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Abstract

This paper provides a background and rationale for 

some of the architecture and design decisions in the Cell 

processor, a processor optimized for compute-intensive 

and broadband rich media applications, jointly developed 

by Sony Group, Toshiba, and IBM. 

1. Introduction 

The paper is organized as follows. Section 2 discusses 

some of the challenges microprocessor designers face and 

provides motivation for performance per transistor as a 

reasonable first-order metric for design efficiency. 

Section 3 discusses common microarchitectural 

enhancements relative to this metric. Section 4 discusses 

some alternate architectural choices that improve both 

design efficiency and peak processor performance. 

Section 5 discusses some of the limitations of the 

architectural choices introduced in section 3, and 

proposes a non-homogeneous SMP as a means to 

overcome these limitations. Section 6 summarizes the 

organization of the Cell processor.  

2. Performance per transistor as a metric 

Microprocessor architects and micro-architects have 

over the last couple of decades been driven by two 

primary metrics that determine performance: performance 

per cycle (often approximated by the number of 

instructions completed per processor cycle), and design 

frequency (e.g. design cycle time measured in fanout-4 

inverter delays). Combined with the capabilities of the 

technology (e.g. pico-seconds per fo4) and system 

constraints (e.g. sorting conditions, power supply 

variation, reference clock jitter, and thermal conditions) 

these determine the final operating frequency and 

performance of the end product. 

Today, architects and micro-architects, as well as logic 

and circuit designers, must take power efficiency into 

account, since virtually all systems, from mobile 

platforms to PCs and workstations to the largest 

supercomputers are now power limited. This implies that 

we must use power efficiency as one of our primary 

metrics for, and driver of, microprocessor designs. 

A number of metrics for efficiency have been 

proposed, ranging from energy per operation to energy-

delay, to energy-delay2.  Each of these metrics balances 

processor performance to efficiency, and each of these 

metric can be appropriate [1]. For this paper, however, we 

examine performance per transistor as a metric. This 

metric approximates performance per Watt if one assumes 

a constant per-transistor power penalty. This is reasonable 

when a high-performance CMOS technology is used and 

a constant fraction of the power is lost to sub-threshold 

leakage and gate oxide tunneling currents, and when the 

intent is to optimize sustained performance when a 

significant fraction of the chip is being used. 

3. Architectural efficiency 

Intel’s Pat Gelsinger has observed that in recent 

history we have gained approximately 40% in (design) 

performance every time the number of available 

transistors was doubled in a next major CMOS 

technology node [2]. A corollary is that, on a performance 

per transistor metric, microprocessors have become less 

efficient at the same rate. We examine some of the major 

factors that have driven down performance per transistor. 

3.1. Virtual memory and caches 

Almost all modern high-performance microprocessors 

devote the majority of transistors to caches and other 

structures in support of maintaining the illusion of a large, 

uniformly accessible, memory. As a rule of thumb cache 

miss rates are inversely proportional to the square root of 

their size, thus to first order confirming Gelsinger’s law. 

The illusion of a flat and uniformly accessible memory is 

however increasingly costly to maintain. Latencies to 

main memory, in spite of designer’s best efforts range in 

the several hundreds of cycles and approach a thousand 

cycles in multi-GHz SMP systems. With such a large 

penalty associated with a cache miss, managing memory 

locality becomes the main factor determining software 

performance, and writers of compilers and high-

performance software alike spend much of their time 

reverse-engineering and defeating the sophisticated 

mechanisms that automatically bring data on to and off 

the chip. Given the large number of transistors devoted to 

these mechanisms this is an unsatisfactory situation. 
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3.2. Superscalar architectures

The addition of execution units of the same type in 

order to leverage instruction level parallelism and 

increase IPC is generally inefficient relative to a 

performance per transistor metric. As an example, a 

second load-store port on a cache tends to double its size 

(a two-ported SRAM cell is often more than twice as big 

as a single-ported cell), and introduces the need to add 

logic to maintain the program order between loads and 

stores. Hence often the cost of the associated resources is 

more than doubled. In addition, the second load-store 

issue slot can be used less often than the first, further 

degrading the efficiency. 

3.3. Out-of order instruction processing

Out of order processing of instructions, speculative 

execution, and register renaming introduce very 

significant amounts of overhead to keep track of all the 

instructions and their dependencies and ensure that the 

computed results are consistent with the in-order 

semantics. Floorplans of modern microprocessors show 

that the associated structures tend to far exceed the size of 

the processor dataflows. 

3.4. Hardware branch prediction

    Modern branch prediction structures rely on large 

tables to store branch histories and cache branch target 

addresses or instructions for incremental increases in 

performance and thus tend to degrade performance per 

transistor.

3.5. Hyper-pipelining

    Constant penalties associated with unpredictable 

changes in instruction flow imply that increasing pipeline 

depth as a means to improve design frequency provides 

diminishing returns. Recent studies have shown that 

increasing pipeline depths beyond their current size in 

today’s high-performance microprocessors provides only 

a small return in terms of performance and a negative 

return if power is taken into account [3], consistent with 

the broader thesis of this paper. It should be noted, 

however, that pipeline depth and optimal processor 

design frequency is a strong function of both the 

workload set and the circuit family that is used. 

Architectures that are more optimized to their applications 

can usefully achieve higher design frequencies than are 

shown as optimal by [3]. Also technologies optimized for 

sustained performance, with substantial transistor leakage 

currents, favor higher design frequencies more strongly 

than technologies that are optimized for battery life.

4. Increasing efficiency and performance 

    Section 3 discussed some of the mechanisms that have 

led to decreased microprocessor efficiencies. This section 

discusses architectural and micro-architectural 

mechanisms that improve design efficiency. 

4.1. Multi-core processors

    The most obvious way to improve efficiency is to 

sacrifice per-thread performance (or per-thread 

performance growth) and instead instantiate multiple 

cores on a single chip when more transistors become 

available. The more threads can be accommodated in the 

application set, the more efficient the processors can 

become. The approach allows architects to re-introduce 

simpler processor micro-architectures (e.g. in-order or 

scalar) in order to re-gain efficiency. This approach forces 

programmers to multithread their applications, but 

because server systems have been organized as SMPs for 

a long time, there is good software support for this model. 

Many applications scale well on SMP systems and may 

scale even better for SMPs on a chip. All major 

microprocessor vendors now offer or plan to offer chip 

multiprocessors following this model. Even in the face of 

a slowdown in transistor performance growth, this path 

allows for continued increases in chip performance at 

historical rates for at least a decade if accelerated off-chip 

bandwidth needs are addressed [4]. 

4.2. Three-level storage

    RISC microprocessors bring data from main memory 

into registers before operating on the data. Register 

“memory” is managed by the compiler for conventional 

programming languages. We propose that since the best 

compilers and the best programmers already manage the 

caches in software, it is reasonable to postulate that it may 

be easier for programmers and compilers to deliver 

power-constrained performance by pre-scheduling 

transfers of code and data to local storage than to find 

ways of compensating for the thousand cycle penalties 

when data or code is not resident in the cache. By 

allowing the pre-scheduled data and code transfers to 

occur asynchronously, in parallel with computation, 

another important limitation of conventional 

architectures, known as the “memory wall” can be 

addressed. In order to leverage the bandwidth to a main 

memory that has a latency of, say, 1K cycles, and transfer 

granule of, say, 8 cycles, 128 transfers need to be 

pipelined to fully leverage the available bandwidth. 

Conventional microprocessors need to use speculative 

execution, or speculative prefetching to create more than 
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a single memory transfer per thread with strongly 

diminishing returns. Of course increasing the number of 

threads on a chip helps, but the more cores are present on 

the bus, the longer SMP and protocols take, further 

increasing memory latency.  

      Performance improvement on structured and compute 

intensive codes following the 3-level model is immediate. 

New programming paradigms such as streaming 

languages are also easily supported. We anticipate that it 

will take some time before compilers will mature to 

exceed the performance of single-thread conventional 

(legacy) programs on conventional architectures, but it 

may not take very long before a chip-level (multi-thread) 

power-performance advantage is achieved on a broad set 

of applications.  

4.3. Large unified register files

    In order to support high cycle times (low fo4) and 

relatively deep pipelines efficiently, enough registers 

need to be available to support the instructions in flight. A 

large register file is a more efficient means of achieving 

this objective than using register renaming to extend a 

smaller architectural register set. An additional advantage 

of a large set of named registers is that extensive loop 

unrolling (and interleaving) can be supported without the 

need for hardware to reorder instructions. Unrolling of 

loops and interleaving of loop iterations is well within the 

capabilities of modern compilers. 

    The cost of a large register file can be further reduced 

by leveraging a single register file and single name space 

for all instruction types as well as special purpose 

registers (condition registers, link, and count registers) 

rather than dedicating separate files for scalar, floating-

point and media/SIMD. 

4.4. Software branch prediction

    Whereas modern hardware branch prediction structures 

do not do well on performance per transistor, software 

branch prediction tends to be an inexpensive means to 

gain a substantial performance improvement. In order to 

support high-frequency deeply pipelined designs 

efficiently, a branch hint instruction, present in the code 

well before the actual branch instruction allows for “just 

in time” prefetching of the instructions at the branch 

target. In combination with loop unrolling and 

interleaving, compilers can achieve near optimal 

performance even on deeply pipelined high-frequency 

processors.

4.5. SIMD dataflow organization

    In a SIMD dataflow instruction decode and control 

overhead is amortized over multiple instructions in 

parallel. A popular SIMD organization in PC processors 

is a 128-bit wide dataflow that can be used in a variety of 

ways, including 4 wide for 32 bit integer or floating-

point. Even though some compilers can generate SIMD 

instructions from generic code, SIMD units are most 

commonly and effectively used by using SIMD data-

types explicitly in the source code and restructure 

algorithms accordingly. 

      Another approach that amortizes control overhead is 

(long) vector instructions. This organization is well 

known in the science and supercomputing community but 

is not as well represented in the software base for media 

and personal computing applications. 

5. Non-homogeneous SMPs 

The previous section outlined some of the approaches 

that can be taken to improve performance per transistor in 

microprocessors while maintaining a high degree of 

programmability. However, the organization is not well 

suited for all applications. One shortcoming is the large 

state that is introduced with local storage and large 

register files. Hence the organization is not particularly 

well suited for applications with very frequent context 

switches, such as operating systems. 

A preferred approach therefore is to combine 

processors optimized for performance per transistor on 

compute intensive applications, with processors with a 

more conventional architecture to run the operating 

system and more control intensive applications.  Since 

operating systems are amongst the most expensive and 

extensive software, an organization that does not 

unnecessarily forces creating a new OS has substantial 

cost and schedule advantages. 

6. The Cell processor 

The Cell processor incorporates many of the listed 

ideas to improve microprocessor efficiency. On the Cell 

processor a Power ArchitectureTM core is combined with 

Synergistic Processor Elements and associated memory 

transfer mechanisms. Memory translation and protection 

are consistent with the Power ArchitectureTM. In addition 

facilities are added to enhance the real-time behavior of 

the processor. The 64-b Power processor supports 

multiple operating systems and virtualization. In 

particular real-time operating systems (such as an 

embedded or game OS) and non-real time OS (such as 

Linux) can run simultaneously. The Power processor 

virtualization layer (logical partitioning) governs the 

allocation of resources, including the SPEs and other 

resources to the various OS partitions. Unlike Power

processors, the SPEs operate only on their local memory 

(local store or LS). Code and data must be transferred into 
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the associated LS for an SPE to execute or operate on. 

Local Store addresses do have an alias in the Power 

processor address map and transfers to and from Local 

Store to memory at large (including other local stores) are 

coherent in the system. As a result a pointer to a data 

structure that has been created on the Power processor can 

be passed to an SPE and the SPE can use this pointer to 

issue a DMA command to bring the data structure into its 

local store in order to perform operations on it. If after 

operating on this data structure the SPE (or Power core) 

issues a DMA command to place it back in non-LS 

memory, the transfer is again coherent in the system 

according to the normal Power memory ordering rules. 

Equivalents of the Power processor locking instructions, 

as well as a memory mapped mailbox per SPE, are used 

for synchronization and mutual exclusion. 

Figure 1 shows the organization of the first-generation 

Cell processor [5]. We summarize the highlights. The 

processor has an 11fo4 design frequency. The processor 

is constructed around a high bandwidth on-chip SMP 

fabric capable of supporting up to 96 bytes per processor 

cycle total using up to 12 simultaneous transfers. 

Connected to this SMP fabric are: 

(1) A dual threaded (SMT) 64b Power core. This dual-

issue core has 32kB L1 instruction and data caches, a 512 

kB L2 cache, and supports the VMX SIMD instruction 

set.

(2) Eight Synergistic Processor Elements, described in 

more detail in Figure 2. 

(3) An on-chip memory controller. This memory 

controller supports high memory bandwidth using two 

Rambus XDRAMTM memory banks. 

(4) A controller supporting off chip coherent and I/O 

interfaces. These interfaces support partitioning of an 

aggregate of 7 Bytes outbound and 5 Bytes inbound 

Rambus RRAC raw bandwidth in Byte increments over 

two external interfaces, on of which can be configured as 

a coherent bus. This flexibility supports multiple system 

configurations including a glueless two-way SMP. 

Each of the listed elements has 8 byte wide (relative to 

processor frequency) inbound and outbound interfaces to 

the coherent on-chip bus, except the I/O interface unit 

which has two 8 byte interfaces. 

Figure 2 shows the high-level organization of the SPE. 

The SPE processor incorporates many of the 

characteristics that allow for it to achieve high frequency 

and near optimal CPI in a small area. The SPE uses the 

three level model of memory we discussed in section 4.2. 

Details of the SPE can be found in [6], we summarize the 

highlights. The dual issue SPE consists of an SPU with a 

256kB local store memory and an interface unit that 

supports up to 16 simultaneous transfers to or from the 

local stores. The SPU has a unified 128 bit by 128 entry 

register file and a 128-bit wide dataflow that supports 

integer and floating-point instructions of various SIMD 

widths.

    Power limitations and limitations on main memory 

access latency force a re-evaluation of microprocessor 

architecture. This paper lists a number of mechanisms that 

have significantly degraded efficiency and also discusses 

a number of mechanisms to increase efficiency that are 

not in use in today’s high performance processors. The 

Cell processor incorporates many of these, and combines 

power efficiency with a very high design frequency. 
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Figure 1. 1
st
 Generation Cell components. 

Figure 2. High-level SPE organization. 
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