the exact result.

3. OVERVIEW OF APPROACH
One way of answering spatiotemporal queries approximately is

to capture the underlying patterns from the sensor readings and use
them instead of the exact readings. Towards this end, we create
a concise but reasonably accurate pattern of a sensor or a group of
sensors called signature by averaging the sensor readings. Hence,
given a spatiotemporal historical query, we can use the signatures to
represent the results rather than scanning the entire historical data.
However, when the signatures are not sufficient to represent the ex-
act sensor readings within precision constraint, we store the sensor
readings that violate the constraint as outlier. We consider both
signatures and outliers as data summaries to answer the spatiotem-
poral queries.

To further improve the storage efficiency, we explore temporal
and spatial correlation in constructing data summaries based on
the following observations. Like in most environmental monitor-
ing sensor network deployments (e.g., pollution, temperature), the
data generated by the traffic sensor nodes is highly auto correlated
both in time and space. For example, the weekday readings from a
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Figure 2: Architecture of Our Data Archival System

specific traffic sensor usually follow a similar pattern, i.e., the sen-
sor reports 50-60 MPH (i.e., Miles Per Hour) on average from 6AM
to 8AM and 20-35 MPH from 8AM to 9AM and so on. Similarly,
the readings from multiple sensors located within a spatial prox-
imity may also be strongly correlated, since the traffic flow hardly
diverses or accumulates within a small spatial region, especially
for the road segments with no exits/entries. These correlations can
be captured accurately by constructing different types of data sum-
maries from the historical data traces.

We now explain the construction and maintenance steps of the
data summaries shown in Figure 2. Our approach involves three
phases. At the data analysis and query processing phase, we use the
historical data to precompute the signatures and their correspond-
ing outliers to support historical spatiotemporal queries submitted
by users. At the data collection phase, we compare the incom-
ing sensor readings to corresponding signatures to identify whether
they violate the precision constraint. If precision constraint is vi-
olated, to avoid storing all such sensor readings, we conduct sam-
pling among them with rate 1−δ and only store the samples, other-
wise, we discard the reading because we can use its signature value
to represent it in the query processing.

4. CONSTRUCTION OF SPATIOTEMPORAL
DATA SUMMARIES

As mentioned, the storage requirement of our data archived sys-
tem includes two main components, namely signatures and outliers.
Before formally define these two components, let us first introduce
an important parameter T for sensor readings sampling time unit.
Thereby, every T minute(s), the sensor readings are sampled once.
With the help of T, signature is defined as follows:

DEFINITION 2. Signature. A signature S for a sensor node (or
a set of sensor nodes) is defined by a sequence of sensor readings
during time interval [ts, te]. The length of the sequence equals to
the number of samples taken during interval [ts, te], namely, the
number of time units T covered by [ts, te]. For example, given
sampling time unit T=1 minute, and ts=6:00AM , te=21:00PM,
the signature S of a sensor have a sequence of (21-6)*60 + 1 = 901
average sensor readings with each one representing the average
speed for 1 minute. The solid line in Figure 3 shows a sample
signature of a sensor node.

In general, we can adopt signatures to answer a spatiotemporal
query within precision constraint. However, certain traffic condi-
tions (e.g., lane closures, accidents, sports games) may cause the
sensor readings fluctuate significantly from the signatures. Clearly,
when users conduct queries corresponding to the time intervals of
such conditions, the signatures are not sufficient to satisfy the pre-
cision constraint. Therefore, to ensure the precision constraint, in
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Figure 3: An example of data summary

addition to signatures, we store the outliers, i.e., the sensor read-
ings that fall outside of the relative error (ε) range as outliers. To
derive the outliers from the precision constraint, we rearrange the
Equation (1) by removing the absolute sign and disregarding the
probability guarantee. Thus, we can obtain the following constraint
for the exact result A:

A ≥ Y

1 + ε
and A ≤ Y

1− ε (2)

The definition of outliers is as follows.

DEFINITION 3. Outlier. If a sensor reading v during a sensor
sampling interval (i.e.,[tj , tj + T ]) satisfies one of the following
inequalities with its corresponding signature Sj:

v <
Sj

1 + ε
or v >

Sj

1− ε , (3)

v is identified as an outlier.

Note that in the definition of an outlier, approximate value Y and
exact valueA are replaced by signature value Sj and sensor reading
v, respectively. In Figure 3, the dash lines indicate the error bounds
of a sample signature and the crosses represent the outliers that are
outside of the error-bounds. When sensor readings are identified as
outliers, we only store a subset of them by sampling with probabil-
ity 1− δ. This enables us to avoid maintaining all the outliers.

Accordingly, given a query, we not only utilize the signatures
to provide approximate answers, but also incorporate the outliers
when the signatures are not sufficient in satisfying the precision
constraints. We argue that the combination of signatures and out-
liers can satisfy the precision constraints. The justification of our
argument is as follows. For the query results (or part of it) from
the outliers, they are 100 percent accurate with no error, because
we store the exact sensor reading as outlier. In this case, we have
P [|Y − A| = 0 ≤ ε · A] = 1. On the other hand, if the results
are from signatures, based on the way we sample the outliers, there
is 1-δ probability that the exact result is within the error range ε,
so we have P [|Y − A| ≤ ε · A] = 1 − δ. Combining the two
inequality in these two cases, we have P [|Y −A| ≤ ε ·A] ≥ 1−δ.
Hence, the combination of the results from signatures and outliers
can guarantee the precision constraint.

We explain our sensor data summarization methods in the fol-
lowing subsections.

4.1 Basic Summarization
So far, we have formally defined the two components of data

summaries: signatures and outliers. In this section, we explain our
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basic summarization technique. In this technique, we compute the
daily signature of a sensor by averaging all historical sensor read-
ings from that sensor, and each signature is indexed by sensor ID i
(i.e., <i, S>). We repeat this process for all sensors. For each sen-
sor, the outliers are identified by comparing the sensor reading to
the corresponding value in its signature S. Specifically, since each
sensor reading is represented as the combination of sensor id, speed
value, date, and time (i.e., <i, v, d, t>), we use the time attribute t
to find its corresponding value of signature S in time unit [t, t+T ],
denoted as Sj . Then, we examine v and Sj in the context of out-
lier definition to determine whether the reading is an outlier. Each
outlier is indexed by sensor id, date and time (i.e.,<i, v, d, t>).

Since each signature is generated by averaging the entire histori-
cal data of the corresponding sensor, the storage need of signatures
is negligible. However, if a signature is not representative enough
(i.e., does not capture the typical patterns of its corresponding sen-
sor), the storage needed to maintain the outliers can be high. We
address this problem by maintaining several signatures for one sen-
sor at different temporal and spatial scales. Meanwhile, we also
aim to strike a compromise between the storage of signatures and
outliers, and minimize the overall storage requirement of data sum-
maries. Towards these ends, we propose two different data summa-
rization techniques that exploit temporal and spatial correlations of
the sensors. We elaborate on these techniques as follows.

4.2 Temporal Summary
In real-world road networks, the traffic patterns may show varia-

tions among different days within a week or even different seasons.
Take traffic behaviors in weekday and weekends as an example. In
weekdays, traffic is always congested in the morning and afternoon
rush hours. However, in weekends, the traffic follows a totally dif-
ferent pattern. We can characterize such diversities with more than
one signatures corresponding to different temporal scales. Trivially,
increasing the number of signatures reduces the amount of storage
needed by outliers.

We explain our temporal summary technique using the example
in Figure 4 where we focus on three levels of temporal summaries.
The leftmost level indicates the method using single signature for
each sensor as discussed in the basic summarization. At the second
level, we increase the granularity of temporal summaries by pro-
viding seven signatures with each one representing a unique day in
the week. Each signature at this level is computed by averaging all
the sensor readings collected on the corresponding day. For exam-
ple, Wednesday signature of a sensor is the average of its sensor
readings collected on Wednesdays in the historical dataset. In this
level, each signature is indexed by sensor_id i with the weekday
category w (i.e.,<i, w, S>), where w ∈ {Mon, Tue, ..., Sun}. At
the third level, we increase the temporal granularity by introduc-
ing seasonal information. Based on each signature generated in the
previous level, we derive three signatures with each one represent-
ing the sensor readings within a particular season. Similarly, we
use sensor ID i, weekday category w, and season category z as an
index of each signature (i.e., <i, w, z, S>). In this level, we create
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Figure 5: Different Aggregation Level of Spatial Summaries

a total of 21 signatures for each sensor characterizing the sensor
readings at different temporal scales.

To identify whether a sensor reading (i.e.,<i, v, d, t>) is an out-
lier, besides the time information t, we also need to use the date
information d to find its weekday value w and its season value z
to identify the category of the corresponding signature S. Once we
have identified S, we use similar strategy with the basic summa-
rization in examining and storing the outliers.

4.3 Spatial Summary
Besides the temporal correlation of the traffic sensor data, we can

use the spatial correlation of sensor locations to generate different
signatures. Specifically, we exploit the fact that the traffic sensors
co-located within a spatial proximity report similar readings and
behaviors. The main challenge here is to identify the sensors that
are within a close spatial proximity. Based on our observation of
the real-world traffic dataset, the traffic flow changes only at en-
tries/exits or intersections. Therefore, the sensor readings between
two adjacent entries/exits, or between two adjacent intersections
may show similar values. Therefore, instead of maintaining one
signature per sensor, we can compute one common signature for
a group of sensors. Subsequently, with spatial summarization, we
aim at eliminating the redundant signatures.

We define two types of segments for spatial summaries that in-
clude groups of sensors which have similar patterns: the segment
between two adjacent exits/entries E-Segment and the segment be-
tween two adjacent intersections I-Segment. As illustrated in Figure
5, in a typical road network, each E-Segment includes a small num-
ber of sensors, and each I-Segment includes several E-Segments,
corresponding to a larger number of sensors. To compute the sig-
natures for each segment, we first identify the set of sensors located
in that segment by maintaining a mapping between group ID g and
sensor ID i, (i.e., <g, i>). Next, we calculate the average of the sen-
sor readings from all sensors in this group and use it as the common
signature for each individual sensor located in that group. In this
case, we index each signature by group ID (g) (i.e., <g, S>).

To identify outliers, we first use the mapping between group_id
and sensor_id to identify to which group the sensor belongs. Next,
we employ the group signature S as the corresponding signature
for the sensor. Finally, we follow the similar process discussed in
the basic summarization to identify and store outliers .

5. QUERY PROCESSING
So far, we have discussed three different strategies for construct-

ing data summaries. In this section, we introduce our proposed
approach to answer spatiotemporal queries based on each type of
data summaries. Algorithm 1 depicts the query processing for the
basic summarization technique. With this technique, given a query,
asking for sensor readings during a particular time interval [ts, te]
for a particular sensor i, we perform the following four steps to
generate the answer.

• First, we partition the time interval [ts, te] into individual
sensor sampling intervals (i.e., [tj , tj+T ] ), and initialize the



Algorithm 1 Spatiotemporal Query(Sensor i, Time Interval[ts, te])
1: Let R be the result array for the query, initialize with empty
2: for each time interval [tj , tj + T ] in [ts, te] do
3: Abstract date information from tj , denoted as d′

4: Abstract time information from tj , denoted as t′

5: Use its i, d′, t′ to search outlier table.
6: if any outlier O found then
7: Add O to Rj for interval [tj , tj + T ]
8: else
9: Employ its sensor ID i to find its signature S

10: Use t′ to identify the position(k) of [tj , tj + T ] in the
sequence of S

11: Add Sk to the Rj for interval [tj , tj + T ].
12: end if
13: end for
14: Return R

empty result array to carry the result value for each sampling
interval.

• Second, for each interval [tj , tj + T ], we extract date and
time information from interval [tj , tj + T ], denoted as d′

and t′. We use sensor_id i, d′ and t′ to search the database
to check if any corresponding outlier stored. If we find such
an outlier, we insert its value to the result array for interval
[tj , tj + T ] and skip the third step, otherwise, we continue
with the third step.

• Third, we employ the sensor id i to search for its correspond-
ing signature S. Then, we utilize t′ to find the corresponding
position (k) of S representing the interval [tj , tj + T ] and
insert Sk to the result set for the interval [tj , tj + T ].

• Finally, once we have gone through all the individual sensor
sampling intervals in [ts, te], we return the result array as the
approximate answer to the query.

For the queries based on temporal or spatial summaries, we use
the similar framework with a few changes in the third step. For
temporal summaries, besides sensor id i, we add date information
d′ from tj to search for the corresponding signature S. Since we
maintain several signatures instead of one per sensor, we need to
identify the particular one for tj by using d′. For spatial summaries,
before searching for the signature, we identify the group ID of sen-
sor i. Next, instead of sensor ID, we use group ID to find the group
signature as the signature for sensor i in the third step.

6. EXPERIMENTS

6.1 Methodology
In our experiments, we use a large-scale and high resolution

(both spatially and temporally) traffic sensor (i.e., loop detector)
dataset collected from entire Los Angeles County highways. This
dataset includes both inventory and real-time data for around 1800
traffic sensors covering approximately 3000 miles. The sampling
rate of the streaming data is 1 reading/sensor/min. The format of
the data is <sensor_id, reading, date, time>, e.g., <717534,
67, 2009/06/23,13:40>. To evaluate the storage efficiency, we com-
pare our summarization techniques with a baseline solution which
stores entire historical sensor readings. In the first two sets of ex-
periments, we vary two precision constraint parameters: error range
ε and probabilistic guarantee rate δ by comparing the storage re-
quirement of the baseline approach, with our techniques using dif-
ferent summary strategies (i.e., temporal and spatial summaries).
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Figure 6: The overall storage size for temporal summaries

When varying one parameter, we set the value of the other one to
10%. In the third set of experiments, we fix the precision constraint
(i.e., both ε and δ are set to 10 %), and compare the different combi-
nations of our two summarization techniques in storage efficiency
and signature size. The performance is measured as the storage
requirement of each technique. For all the experiments, we use a
PC running Windows with Intel 6420 Dual CPU 2.13G and 3.0 GB
RAM.

6.2 Results

6.2.1 Performance of Temporal Summaries
First, we compare the baseline approach (B), the basic sum-

marization (BS) technique and two temporal summarization tech-
niques based on two temporal scales: Weekday (W), Seasonally
Weekday (SW). For SW, we define three seasons: spring, summer,
fall with each one covering four months of the year, Jan-Apr, May-
Aug, Sep-Dec, respectively.

Figure 6 shows that as ε and δ increases the overall storage re-
quirement of our summarization techniques based on different tem-
poral correlations decrease sharply as compared to the baseline ap-
proach. For the effect of ε and δ, we observe that as ε increase, we
holds an increasing reduction rate on storage requirement. Specifi-
cally, when ε increases to 10, the storage requirement of our system
is reduced by nearly 75% as compared to the baseline approach. As
ε increase to 20, the reduction reaches 80% to 85% percent. This
indicates that about 75% to 85% of the entire sensor readings are
distributed within a small error range of the signatures. For δ, the
storage size decreases linearly as δ increases. The reason is that
we sample the outliers to store, so the storage size is proportional
to the sampling rate. In general, the higher the temporal scales,
the more signatures are stored, hence resulting in less number of
outliers as shown in Figure 6. From approach BS to W , the de-
crease in storage requirement is noticeable, but from W to SW ,
the two lines nearly overlap with each other, which indicates the
amount of storage saving is negligible. One reason is that the traf-
fic sensor readings hardly changes across different seasons in Los
Angeles. Figure 7(a) shows the size of signatures for SW is two
times higher than that of W . In conclusion, to make a trade-off
between the number of signatures and the storage efficiency, the
temporal summary by weekday signatures is the proper temporal
summarization approach to choose in Los Angeles.

6.2.2 Performance of Spatial Summaries
Next, we study the impacts of different spatial summarization

techniques on the storage size. We compare the baseline approach
(B) and basic summarization (BS) with two spatial summaries de-
signed for sensors within an E-Segment (ES), and within an I-
Segment (IS).

As shown in Figure 8, the impacts of ε and δ are similar to those
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Figure 8: The overall storage size for spatial summaries

previous experiments. When we increase the spatial aggregation
level by grouping sensors according to different size of segments
(in our dataset, I-Segments are longer than E-Segments), the over-
all representation capability of each group signature for individ-
ual sensor is reduced, therefore the number of outliers increases.
In particular, comparing IS with BS in both Figure 8 and Fig-
ure 7(b), although the signature size of IS is reduced significantly
as compared that of BS, IS shows a sharp increase of outliers.
One possible reason for that is the sensor readings generally fluc-
tuate a lot within two adjacent intersections. We observe that both
BS and ES require similar storage capacity in most cases, which
means that sensors located between two exits mostly maintain sim-
ilar speed readings hence the amount of outliers does not increase
significantly. Moreover, the signature size of ES is smaller than
that of BS. Hence, the ES based spatial summarization technique
was the best one in this set of experiments.

6.2.3 Performance of Spatial & Temporal Summaries
With our previous two experiments, we fixed one type of sum-

marization technique at one time to examine the effect of others. In
our third set of experiments, we vary both the spatial and tempo-
ral summarization technique simultaneously to identify the optimal
combination for our system. With this set of experiments, the same
notation as in the last two experiments are used, (e.g.,W+ES indi-
cates the combination of week day summarization and E-Segment
summarization). We fix both ε and δ to 10%.

Figure 9 shows the comparison of the seven combinations for
overall storage size and signature size. As shown, although IS
methods is useful in decreasing the amount of signatures signifi-
cantly, it sacrifices the overall storage size because of the increas-
ing number of outliers, so it cannot be considered as a part of the
optimal choices. When comparing the performance of techniques
including W and the ones including SW , the storage size does
not change much, but the signature sizes of the ones with SW are
much larger than that of the ones with W . Therefore, we should
also exclude SW technique from our optimal choices. Now, let us
compare the remaining three choices: BS, W and W + ES. As
shown,W andW+ES requires similar storage requirement that is
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Figure 9: The performance of temporal & spatial summaries

much less than that ofBS. Hence, we eliminateBS. ButW +ES
performs better by maintaining less signatures as compared to W .
Hence, W + ES is the optimal solution for our system. By com-
paring the overall storage size of W +ES with that of the baseline
approach shown in previous experiments, we observe that the stor-
age requirement of our system as decreased by 77% percent of the
baseline approach with ε=10% and δ=10%.

7. RELATED WORK
In the past, different types of data reduction techniques have

been widely used to reduce the size of the large sensor datasets.
The prominent data reduction techniques are Wavelets [16], Sin-
gle Value Decompositions (SVD) [17] and Principal Component
Analysis (PCA) [12]. The main idea behind these techniques is to
compactly store the main patterns in the data (i.e., sketches) in such
a way that the dataset can be reconstructed back in its entirety from
those patterns, with minimal loss of accuracy. Wavelets - a widely
used technique in signal processing and image compression - com-
press large datasets by hierarchically decomposing the raw data and
storing a small number of wavelet basis functions (i.e., wavelet co-
efficients) which best describe the data. Wavelets have been applied
successfully in answering range-sum aggregate queries over data
cubes [16], in selectivity estimation [13] and in approximate query
processing [4, 11, 15]. Likewise, SVD and PCA represent a multi-
variate dataset using the smallest possible number of new variables
(i.e., principal components) that are selected based on the statistical
characteristics of the dataset. PCA reduce the size of the datasets
by maintaining a sketch of archived historical data (i.e., small num-
ber of principal components and a transformed dataset). However,
the main difference is that although these compression techniques
enable approximate query processing on the set of sketches, most
of them do not guarantee any error bounds on the query results.
Specifically, depending on the spatial and temporal extent of the
query, the variation between the actual result and the approximated
result can be unacceptable. In contrast, our approach ensure both
an error bound and probabilistic guarantee on the results to the spa-
tiotemporal queries.

Another line of related work is data stream processing. In many
streaming techniques, the structures similar with signatures(e.g.,
synopsis) are built online for real-time approximate query purposes,
examples include equi-depth histograms and Haar wavelets [9, 13],
maintaining samples and simple statistics over sliding windows [6],
data clustering and decision tree construction [10, 7]. But most
these research efforts focus on the application of online data moni-
toring rather than queries over historical dataset. Similarly, in some
large streaming projects, queries over historical data streams do
not receive much attention. In the area of sensor networks, such
systems includes Aurora[1] which is designed for the purpose of
managing data streams for monitoring applications and Telegraph
[5] from UC Berkeley which focuses on creating adaptive engine



over querying streaming data from sensors. However, for other
streaming projects, such as Coguar [8] from Cornell University
which considers sensor network as a distributed database system,
STREAM [2] which serves as a general-purpose data stream man-
agement system as well as Niagara[14] which is designed for inter-
net XML query processing, do concern the historical queries, but
the type of their queries do not include spatial and temporal filters
as the spatiotemporal query defined in this paper.

For the data reduction in spatiotemporal domain, there have been
several studies customized for specific types of spatiotemporal dataset.
One of them is the work done by Cao et al. [3] on data reduction
over trajectories of moving objects. They adopted line simplifi-
cation approach from graphics field to reduce the storage size of
trajectories. Unlike the traditional reduction technique, the line
simplification based approach can guarantee a deterministic error
bound, which is very similar with our error bounds structure. How-
ever, the approach of line-simplification aims at geographically sim-
plify the presentation of individual moving objects trajectory, there-
fore heavily relies on the structure of trajectory data and not appli-
cable on the traffic sensor data described in this paper.

8. CONCLUSION & FUTURE WORK
In this paper, we proposed a family of data summarization tech-

niques that significantly reduce the storage requirement of the traf-
fic sensor data while enabling efficient query processing on his-
torical traffic datasets. Unlike standard data summarization tech-
niques, our proposed approach builds on insights about the nature
of the traffic sensor dataset. In particular, we observed that there is
a strong correlation (both temporally and spatially) and redundancy
among the measurements of individual as well as groups of traffic
sensor(s). Driven by these observations, we introduced a family of
summarization techniques that capture data signatures and outliers
to approximates the actual readings with bounded error and proba-
bilistic guarantee. Our experiments with a real traffic sensor dataset
showed that our proposed data summaries use only 23for storing
the actual data, while providing highly accurate query results with
guaranteed precision.

We intend to pursue this study in three different directions. First,
we plan to extend our experiments to compare the summarization
efficiency of our approach with standard data summarization tech-
niques such as wavelets and SVD with more complex spatiotem-
poral queries (e.g., average, aggregate) over traffic sensor dataset.
Second, we intend to investigate efficient ways for maintenance/
update of the signatures. Finally, to enhance the summarization ra-
tio with our proposed techniques, we plan to study these techniques
under various spatiotemporal data granularities with different cor-
relations. Moreover, we study patterns in outliers for the purpose
of minimizing the outlier storage.
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