
Power Efficient Processor Architecture and The Cell Processor

H. Peter Hofstee

IBM Server & Technology Group

hofstee@us.ibm.com

Abstract

This paper provides a background and rationale for

some of the architecture and design decisions in the Cell

processor, a processor optimized for compute-intensive

and broadband rich media applications, jointly developed

by Sony Group, Toshiba, and IBM.

1. Introduction

The paper is organized as follows. Section 2 discusses

some of the challenges microprocessor designers face and

provides motivation for performance per transistor as a

reasonable first-order metric for design efficiency.

Section 3 discusses common microarchitectural

enhancements relative to this metric. Section 4 discusses

some alternate architectural choices that improve both

design efficiency and peak processor performance.

Section 5 discusses some of the limitations of the

architectural choices introduced in section 3, and

proposes a non-homogeneous SMP as a means to

overcome these limitations. Section 6 summarizes the

organization of the Cell processor.

2. Performance per transistor as a metric

Microprocessor architects and micro-architects have

over the last couple of decades been driven by two

primary metrics that determine performance: performance

per cycle (often approximated by the number of

instructions completed per processor cycle), and design

frequency (e.g. design cycle time measured in fanout-4

inverter delays). Combined with the capabilities of the

technology (e.g. pico-seconds per fo4) and system

constraints (e.g. sorting conditions, power supply

variation, reference clock jitter, and thermal conditions)

these determine the final operating frequency and

performance of the end product.

Today, architects and micro-architects, as well as logic

and circuit designers, must take power efficiency into

account, since virtually all systems, from mobile

platforms to PCs and workstations to the largest

supercomputers are now power limited. This implies that

we must use power efficiency as one of our primary

metrics for, and driver of, microprocessor designs.

A number of metrics for efficiency have been

proposed, ranging from energy per operation to energy-

delay, to energy-delay2. Each of these metrics balances

processor performance to efficiency, and each of these

metric can be appropriate [1]. For this paper, however, we

examine performance per transistor as a metric. This

metric approximates performance per Watt if one assumes

a constant per-transistor power penalty. This is reasonable

when a high-performance CMOS technology is used and

a constant fraction of the power is lost to sub-threshold

leakage and gate oxide tunneling currents, and when the

intent is to optimize sustained performance when a

significant fraction of the chip is being used.

3. Architectural efficiency

Intel’s Pat Gelsinger has observed that in recent

history we have gained approximately 40% in (design)

performance every time the number of available

transistors was doubled in a next major CMOS

technology node [2]. A corollary is that, on a performance

per transistor metric, microprocessors have become less

efficient at the same rate. We examine some of the major

factors that have driven down performance per transistor.

3.1. Virtual memory and caches

Almost all modern high-performance microprocessors

devote the majority of transistors to caches and other

structures in support of maintaining the illusion of a large,

uniformly accessible, memory. As a rule of thumb cache

miss rates are inversely proportional to the square root of

their size, thus to first order confirming Gelsinger’s law.

The illusion of a flat and uniformly accessible memory is

however increasingly costly to maintain. Latencies to

main memory, in spite of designer’s best efforts range in

the several hundreds of cycles and approach a thousand

cycles in multi-GHz SMP systems. With such a large

penalty associated with a cache miss, managing memory

locality becomes the main factor determining software

performance, and writers of compilers and high-

performance software alike spend much of their time

reverse-engineering and defeating the sophisticated

mechanisms that automatically bring data on to and off

the chip. Given the large number of transistors devoted to

these mechanisms this is an unsatisfactory situation.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

1530-0897/05 $20.00 © 2005 IEEE

3.2. Superscalar architectures

The addition of execution units of the same type in

order to leverage instruction level parallelism and

increase IPC is generally inefficient relative to a

performance per transistor metric. As an example, a

second load-store port on a cache tends to double its size

(a two-ported SRAM cell is often more than twice as big

as a single-ported cell), and introduces the need to add

logic to maintain the program order between loads and

stores. Hence often the cost of the associated resources is

more than doubled. In addition, the second load-store

issue slot can be used less often than the first, further

degrading the efficiency.

3.3. Out-of order instruction processing

Out of order processing of instructions, speculative

execution, and register renaming introduce very

significant amounts of overhead to keep track of all the

instructions and their dependencies and ensure that the

computed results are consistent with the in-order

semantics. Floorplans of modern microprocessors show

that the associated structures tend to far exceed the size of

the processor dataflows.

3.4. Hardware branch prediction

 Modern branch prediction structures rely on large

tables to store branch histories and cache branch target

addresses or instructions for incremental increases in

performance and thus tend to degrade performance per

transistor.

3.5. Hyper-pipelining

 Constant penalties associated with unpredictable

changes in instruction flow imply that increasing pipeline

depth as a means to improve design frequency provides

diminishing returns. Recent studies have shown that

increasing pipeline depths beyond their current size in

today’s high-performance microprocessors provides only

a small return in terms of performance and a negative

return if power is taken into account [3], consistent with

the broader thesis of this paper. It should be noted,

however, that pipeline depth and optimal processor

design frequency is a strong function of both the

workload set and the circuit family that is used.

Architectures that are more optimized to their applications

can usefully achieve higher design frequencies than are

shown as optimal by [3]. Also technologies optimized for

sustained performance, with substantial transistor leakage

currents, favor higher design frequencies more strongly

than technologies that are optimized for battery life.

4. Increasing efficiency and performance

 Section 3 discussed some of the mechanisms that have

led to decreased microprocessor efficiencies. This section

discusses architectural and micro-architectural

mechanisms that improve design efficiency.

4.1. Multi-core processors

 The most obvious way to improve efficiency is to

sacrifice per-thread performance (or per-thread

performance growth) and instead instantiate multiple

cores on a single chip when more transistors become

available. The more threads can be accommodated in the

application set, the more efficient the processors can

become. The approach allows architects to re-introduce

simpler processor micro-architectures (e.g. in-order or

scalar) in order to re-gain efficiency. This approach forces

programmers to multithread their applications, but

because server systems have been organized as SMPs for

a long time, there is good software support for this model.

Many applications scale well on SMP systems and may

scale even better for SMPs on a chip. All major

microprocessor vendors now offer or plan to offer chip

multiprocessors following this model. Even in the face of

a slowdown in transistor performance growth, this path

allows for continued increases in chip performance at

historical rates for at least a decade if accelerated off-chip

bandwidth needs are addressed [4].

4.2. Three-level storage

 RISC microprocessors bring data from main memory

into registers before operating on the data. Register

“memory” is managed by the compiler for conventional

programming languages. We propose that since the best

compilers and the best programmers already manage the

caches in software, it is reasonable to postulate that it may

be easier for programmers and compilers to deliver

power-constrained performance by pre-scheduling

transfers of code and data to local storage than to find

ways of compensating for the thousand cycle penalties

when data or code is not resident in the cache. By

allowing the pre-scheduled data and code transfers to

occur asynchronously, in parallel with computation,

another important limitation of conventional

architectures, known as the “memory wall” can be

addressed. In order to leverage the bandwidth to a main

memory that has a latency of, say, 1K cycles, and transfer

granule of, say, 8 cycles, 128 transfers need to be

pipelined to fully leverage the available bandwidth.

Conventional microprocessors need to use speculative

execution, or speculative prefetching to create more than

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

1530-0897/05 $20.00 © 2005 IEEE

a single memory transfer per thread with strongly

diminishing returns. Of course increasing the number of

threads on a chip helps, but the more cores are present on

the bus, the longer SMP and protocols take, further

increasing memory latency.

 Performance improvement on structured and compute

intensive codes following the 3-level model is immediate.

New programming paradigms such as streaming

languages are also easily supported. We anticipate that it

will take some time before compilers will mature to

exceed the performance of single-thread conventional

(legacy) programs on conventional architectures, but it

may not take very long before a chip-level (multi-thread)

power-performance advantage is achieved on a broad set

of applications.

4.3. Large unified register files

 In order to support high cycle times (low fo4) and

relatively deep pipelines efficiently, enough registers

need to be available to support the instructions in flight. A

large register file is a more efficient means of achieving

this objective than using register renaming to extend a

smaller architectural register set. An additional advantage

of a large set of named registers is that extensive loop

unrolling (and interleaving) can be supported without the

need for hardware to reorder instructions. Unrolling of

loops and interleaving of loop iterations is well within the

capabilities of modern compilers.

 The cost of a large register file can be further reduced

by leveraging a single register file and single name space

for all instruction types as well as special purpose

registers (condition registers, link, and count registers)

rather than dedicating separate files for scalar, floating-

point and media/SIMD.

4.4. Software branch prediction

 Whereas modern hardware branch prediction structures

do not do well on performance per transistor, software

branch prediction tends to be an inexpensive means to

gain a substantial performance improvement. In order to

support high-frequency deeply pipelined designs

efficiently, a branch hint instruction, present in the code

well before the actual branch instruction allows for “just

in time” prefetching of the instructions at the branch

target. In combination with loop unrolling and

interleaving, compilers can achieve near optimal

performance even on deeply pipelined high-frequency

processors.

4.5. SIMD dataflow organization

 In a SIMD dataflow instruction decode and control

overhead is amortized over multiple instructions in

parallel. A popular SIMD organization in PC processors

is a 128-bit wide dataflow that can be used in a variety of

ways, including 4 wide for 32 bit integer or floating-

point. Even though some compilers can generate SIMD

instructions from generic code, SIMD units are most

commonly and effectively used by using SIMD data-

types explicitly in the source code and restructure

algorithms accordingly.

 Another approach that amortizes control overhead is

(long) vector instructions. This organization is well

known in the science and supercomputing community but

is not as well represented in the software base for media

and personal computing applications.

5. Non-homogeneous SMPs

The previous section outlined some of the approaches

that can be taken to improve performance per transistor in

microprocessors while maintaining a high degree of

programmability. However, the organization is not well

suited for all applications. One shortcoming is the large

state that is introduced with local storage and large

register files. Hence the organization is not particularly

well suited for applications with very frequent context

switches, such as operating systems.

A preferred approach therefore is to combine

processors optimized for performance per transistor on

compute intensive applications, with processors with a

more conventional architecture to run the operating

system and more control intensive applications. Since

operating systems are amongst the most expensive and

extensive software, an organization that does not

unnecessarily forces creating a new OS has substantial

cost and schedule advantages.

6. The Cell processor

The Cell processor incorporates many of the listed

ideas to improve microprocessor efficiency. On the Cell

processor a Power ArchitectureTM core is combined with

Synergistic Processor Elements and associated memory

transfer mechanisms. Memory translation and protection

are consistent with the Power ArchitectureTM. In addition

facilities are added to enhance the real-time behavior of

the processor. The 64-b Power processor supports

multiple operating systems and virtualization. In

particular real-time operating systems (such as an

embedded or game OS) and non-real time OS (such as

Linux) can run simultaneously. The Power processor

virtualization layer (logical partitioning) governs the

allocation of resources, including the SPEs and other

resources to the various OS partitions. Unlike Power

processors, the SPEs operate only on their local memory

(local store or LS). Code and data must be transferred into

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

1530-0897/05 $20.00 © 2005 IEEE

the associated LS for an SPE to execute or operate on.

Local Store addresses do have an alias in the Power

processor address map and transfers to and from Local

Store to memory at large (including other local stores) are

coherent in the system. As a result a pointer to a data

structure that has been created on the Power processor can

be passed to an SPE and the SPE can use this pointer to

issue a DMA command to bring the data structure into its

local store in order to perform operations on it. If after

operating on this data structure the SPE (or Power core)

issues a DMA command to place it back in non-LS

memory, the transfer is again coherent in the system

according to the normal Power memory ordering rules.

Equivalents of the Power processor locking instructions,

as well as a memory mapped mailbox per SPE, are used

for synchronization and mutual exclusion.

Figure 1 shows the organization of the first-generation

Cell processor [5]. We summarize the highlights. The

processor has an 11fo4 design frequency. The processor

is constructed around a high bandwidth on-chip SMP

fabric capable of supporting up to 96 bytes per processor

cycle total using up to 12 simultaneous transfers.

Connected to this SMP fabric are:

(1) A dual threaded (SMT) 64b Power core. This dual-

issue core has 32kB L1 instruction and data caches, a 512

kB L2 cache, and supports the VMX SIMD instruction

set.

(2) Eight Synergistic Processor Elements, described in

more detail in Figure 2.

(3) An on-chip memory controller. This memory

controller supports high memory bandwidth using two

Rambus XDRAMTM memory banks.

(4) A controller supporting off chip coherent and I/O

interfaces. These interfaces support partitioning of an

aggregate of 7 Bytes outbound and 5 Bytes inbound

Rambus RRAC raw bandwidth in Byte increments over

two external interfaces, on of which can be configured as

a coherent bus. This flexibility supports multiple system

configurations including a glueless two-way SMP.

Each of the listed elements has 8 byte wide (relative to

processor frequency) inbound and outbound interfaces to

the coherent on-chip bus, except the I/O interface unit

which has two 8 byte interfaces.

Figure 2 shows the high-level organization of the SPE.

The SPE processor incorporates many of the

characteristics that allow for it to achieve high frequency

and near optimal CPI in a small area. The SPE uses the

three level model of memory we discussed in section 4.2.

Details of the SPE can be found in [6], we summarize the

highlights. The dual issue SPE consists of an SPU with a

256kB local store memory and an interface unit that

supports up to 16 simultaneous transfers to or from the

local stores. The SPU has a unified 128 bit by 128 entry

register file and a 128-bit wide dataflow that supports

integer and floating-point instructions of various SIMD

widths.

 Power limitations and limitations on main memory

access latency force a re-evaluation of microprocessor

architecture. This paper lists a number of mechanisms that

have significantly degraded efficiency and also discusses

a number of mechanisms to increase efficiency that are

not in use in today’s high performance processors. The

Cell processor incorporates many of these, and combines

power efficiency with a very high design frequency.

Acknowledgements

The Cell processor is the result of a deep collaboration

by engineers from IBM, Sony Computer Entertainment,

Toshiba Corporation, and Sony Corporation. Each

brought unique requirements to the table that helped

shape this microprocessor. Ken Kutaragi should be

credited with presenting the challenge and with insisting

that we explore something beyond the boundaries of the

conventional. Jim Kahle provided the technical leadership

for the project together with Masakazu Suzuoki,

Haruyuki Tago, and Yoshio Masubuchi. Jim also led the

Cell architecture team consisting of Michael Day, Charles

Johns, Dave Shippy, Takeshi Yamazaki, Shigehiro

Asano, Andy Wottreng and myself. Sang Dhong provided

the technical leadership for the SPE processor and drove

its efficiency to reality. The development of the micro-

architecture of the SPE was led by Brian Flachs. Other

key contributors to the SPE are listed on Brian’s paper.

Marty Hopkins (“no great architectural idea has ever gone

unpunished”) did his best to ensure the SPE would be a

good target for a compiler. Michael Gschwind and Peter

Capek also made contributions in this area. Sumedh

Sathaye, J.D. Wellman, and Ravi Nair contributed ideas

that eventually led to the organization of this processor as

a non-homogeneous SMP. Several people from all three

companies provided direction from an application

perspective, of these Nobuo Sasaki, Yukio Watanabe,

Brad Michael and Barry Minor had the greatest impact on

the organization of the SPE. Dac Pham was the chief

engineer driving the design of the Cell processor, and

Mary Many coordinated the design activities. Chekib

Akrout and senior management in the three companies

provided management oversight and created the right

business conditions for this project. With more than 400

engineers and managers making contributions to this

processor it is impossible to acknowledge everyone, but it

should be noted that the level of effort that everyone has

put into the project is what turns a reasonable set of ideas

into a great processor.

Conclusion

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

1530-0897/05 $20.00 © 2005 IEEE

Figure 1. 1
st
 Generation Cell components.

Figure 2. High-level SPE organization.

References

[1] H. P. Hofstee, “Power-Constrained Microprocessor

Design”, 2002 IEEE International Conference on

Computer Design, Sep. 2002, pp. 14-16.

[2] F. Pollack, “Microarchitecture challenges in the

coming generations of CMOS process technologies,” 32nd

Annual International Symposium on Microarchitecture,

(MICRO-32) Nov. 1999, pp. 2-.

[3] H. P. Hofstee, “Future Microprocessors and Off-Chip

SOP Interconnect,” IEEE Transactions on Advanced

Packaging, Vol. 27, No. 2, May 2004, pp.301-303.

[4] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose,

V.Zyuban, P.N. Strenski, and P.G. Emma “Optimizing

pipelines for power and performance,” in Conf. Proc. 35th

Annual IEEE/ACM International Symposium on

Microarchitecture 2002. pp. 333-344.

[5] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.

Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y.

Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,

M. Wang, J. Warnock, S. Weitzel, D. Wendel, T.

Yamazaki, K. Yazawa, “The Design and Implementation

of a First-Generation CELL Processor,” to appear: IEEE

International Solid-State Circuits Symposium, Feb. 2005.

[6] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee. G.

Gervais, R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty, B.

Michael, H-J. Oh, S. M. Mueller, O. Takahashi, A.

Hatakeyama, Y. Watanabe, N. Yano. “The

Microarchitecture of the Streaming Processor for a CELL

Processor,” to appear: IEEE International Solid-State

Circuits Symposium, Feb. 2005.

Coherent On-Chip Bus 96B/cycle

BIU

L2

64b

Power

Architecture

Core

Mem.

Contr.

Interface

Contr.

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

BIU/

DMA

SPU

Unified
Reg.file

SIMD
Data-
flow

Local
Store Memory

DMA
Unit

MMU
&

BIU

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)

1530-0897/05 $20.00 © 2005 IEEE

