
CSCI-1411 FUNDAMENTALS OF
COMPUTING LAB

Anh Nguyen Fall 2015

1

Lab 3: Expressions, Input, Output and Data Type
Conversions

2

¨  Overview:
¤  Lab 3 Components

n  Lab Sections (3.1, 3.2, 3.3, 3.4, 3.5, Design Document)

¤  Lab 3 Concepts
n  User Input
n  Terminal (output) Formatting

¤ C++ Standard Library Reference
n  http://www.cplusplus.com/
n  Utilize the search feature (ex. search for any standard function name)

¤ Complete each Exercise
n  Turn in your source code after all changes have been made
n  Answer the questions from the exercises in a comment block

Lab 3: Expressions, Input, Output and Data Type
Conversions

3

¨  C++ Simple User Input
¤  Utilizes the built in cin stream with the >> (extraction) operator
¤  Example:

float myValue;
cin >> myValue;
// use myValue...

¤  Can be utilized with several data-types:
n  int, double, float
n  Strings are slightly different:

n  Will only parse or accept the first word or ‘token’ the user provides:

 string name;
 cin >> name;

n  At the terminal: What is your name? Bob Watson
n  Value of name = Bob

Lab 3: Expressions, Input, Output and Data Type
Conversions

4

¨  C++ String Reading
¤ C-string: an array of characters

n  char name[12]; // How many characters can be hold up?

 // Which character the last character must be
reserved for?

¤  Skip leading whitespaces
n cin >> name;

¤  To handle whitespaces (blank spaces, tabs, line breaks, etc.)
n cin.getline(name, 12); // C-string
n getline(cin, name); // string

Lab 3: Expressions, Input, Output and Data Type
Conversions

5

¨  C++ Terminal Output formatting
¤ Obviously spaces and tab characters can be utilized (“ “,

“\t”)
n  Tabs are not reliable (is a tab a character? 2 spaces, 4 spaces, 8

spaces?)
n  Inserting spaces becomes incredibly tedious

¤  setprecision(int n)
n  Number of decimal places to display

¤  setw(int n)

¤  fixed

¤  showpoint

à include <iomanip> directive

Lab 3: Expressions, Input, Output and Data Type
Conversions

6

¨  Data Type Conversion
¤  Type coercion à implicitly

n  int count = 10.89;
n  cout << count; // What value is printed?

¤  Type casting à explicitly
n  count = static_cast<int>(10.89);

¤  Example:
int num_As = 10;
int totalgrade = 50;
float percent_As;

1. percent_As = num_As/totalgrade; // What value is printed?

2. percent_As = static_cast<float>(num_As)/totalgrade; // What value is printed?

Lab 3: Expressions, Input, Output and Data Type
Conversions

¨  3.1Working with the cin Statement
¤  (bill.cpp)

¤  Answer questions asked in exercise 2 & 3

¨  3.2 Formatting Output
¤  (tabledata.cpp)

¨  3.3 Arithmetic Operations and Math Functions
¤  (righttrig.cpp)

¨  3.4 Working with Type Casting
¤  (batavg.cpp)

¤  Answer questions asked in exercise 1 & 2

7

Lab 3: Expressions, Input, Output and Data Type
Conversions

¨  3.5 Develop your own Program
¤  Choose 1of the 3 options

¤  Name the source file: main.cpp
¤  Include a design document for the option you choose

n  Includes algorithm description, input, output, diagrams, formulas, etc.

8

Lab 3: Expressions, Input, Output and Data Type
Conversions

9

¨  Submission File Checklist
¨  Submit all files on Canvas (One at a time or all of them in a

single zip file). Be sure to include all source files and
documents.

¨  3.1 bill.cpp

¨  3.2 tabledata.cpp

¨  3.3 righttrig.cpp

¨  3.4 batavg.cpp
¨  3.5 main.cpp (For any option you choose)

¨  3.5 Design Document

Lab 3: Customizing VIM

10

¨  Vi/Vim contains several more features than nano:
¤  Line numbers
¤  Syntax Highlighting
¤  Powerful Shortcuts

¨  Vim can be customized to display all of these by
default
¤ Utilizing a shell script we can save these settings
1.  Download the change vim.sh
2.  Copy the file change vim.sh to your home directory:

n  transues/changevim.sh

3.  Run the script using: sh changevim.sh

