
Modelling Peer-to-Peer Data
Networks under Complex
System Theory

Cyrus Shahabi and Farnoush Banaei-Kashani
Computer Science Department
University of Southern California
Los Angeles, California 90089-0781
[shahabi,banaeika]@usc.edu

Abstract: A Peer-to-peer Data Network (PDN) is an open and evolving society of
peer nodes that assemble into a network to share their data for mutual benefit. PDNs
are enabled by distributed query processing. We argue that with a self-organizing,
dynamic, and large-scale architecture and nodes that inherit extensive autonomy from
their human users, this new generation of distributed database systems should be up-
graded from the domain of traditional distributed computing systems to the realm
of natural complex systems (such as social networks). In this way, PDN is studied
among its peers within a modelling framework which is both compatible with its nat-
ural/autonomous computing model and rich to capture its complexity. The “complex
system theory” is a meta-theory that provides a common modelling framework to study
such complex systems under one umbrella. This meta-theory consists of a rich collec-
tion of tools adopted from various fields, where each tool is developed to study an
instance of a complex system in a particular field, but applicable across other complex
systems from different fields.

In this paper, for the first time we introduce and apply the complex system theory
as a modelling framework to PDNs. We demonstrate the usefulness of this mod-
elling framework by presenting a case study, focused on the problem of efficient search
in PDNs. Observing the similarity between PDNs and social networks, we adopt a
model from the study of social networks to develop an efficient search mechanism for
PDNs. More specifically, we propose the SWAM access method, a distributed index
structure that enables efficient processing of various similarity search queries (namely,
exact-match, range, and kNN queries) in indexable PDNs. SWAM is inspired by the
“small-world” models originally introduced to explain efficient communication in so-
cial networks. We verify the efficiency of these search mechanism both analytically and
empirically.

Keywords: Peer-to-Peer Networks, Complex Systems, Small-Worlds, Distributed
Search

Reference to this paper should be made as follows: Shahabi, C. and Banaei-Kashani,
F. (xxxx) ‘Modelling Peer-to-Peer Data Networks under Complex System Theory’, In-
ternational Journal of Computational Science and Engineering, Vol. x, No. x, pp.xxx–
xxx.

Biographical notes: Cyrus Shahabi received his Ph.D. degree in Computer Science
from the University of Southern California in 1996. He is currently an Associate Pro-
fessor and the Director of the Information Laboratory (InfoLAB) at the Computer
Science Department at University of Southern California. Dr. Shahabi is the recipient
of the 2002 National Science Foundation CAREER Award and 2003 Presidential Early
Career Awards for Scientists and Engineers (PECASE). His current research interests
include Peer-to-Peer Systems, Streaming Architectures, Geospatial Data Integration
and Multidimensional Data Analysis.

Farnoush Banaei-Kashani received his M.S. degree in Electrical Engineering - Com-
puter Networks from the University of Southern California in 2001. He is currently a
PhD student at the Computer Science Department at University of Southern California,
Information Laboratory. His research interests include distributed query processing in
dynamic information networks such as peer-to-peer networks, sensor networks, and the
Web.

1

1 INTRODUCTION

A Peer-to-peer Data Network (PDN) is an open and
evolving society of peer nodes that assemble into a net-
work to pool and share their data (or more generally, their
resources/objects represented by data) for mutual benefit.
By an interesting analogy to a democratic human society,
when nodes join the PDN society, while they agree to fol-
low a restricted set of common rules in interaction with
their peers (i.e., the social rules governing the PDN so-
ciety), they preserve their autonomy as individuals. For
example, as part of their social obligations all PDN nodes
(or at least those who are good PDN citizens) create and
maintain connection with a set of neighbor nodes and par-
ticipate in cooperative query processing (e.g., forwarding
search queries for data discovery). Aside from the social
rules, the PDN leaves the behavior of the individual nodes
unregulated and flexible, to be managed by their users
based on their individual preferences and/or to allow for
natural uncertainties and constraints. For instance, nodes
may join and leave the PDN society as they decide (by user
decision or due to unwanted node/link failure), they con-
trol their own resources/data, and they select their neigh-
bors according to their own administrative policy or physi-
cal constraints (e.g., connecting to the nodes that are both
accessible and physically close as neighbors). In this sense,
individual nodes are self-governed, autonomous, and inde-
pendent. There is a trade-off between the extent of the so-
cial rules and the autonomy of the individual PDN nodes;
the more extensive and interfering the social rules, the au-
tonomy of the nodes is more restricted.

1.1 Motivation: Why Complex Systems?

PDNs are distributed query processing systems represent-
ing a new generation of distributed database systems with
an open architecture and significantly less constraining as-
sumptions. The first step toward realizing this genera-
tion of distributed databases is to select an appropriate
approach to model these systems. As a direct consequence
of the computing model described above, a PDN is 1) a
self-organizing system, i.e., there is no central entity to
organize the PDN and any kind of structural and func-
tional organization emerges from the distributed interac-
tion among PDN nodes; 2) a dynamic system, i.e., the
node-set, data-set, and link-set of the PDN are dynamic
and in continuous renewal; and 3) a large-scale system,
because as an open and beneficial society it tends to at-
tract numerous nodes that intermittently join the society.
The combination of these three characteristics makes PDN
a “complex system”, i.e., a system that is hard to rep-
resent/describe information theoretically (considering the
large amount of information required to represent the state
of the system), and hard to analyze computation theoret-
ically (considering the complexity of computing the state
transition of the system). An appropriate modelling ap-
proach for such complex PDNs must 1) be compatible with

the PDN computing model as a democratic society, and
2) provide a framework with a set of conceptual, experi-
mental, and analytical tools to contemplate, measure, and
analyze PDNs; a framework which is neither oversimplified
nor overcomplicated to remain both accurate and applica-
ble to such complex systems. Therefore, we propose the
“complex system theory” as the modelling framework for
PDNs.

The complex system theory is a unifying meta-theory for
collective study of the complex systems. Various fields of
study, such as sociology, physics, biology, chemistry, etc.,
were established to study different types of initially simple
systems and gradually matured to analyze and describe
instances of incrementally more complex systems. The
complex system theory is an interdisciplinary field of study
which is recently founded based on the observation that an-
alytical and experimental concepts, tools, techniques, and
models developed to study an instance of complex system
in one field can be adopted, often almost unchanged, to
study other complex systems in other fields of study (Bar-
Yam, 1997). This meta-theory provides a common mod-
elling framework consisting of a rich set of tools adopted
from various fields to study all complex systems under one
umbrella.

In this framework, complex systems are modelled as
large-scale networks of functionally similar (or peer) nodes,
where the links represent some kind of system-specific
node-to-node interaction. For example, a social network
is a network of people who communicate in a society, a bi-
ological network (at the cellular scale) is a network of cells
which exchange mass and energy in a biological organ, and
a molecular network is a network of molecules that interact
by exchanging kinetic and potential energy. Most of the
complex systems studied under the complex system theory
are natural systems, where nodes are autonomous while
they also follow certain natural principles/laws (e.g., the
second law of Newton governs kinetic interactions among
molecules in a molecular network). Moreover, most of the
natural complex systems are also self-organizing, dynamic,
and large-scale. All the features discussed above are simi-
lar to those of PDN and the PDN computing model. Thus,
the perception of the complex system theory about com-
plex systems is compatible with PDNs. With the PDN-
compatible system model on one hand, and the rich set of
special tools to study complex systems on the other hand,
the complex system theory is a promising modelling frame-
work for PDNs.

Previously, this modelling approach is successfully ap-
plied to the Internet. For example, Ohira et al. (1998)
used self-organized criticality (i.e., a self-similarity model
from the complex system theory (Sornette, 2000)) to ex-
plain the self-similar scaling behavior of the Internet traf-
fic flows, and Albert et al. (2000) employed concepts from
statistical mechanics (which was originally developed by
physicists to study the collective behavior of the molecular
networks, such as temperature and pressure of a mass of
gas) to understand the reasons for the power-law connec-
tivity in the Internet topology. To the best of our knowl-

2

edge, our work is the first attempt to apply the complex
system theory as a modelling framework to PDNs.

1.2 State-of-the-Art

Currently, distributed computing is the framework
adopted to model PDNs. With this modelling approach,
in line with the traditional system-engineering routine, the
system designer implicitly assumes almost full control over
the system components and resources. This assumption
allows reducing the complexity of the system by impos-
ing fabricated restrictions, and consequently, enables de-
signing efficient mechanisms and architectures. Such an
assumption may be valid with typical engineered systems
that are managed by a unique authority that governs the
entire system. However, it is totally incompatible with
the democratic PDN computing model, where autonomy
of the nodes is an essential requirement. Hence, with this
modelling approach the resulting solutions are unrealistic
and inapplicable for the real PDN applications. Such the-
oretical solutions that enforce the controlling assumption
give rise to dictatorial PDN societies, which are unattrac-
tive for prospective citizens, and intolerant and/or fragile
to disobedience of their members that want to maintain
their autonomy.

The main representative of such solutions is a family
of lookup systems, the Distributed Hash Tables (DHTs)
(Ratnasamy et al., 2001, Stoica et al., 2001 and Row-
stron et al., 2001), which are designed for efficient search
in PDNs. DHTs regulate both the data placement and the
network topology of the PDN. With the regulated data
placement, it is as if the entire data-set of the PDN is
owned by a single authority that collects the data from
the nodes (the actual owners) and re-distributes the data
among them (as a set of slave data storage units/nodes)
according to a certain data placement policy to achieve ef-
ficient access. Enforcing the data placement violates the
autonomy of the PDN nodes in controlling their own data,
and for example, is inapplicable to the PDN applications
where nodes must maintain their own and only their own
data because of security concerns. Moreover, such an un-
natural data distribution (which requires modification to
the natural data distribution of realistic PDN applications
where each node maintains its own data) is an instance of
over-engineered design and raises significant practical is-
sues. For example, the communication overhead of trans-
ferring the data (or pointers to the data) from the actual
owner of the data to where the data is placed can be over-
whelming. This important cost factor, which is due when-
ever the node joins the PDN or its data is updated, is often
overlooked in the analysis of the efficiency of the DHTs.

Similarly, with the regulated network topology, among
all possible choices of neighborhood, each node is required
to connect to a particular pre-defined set of nodes as neigh-
bors. Enforcing the neighborhood of a node violates the
autonomy of the node in selecting its neighbors according
to its own administrative policy or physical constraints.
For example, it is quite possible that none of the desig-

nated neighbors for a node are physically accessible to the
node when it joins the PDN; hence, leaving the node iso-
lated. Considering such problems with DHTs, it is not
surprising that despite significant efforts of the research
community in enhancing and promoting DHTs as the only
academic solution for efficient search in PDNs, DHTs are
not adopted as practical solutions for any real PDN ap-
plications such as file-sharing systems. Instead, these sys-
tems have unstructured network topology and prefer to use
naive search mechanisms such as flooding, which is not effi-
cient but compatible with the PDN computing model, and
hence, practical.

1.3 Contributions

We categorize PDNs as instances of complex systems and
apply the complex system theory as a modelling framework
to study PDNs. Our general research agenda is to extend
application of the complex system theory to PDNs by:

1. Adopting models and techniques from a number of
impressively similar complex systems (e.g., social net-
works) to design and analyze PDNs; and

2. Exporting the findings from the study of PDNs (which
are engineered complex systems, hence, more control-
lable) to other complex system studies.

We demonstrate the usefulness of this modelling frame-
work by pursuing two case studies, both focused on the
problem of efficient search in PDNs. Observing the sim-
ilarity between PDNs and social networks, we adopt two
models from the study of social networks to develop effi-
cient search mechanisms for two types of PDNs. Search is
a generic primitive for query processing in PDNs: a mech-
anism that locates the required data in response to one
or more types of queries is a search mechanism. Devel-
oping efficient search mechanisms for the self-organizing,
dynamic, and large-scale PDNs is a challenging task. We
recognize two different types of PDNs that require signifi-
cantly different search approaches: unindexable PDNs and
indexable PDNs.

With unindexable PDNs, the extreme dynamism of the
PDN node-set, data-set and link-set renders any attempt
to self-organize the network to an index-like structure (for
efficient query processing) impossible and/or inefficient.
Without indexing, efficient search is only possible by ef-
ficient scanning of the network nodes. For unindexable
PDNs, we introduce the SIR search mechanism that en-
ables efficient processing of partial selection queries (i.e.,
selection queries that can be satisfied by a partial result-
set rather than the entire result-set). SIR is inspired by
the SIR (Susceptible-Infected-Removed) epidemic disease
propagation model for social networks. We also employ
the percolation theory to formalize and analyze this search
mechanism.

On the other hand, with the indexable PDNs, the
dynamism of the PDN is such that the benefit of in-
dexing the PDN still exceeds the overhead of maintain-
ing/updating the index. For indexable PDNs, we propose

3

a self-organizing mechanism that structures the PDN to
the SWAM access-method, a search-efficient structure that
enables efficient processing of various similarity queries
(namely, exact-match, range, and kNN queries). SWAM
is a distributed index structure that organizes the PDN
nodes in order to index the data content of the nodes while
it avoids changing the natural placement of the data. For
the design of SWAM as well as its search dynamics, we
were inspired by the “small-world” models. Small-worlds
are models proposed to explain efficient communication in
social networks. For the remainder of this paper, we focus
on our second case study with indexable PDNs.

After a short overview in Section 2, in Section 3 we
formally define the problem of similarity-search in PDNs.
Section 4 elaborately describes the SWAM family of PDN
access methods, and specifies SWAM-V as a particular
member of the SWAM family. Section 5 concludes the
paper and discusses the future directions of this research.

2 OVERVIEW

In this case study, we formalize the problem of
similarity-search in indexable PDNs, and propose a family
of distributed access methods, termed Small-World Ac-
cess Methods (SWAM), for efficient execution of various
similarity-search queries, namely exact-match, range, and
k-nearest-neighbor queries. Unlike LH∗ and DHTs, SWAM
does not control the assignment of data objects to PDN
nodes; each node autonomously stores its own data. Be-
sides, SWAM supports all similarity-search queries on mul-
tiple attributes. SWAM guarantees that the query object
will be found (if it exists in the network) in average time
logarithmically proportional to the network size. More-
over, once the query object is found, all the similar objects
would be in its proximate network neighborhood and hence
enabling efficient range and k-nearest-neighbor queries.

As a specific instance of SWAM, we propose SWAM-V,
a Voronoi-based SWAM that indexes PDNs with multi-
attribute data objects. For a PDN with N nodes SWAM-
V has query time, communication cost, and computation
cost of O(log N) for exact-match queries, and O(log N +
sN) and O(log N + k) for range queries (with selectivity
s) and kNN queries, respectively. Our experiments show
that SWAM-V consistently outperforms a similarity-search
enabled version of CAN in query time and communication
cost by a factor of 2 to 3. Here, due to lack of space we
omit the details of our analytical and experimental results.

3 FORMAL DEFINITION OF THE PROBLEM

3.1 Data and Query Model

We assume a relational data model for the content of the
indexable PDNs. A set of (maybe duplicate) tuples with
the same schema are distributed among the nodes of the

1

4

3

2 51

6 4

7

1

7

6

4

3

5

2

1

4

3 2 51

6 4

7

1

7

6

4

3

5

2

I II III

Figure 1: Reducing the general PDN model

PDN (for multi-schema PDNs, we rely on schema recon-
ciliation techniques such as that of Doan et al. (2001)).
Tuples are uniquely identified by a set of d attributes, the
key of the schema. Hereafter, we use the terms tuple and
key interchangeably wherever the meaning is clear. A sim-
ilarity query is originated at a PDN node and is answered
by locating at least one replica of all the tuple(s) with key
similar to the query key. A PDN access method is a mech-
anism that defines 1) how to organize the PDN topology
(interconnection) to an index-like structure, and 2) how to
use the index structure to process the similarity queries.
We are interested in the access methods for efficient pro-
cessing of similarity queries in indexable PDNs.

We model the PDN key space as a Hilbert space (V,Lp).
V = V1 × V2 × ... × Vd is a d-dimensional vector space,
where Vi, the domain of the attribute ai for the key

−→
k =

〈a1, a2, ..., ad〉 in V , is a contiguous and finite interval of
R. The Lp norm with p ∈ Z+ is the distance function
to measure the dissimilarity (or equivalently similarity)
between two keys

−→
k1 and

−→
k2 as Lp(

−→
k1−−→k2), where Lp(−→x) =(∑d

i=1 |xi|p
) 1

p

.
We are interested in content-based access methods, i.e.,

access methods that organize the PDN topology based on
the content of the PDN nodes. In general each PDN node
may include more than one tuple. For better explanation
of our content-based access methods, without loss of gen-
erality, we find it simple to assume a PDN model where
each node stores one and only one tuple. To justify this
assumption, here we show how to reduce the general PDN
model to our assumed PDN model. Consider K as the
set of keys (tuples) available in PDN and N as the set of
PDN nodes. Assuming a general PDN model, we define a
one-to-many mapping M : N → K that maps each PDN
node to the set of keys stored at the node1 (Figure 1, Step
I). Each key is considered as a virtual node embedded in
V . Note that since tuples are replicated, there might be
several virtual nodes with the same key. A content-based

1Depending on the PDN application, if some of the data objects
within a node are closely similar, then alternatively M can map a
node to the centroid of the similar objects. Without loss of generality,
we focus on the general case where the objects within a node are not
closely similar.

4

access method defines how to organize the set of virtual
nodes corresponding to all nodes in N to a virtual PDN
with particular topology and how to process the queries in
the virtual PDN (Figure 1, Step II). Finally, the topology
of the actual PDN is deduced by inverse mapping from
the topology of the virtual PDN: a PDN node n is con-
nected to a node m if and only if at the virtual PDN some
virtual node in M(n) is connected to some other virtual
node in M(m) (Figure 1, Step III). Also, the semantic of
the query processing at the actual PDN nodes is defined by
the query processing semantic at the corresponding virtual
nodes such that the flow of the query at the actual PDN
is logically identical to that of the virtual PDN. With this
approach, the mapping and inverse mapping steps (Steps
I and III) are independent of the access method used in
Step II, and each access method for virtual PDNs (which
is a PDN with only one tuple per node) defines an ac-
cess method with similar characteristics for general PDNs.
Hereafter, we assume the reduced model for PDNs and
characterize the primitives of an access method to con-
struct the topology/index and process the queries in such
a PDN.

The topology of a PDN can be modelled as a directed
graph G(N, E), where the edge e(n,m) ∈ E represents an
asymmetric neighborhood relationship in which node m is
a neighbor of node n. Schematically, we depict this re-
lationship by drawing an arrow from node n to node m.
A(n) is the set of neighbors for the node n. To achieve
scalability, a node only maintains a limited amount of in-
formation about its neighbors, which includes the key of
the tuples maintained at the neighbors and the physical
addresses of the neighbors. A node can directly commu-
nicate with its neighbors. To construct the PDN index,
an access method defines the join primitive2 (similar to
the insert operation with the traditional database access
methods), which is used by the new node n to delineate
A(n) as it joins the existing PDN. We assume that at least
the physical address of one node in the existing PDN (if
any) is available to n as it joins the PDN. As the new nodes
join the PDN, its topology incrementally converges to the
intended index structure. Similarly an access method de-
fines the leave operation (equivalent to the delete primitive
with the traditional access methods).

We are interested in the following types of similarity
queries:

• Exact-Match Query: Given the query key −→q , re-
turn the tuple t with key

−→
k such that

−→
k = −→q .

• Range Query: Given the query key −→q and the range
r, return all tuples t with key

−→
k such that Lp(

−→
k −−→q) ≤ r.

• k-Nearest-Neighbor (kNN) Query: Given the
query key −→q and the number k, return the k-ary
(t1, t2, ..., tk) such that

−→
ki , key of ti, is the i-th nearest

neighbor of the key −→q .
2This join is different from the join operation in the relational

algebra.

A similarity query can originate from any PDN node at T0-
th time slot (∀ T0 ∈ Z), assuming a discrete wall-clock time
with fixed time unit. A node that originates a query or re-
ceives the query from other nodes at the (T0 + i)-th time
slot (∀ i ∈ Z+ ∪{0}), can process the query locally and/or
forward zero or more processed replicas of the query to
its immediate neighbors at the (T0 + i + 1)-th time slot.
The collective processing of the query by the PDN nodes is
completed when all expected tuples in the relevant result
set of the query are visited by at least one of the repli-
cas of the query. Besides the join and leave primitives,
an access method defines the forward primitive for query
processing based on the constructed PDN index. The for-
ward primitive can only use the information at the local
node to process the query and to make forwarding deci-
sions. During query processing, the Lp distance between
the query key −→q and the local key is computed to verify
if the local tuple satisfies the query condition. Also, with
content-based access methods the forward primitive may
measure the Lp distances between the query key −→q and
the neighbor keys to guide the query.

3.2 Efficiency Measures for PDN Access
Methods

An access method can be evaluated based on its construc-
tion cost, and/or based on its query processing cost and
performance. Unless the set of nodes participating in PDN
is extremely dynamic, the computation (CPU time) and
communication costs of constructing and maintaining the
index structure are negligible as compared to those of the
query processing.

We define three metrics to measure the efficiency of a
PDN access method for query processing. The first two
metrics evaluate the cost of query processing in terms of
the required system resources, whereas the last one mea-
sures the system performance from the user perspective:

1. Communication cost (C1): Average number of query
replicas forwarded to complete the processing of a
query.

2. Computation cost (C2): Average number of Lp dis-
tance computations to complete the processing of a
query.

3. Query time (T): Average response-time of a query.
If processing of a query starts at time slot T0 and
completes at time slot T1, the response-time of the
query is equal to T1 − T0.

4 SWAM: SMALL-WORLD ACCESS METHODS

We define a family of efficient access methods for PDNs,
termed Small-World Access Methods (SWAM), which
is designed based on the principles borrowed from the
small-world models. Here, after a general overview of the

5

(1,2) (2,2)(-1,2) (0,2)(-2,2)

(1,1) (2,1)(-1,1) (0,1)(-2,1)

(1,0) (2,0)(-1,0) (0,0)(-2,0)

(1,-1) (2,-1)(-1,-1) (0,-1)(-2,-1)

(1,-2) (2,-2)(-1,-2) (0,-2)(-2,-2)

a. Hybrid small-world graph b. Small-world as PDN index

Figure 2: The small-world model

useful properties of the small-world model, we define the
SWAM family and characterize its properties. Also, as an
example we introduce SWAM-V, a Voronoi-based instance
of SWAM, which satisfies SWAM properties and achieves
query time, communication cost, and computation cost
logarithmic to the size of the network for all types of
similarity queries.

4.1 Small-World as an Index Structure

The small-world model is a network topology proposed to
explain the small-world phenomenon, the fact that two
individuals in a social network can efficiently locate each
other through a short chain of acquaintances logarithmic to
the size of the network (Watts et al., 1998 and Kleinberg,
2000). The small-world graph is a hybrid graph, a super-
imposition of a regular grid and a dilute random graph
(p ¿ 1), inheriting both their properties (see Figure 2-a).
It inherits average node-to-node path length O(log |N |)
from the random graph component, and high clustering
property from the grid. A graph is clustered if the neigh-
bors of a node are more probably the neighbors of each
other rather than the neighbors of the other nodes in the
network. For a node n clustering is measured by the clus-
tering coefficient C(n), which is the realized fraction of all
possible edges among the neighbors of n:

C(n) = l

/(|A(n)|
2

)
(1)

where l is the number of existing edges among the neighbors
of n. The clustering coefficient of a graph is the average
of the clustering coefficients of its nodes. For a complete
graph, a grid, and a dilute random graph GN,p, the clus-
tering coefficients are 1, ' 3

4 , and p ¿ 1, respectively.
To demonstrate a direct application of the small-world

graph as an index structure for a PDN, we consider the
following simple PDN. Assume the key space V is a sub-
space of Zd rather than Rd, and also assume all possible
keys in V are available within the PDN, one key per PDN
node. We can organize the topology of this PDN based on
a small-world graph with a d-dimensional underlying grid
as follows:

1. Grid component: The node storing the key
−→
k =

〈a1, a2 , ..., ad〉 is a neighbor of all nodes with keys−→
k′ where Lp(

−→
k −−→k′) ≤ b (b ∈ Z+); and

2. Random graph component: The node nk storing the
key

−→
k = 〈a1, a2, ..., ad〉 is a neighbor of one other node

nk′ with key
−→
k′ selected probabilistically such that if

Lp(
−→
k −−→k′) = x, the probability of selecting n′k as the

neighbor of nk is proportional to x−d (i.e., a power-law
distribution).

See Figure 2-b for an example with 2-dimensional key
space, L1 as the distance measure, and neighborhood
boundary parameter b = 1. Kleinberg (2000) showed
that with a greedy forwarding primitive, on average an
exact-match query is resolved with T, C1, and C2 all in
O(log |N |). With the greedy forwarding, node n forwards
a query −→q only to one of its neighbors with key

−→
k such

that Lp(
−→
k −−→q) is minimum among all neighbors in A(n),

i.e., the neighbor with the most similar key to the query
key −→q is selected to receive the query. It is easy to see the
underlying grid topology ensures that when a node with
key

−→
k receives a query −→q , always either

−→
k = −→q or the

node has at least one neighbor with the key
−→
k′ such that

Lp(
−→
k′ −−→q) < Lp(

−→
k −−→q). Therefore, along the forward-

ing path of the query, the distance between the key at
the current node and the target key −→q is monotonically
decreasing as the query is forwarded. Besides, the proba-
bilistically selected neighbors act as long jumps that ensure
exponential decrease of this distance on average. Thus, the
average forwarding path length is logarithmic to the size
of the network.

The way we defined the neighborhood relationship be-
tween the PDN nodes based on the distance between their
keys, together with the clustering property of the result-
ing small-world topology allow for the effective execution
of other types of similarity queries as well. On one hand,
we defined the neighborhood relationship such that neigh-
bors of a node have keys closely similar to the key of the
node, and consequently, similar to each other. On the
other hand, due to the clustering property of the gener-
ated small-world graph, neighbors of a node are closely
connected in terms of the hop-count in the network (i.e.,
number of the edges on the path between each pair of
nodes). Therefore, a locality of tightly connected nodes
with closely similar keys is created at the neighborhood of
each node in the network. With a topology constructed
out of such localities, range and kNN queries can be ex-
ecuted efficiently in two phases, first, by an exact-match
query to locate the locality of the query key −→q , and sec-
ond, by flooding the query throughout the locality of −→q .
With a localized topology, flooding at the locality of the
query key is efficient. We can locate all the keys relevant
to the range and kNN queries in a limited number of hops
h away from −→q , where h is independent of the size of the
network |N |. With our simple PDN example, for range and
kNN queries all the relevant keys (and almost only rele-
vant keys) are visited within h = O(r) and h = O(dk 1

d e)

6

root

a. Recursive partitioning

k1

k4
k3

k2

k11

k14

k12

k13

root

N1 N2 N3 N4

N11 N44

c1
c2

c4
c3

k44

N14N13N12 ...

c21

c24
c23

c22

b. Recursive partitioning example: GNA

k1 k2

k3

k4

k7
k8

k16

k9

k15 k14

k6
k10

k13
k12

k11

k5

N1 N4

N16
N12

N2 N3

N5

N6

N7N8

N9 N10

N11

N13
N14N15

c. Flat partitioning

Figure 3: Partitioning of the key space

hops from −→q , respectively. Therefore, for both types of
queries, T is O(log |N |+h), C1 is O(log |N |+hd), and C2

is O(d log |N |+ hd).

With an inclusive key space V ⊂ Zd, the simple PDN
example considered here is only of illustrative significance.
We, however, use the same properties to develop SWAM
that applies to more general PDN models.

4.2 SWAM Family

Almost all the traditional access methods for database sys-
tems are based on one core idea to reduce the search space
for efficient access (see the unified model by Chavez et al.
(2001)). They recursively partition the key space into a

set of disjoint similarity classes3. An index is then con-
structed as a hierarchy of the class representatives at suc-
cessive levels (see Figure 3-a). The hierarchical index al-
lows filtering out (i.e., to dismiss without inspection) the
irrelevant/dissimilar classes while query is directed from
the root of the hierarchy toward the similarity class of the
query key. The average query time is logarithmic to the
size of the database.

By mapping each node of the hierarchy to a PDN node,
the same idea can be directly applied to index PDNs, al-
though as we show later the resulting distributed hierarchi-
cal index structure is not appropriate for PDNs. Consider
K as the set of keys available in a PDN. Any similarity-
based relation can be used to partition the key space.
For example, in Figure 3-b, V is recursively partitioned
based on the GNA approach (Brin, 1995). Starting from
V as the global similarity class, at each level the parent
similarity class c with the class representative

−→
k ∈ K

is partitioned into a set of h disjoint subclasses ci with
representative keys

−→
ki ∈ K (i ∈ Ih = [1..h]) such that

ci = {−→k′ ∈ V |Lp(
−→
k′ −−→ki) < Lp(

−→
k′ −−→kj),∀j 6= i}. Consid-

ering that in a PDN each key
−→
k resides at a PDN node nk,

the GNA-tree corresponding to such a space partitioning
is a distributed GNA-tree in which A(nk) = {n ∈ N |n =
nki , i ∈ Ih}. Query processing with such a distributed in-
dex tree is similar to that of its corresponding centralized
counterpart, with query actually traversing a physically
constructed tree rather than a tree structure in memory.
Although this indexing approach may seem appealing, due
to the lack of a balance load among its nodes, is inappropri-
ate for PDNs. The unbalance load is evident by observing
that nodes which represent larger similarity classes (i.e.,
nodes at the higher levels of the hierarchy) receive more
queries to process. In the extreme case, the root of the hier-
archy processes all queries. Besides, hierarchical structures
are loop-free and intolerant to failures and/or autonomous
behaviors of the PDN nodes.

SWAM also employs the space partitioning idea; how-
ever, to avoid the problems with hierarchies, instead of
recursive partitioning assumes a flat partitioning (see Fig-
ure 3-c). Each key

−→
k ∈ K (or nk ∈ N) represents its own

similarity class ck ⊆ V and the set of |K| similarity classes
are collectively exhaustive V =

⋃
k∈K ck and mutually ex-

clusive ck ∩ ck′ = ∅,
−→
k 6= −→

k′ . An uncharacteristic case is
where two or more nodes store replicas of the same key

−→
k .

We assume all such nodes represent the same class ck re-
dundantly. Such a partitioning scheme can potentially bal-
ance the query processing load among PDN nodes. With
hierarchies, neighborhood relationship between a pair of
nodes is directly derived from parent-child relationship be-
tween their corresponding similarity classes to reflect the
similarity between their classes. Similarly, with flat parti-
tioning we define the neighborhood relationship based on

3The generic mathematical term for similarity class is equivalence
class. Here, the equivalence relations that partition the space are
based on the distance (or similarity) between the keys.

7

the adjacency relationship between the similarity classes
A(nk) = {nk′ ∈ N |ck and ck′ are adjacent, k′ ∈ K}. The
resulting index structure is a graph instead of a loop-free
tree. Besides, processing of the query can start from any
node (e.g., the actual query originator) rather than exclu-
sively from a unique node, the root.

The challenge is to define the similarity-based parti-
tioning relation such that the resulting graph-based index
structure bears indexing characteristics similar to those of
the hierarchical index structures. Particularly, it should
allow filtering of (i.e., avoid visiting) the irrelevant classes
effectively as query is directed from a query originator to-
ward the similarity class of the query key. Moreover, to
support range and kNN similarity queries effectively, alike
hierarchical index structures similar classes should be in
proximity of each other in terms of the hop-count in the
index topology. Finally, the O(log N) expected query time
achieved by the hierarchies is also desirable with the graph-
based index structure. As outlined in Section 4.1, these
requirements are addressed by the properties of a basic
small-world graph. A SWAM index structure is a general
graph-based index structure that satisfies a generalization
of the same properties as follows:

Property 1 : Monotonic approach toward query
key When a node with key

−→
k receives a query −→q , al-

ways either −→q ∈ ck, or the node has at least one neigh-
bor with a key

−→
k′ such that Lp(

−→
k′−−→q) < Lp(

−→
k −−→q).

Consequently, if the node nk receives the query −→q , it
is guaranteed that for all

−→
k′′ ∈ {−→j ∈ K|Lp(

−→
j −−→q) ≥

Lp(
−→
k −−→q)} the node nk′′ will never be visited in fu-

ture during the greedy forwarding, and the similarity
class ck′′ is filtered.

Property 2 : Localized index topology With a local-
ized index, for each node nk the set of nodes at its
neighborhood A(nk) are tightly connected and store
keys closely similar to

−→
k . We measure these two char-

acteristics with the two metrics Clustering Coefficient
(CC) and Neighbor Distance Distribution (NDD), re-
spectively. For a node n, CCn= C(n) is defined by
Equation 1. For a graph G, CCG= 1

|N |
∑
∀n∈N CCn.

Also, NDD is the probability distribution function of
the random variable X = Lp(

−→
k′−−→k), ∀nk ∈ N ∀nk′ ∈

A(nk). As we discussed in Section 4.1, a localized
topology allows efficient processing of the range and
kNN similarity queries.

Property 3 : Logarithmic forwarding-path length
For an exact-match query (processed by greedy for-
warding), on average T = O(log N).

Any graph-based index structure that maintains these
SWAM properties is a member of the SWAM family. In
Section 4.3, we introduce an example SWAM index struc-
ture.

k1 k2
k3

k4

k7
k8

k16

k9

k15 k14

k6
k10

k13
k12

k11

k5

N1 N4

N16
N12

N2 N3

N5N6
N7N8

N9 N10
N11

N13N14N15

Random Graph Component

Delaunay Component

a. Voronoi diagram and b. SWAM-V topology

dual Delaunay graph

Figure 4: SWAM-V index structure

4.3 SWAM-V: A Voronoi-based SWAM

SWAM-V partitions the key space V to a Voronoi dia-
gram (Okabe et al., 2000) (see Figure 4-a). For each key−→
ki ∈ K (i ∈ I|K|), nki

∈ N represents the similarity
class cki

= {−→k ∈ V |Lp(
−→
k − −→ki) < Lp(

−→
k − −→kj), ∀j 6= i},

which is the Voronoi cell of nki . Accordingly, the neigh-
borhood of the node nki is defined as A(nki) = {nkj ∈
N |cki and ckj are adjacent, ∀j ∈ I|K|}. Nodes that store
replicas of the same key share the same neighborhood; i.e.,
if
−→
ki =

−→
kj , A(nki) = A(nkj). The resulting graph is the

dual Delaunay graph of the Voronoi diagram and is unique
for each diagram (see Figure 4-a). Since the neighborhood
relationship is symmetric, the Delaunary graph is depicted
as an undirected graph. The SWAM-V topology consists
of a random graph component (identical to that of the
small-world graph) that is superimposed over the Delau-
nay graph (see Figure 4-b).

Theorem 1. The SWAM-V index structure satisfies the
SWAM Properties 1, 2, and 3.

More details about SWAM-V, including the SWAM-V
join primitive (for index construction) and forward primi-
tives (for query processing) is presented in Banaei-Kashani
and Shahabi (2004).

5 CONCLUSIONS

In this paper, for the first time we introduced and ap-
plied the complex system theory as a modelling framework
for PDNs. We demonstrated the usefulness of this mod-
elling framework by proposing an efficient search mech-
anisms for indexable PDNs inspired by the small-world
model originally introduced to explain efficient communi-
cation in social networks. Specifically, we first defined a
formal framework to study the problem of similarity-search
in PDNs. Subsequently, we proposed a set of properties
to generate efficient index structures (i.e., PDN topolo-
gies) for processing similarity queries in PDNs. These
properties are realized by a family of access methods, the
SWAM family. We introduced SWAM-V, a member of
the SWAM family, which supports exact-match, range, and

8

kNN queries for PDNs with multi-attribute objects. Lever-
aging on the SWAM properties, SWAM-V achieves query
time, communication cost, and computation cost logarith-
mic to the size of the network. Moreover, since unlike
DHTs, SWAM-V does not enforce the placement of the
objects within the network, it avoids unnecessary content
replacement, supports object replication, and adapts to
the object distribution.

In the short term, we intend to extend the study of our
search mechanisms for indexable PDNs by investigating
other members of the SWAM family that as compared
to SWAM-V enforce less constraining assumptions to the
PDN society. For example, currently we are studying
SWAM-P, an enhanced version of SWAM-V with proba-
bilistic index topology and flexible neighbor selection poli-
cies. SWAM-P not only lets PDN nodes maintain their
own data, but also allows them to exercise their autonomy
in choosing their neighbors. Our initial results show that
as the PDN nodes exercise more autonomy, the efficiency
of SWAM-P gracefully degrades from that of SWAM-V to
the efficiency of sequential scan (Banaei-Kashani and Sha-
habi, 2003).

In the long term, we follow our twofold research agenda
discussed in Section 1. First, we investigate applicability of
other models from the complex system theory (either from
social networks or other complex systems) to model and
address search and other PDN problems. Particularly, we
are interested in modelling PDNs on the capitalistic and
socialistic human societies with free-market and planned-
market, respectively, and compare the efficiency of data
transactions and query processing in capitalistic and so-
cialistic PDNs using the existing mathematical economy
models for these forms of government. Second, we believe
PDNs provide a unique opportunity for the scientists to
test and verify their theories about natural complex sys-
tems using the PDN replica of those systems as testbed.
We intend to advertise this opportunity by providing ex-
ample testbeds for study of molecular networks.

ACKNOWLEDGEMENTS

This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC) and IIS-0238560 (PECASE),
unrestricted cash gifts from Microsoft, and an on-going
collaboration under NASAs GENESIS-II REASON
project. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

1 Albert, R. and Barabasi, A. (2000) ‘Topology of evolving
networks: Local events and universality’, Physical Review
Letters, Vol. 85, pp. 5234–5237.

2 Banaei-Kashani, F. and Shahabi, C. (2003) ‘Searchable

querical data networks’, Proceedings of the International
Workshop on Databases, Information Systems and Peer-
to-Peer Computing in conjunction with VLDB’03, Berlin,
Germany, September 9–12.

3 Banaei-Kashani, F., Shahabi, C. (2004) ‘SWAM: A Fam-
ily of Access Methods for Similarity-Search in Peer-to-Peer
Data Networks’, ACM Thirteenth Conference on Informa-
tion and Knowledge Management (CIKM’04), Washing-
ton DC, November 8–13.

4 Bar-Yam, Y. (1997) Dynamics of Complex Systems, West-
view Press.

5 Brin, S. (1995) ‘Near neighbor search in large met-
ric spaces’, Proceedings of the 21th International Con-
ferenceon Very Large Data Bases (VLDB’95), Zurich,
Switzerland, September 11–15.

6 Chavez, E., Navarro, G., Baeza-Yates, R.A. and Marro-
quin, J.L. (2001) ‘Searching in metric spaces’, ACM Com-
puting Surveys, Vol. 33, No. 3, pp. 273–321.

7 Doan, A., Domingos, P. and Halevy, A. (2001) ‘Reconcil-
ing schemas of disparate data sources: A machine-learning
approach’, Proceedings of ACM International Conference
on Management of Data (SIGMOD’01), Santa Barbara,
California, May 21–24.

8 Kleinberg, J. (2000) ‘The small-world phenomenon: an
algorithmic perspective’, Proceedings of the 32nd ACM
Symposium on Theory of Computing, Portland, Oregon,
May 21–23.

9 Ohira T. and Sawatari, R. (1998) ‘Phase transition in a
computer network traffic model’, Physical Review E, Vol.
58, pp. 193-195.

10 Okabe, A., Boots, B., Sugihara, K. and Chiu, S.
(2000) Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams, John Wiley, 2nd edition.

11 Ratnasamy, S., Francis, P., Handley, M., Karp, R. and
Shenker, S. (2001) ‘A scalable content-addressable net-
work’, Proceedings of ACM SIGCOMM ’01, San Diego,
California, August 21–23.

12 Rowstron, A. and Druschel, P. (2001) ‘Pastry: Scal-
able, distributed object location and routing for large-
scale peer-to-peer systems’, Proceedings of ACM Interna-
tional Conference on Distributed Systems Platforms (Mid-
dleware’01), Heidelberg, Germany, November 12–16.

13 Sornette, D. (2000) Critical phenomena in natural sci-
ences: chaos, fractals, selforganization and disorder,
Springer.

14 Stoica, I., Morris, R., Karger, D., Kaashoek, M. and
Balakrishnan, H. (2001) ‘Chord: A scalable peer-to-peer
lookup service for internet applications’, Proceedings of
ACM SIGCOMM ’01, San Diego, California, August 21–
23.

15 Watts, D. and Strogatz, S. (1998) ‘Collective dynamics of
small world networks’, Nature, Vol. 393, pp. 440–442.

9

