
Efficient Reachability Query Evaluation in Large
Spatiotemporal Contact Datasets

Houtan ShiraniMehr
Computer Science Dept.

Univ. of Southern California

hshirani@usc.edu

Farnoush
BanaeiKashani

Computer Science Dept.
Univ. of Southern California

banaeika@usc.edu

Cyrus Shahabi
Computer Science Dept.

Univ. of Southern California

shahabi@usc.edu

ABSTRACT

With the advent of reliable positioning technologies and prevalence

of location-based services, it is now feasible to accurately study the

propagation of items such as infectious viruses, sensitive informa-

tion pieces, and malwares through a population of moving objects,

e.g., individuals, mobile devices, and vehicles. In such application

scenarios, an item passes between two objects when the objects are

sufficiently close (i.e., when they are, so-called, in contact), and

hence once an item is initiated, it can penetrate the object pop-

ulation through the evolving network of contacts among objects,

termed contact network. In this paper, for the first time we define

and study reachability queries in large (i.e., disk-resident) contact

datasets which record the movement of a (potentially large) set of

objects moving in a spatial environment over an extended time pe-

riod. A reachability query verifies whether two objects are “reach-

able” through the evolving contact network represented by such

contact datasets. We propose two contact-dataset indexes that en-

able efficient evaluation of such queries despite the potentially hu-

mongous size of the contact datasets. With the first index, termed

ReachGrid, at the query time only a small necessary portion of

the contact network which is required for reachability evaluation

is constructed and traversed. With the second approach, termed

ReachGraph, we precompute reachability at different scales and

leverage these precalculations at the query time for efficient query

processing. We optimize the placement of both indexes on disk to

enable efficient index traversal during query processing. We study

the pros and cons of our proposed approaches by performing ex-

tensive experiments with both real and synthetic data. Based on

our experimental results, our proposed approaches outperform ex-

isting reachability query processing techniques in contact networks

by 76% on average.

1. INTRODUCTION
Studying how items such as infectious viruses, ideas and habits,

malwares, and broadcast messages propagate through a population

of moving objects, e.g., individuals, mobile devices, or vehicles,

is of importance in a wide range of applications including public

health monitoring, social behavior analysis, computer security and

intelligent traffic monitoring, to name a few. In such application

scenarios, objects pass items among themselves once they are in

sufficiently close distance, i.e., once they are so called in contact.

Accordingly, once an item is initiated by an object, it can penetrate

the evolving network of contacts among objects termed the contact

network. With such analysis, one can for instance, design public

health interventions in order to control propagation of infectious

diseases, or find the source(s) that have originally leaked sensitive

information or initiated spread of malwares.

Arguably, one of the main building blocks for item propaga-

tion analysis in evolving contact networks is the ability to com-

pute reachability queries which evaluate whether two objects are

“reachable” through the evolving contact network. Previously, lack

of accurate datasets that capture the contact networks has limited

the accuracy and applicability of propagation analysis (and par-

ticularly, reachability analysis) in contact networks, and previous

studies have inevitably resorted to simplified contact network mod-

els, or small-scale and inaccurate contact datasets. However, with

the recent advances in developing accurate positioning devices and

prevalence of location-based services, it is becoming possible to

capture the location of objects in large scales and for extended pe-

riods of time, resulting in very large contact datasets that capture

the history of objects contacts accurately and with high spatiotem-

poral resolution. In this paper, we focus on defining and efficient

evaluation of reachability queries in large-scale (disk-resident) his-

toric contact datasets, where the main challenge is to reduce the

computation time for query evaluation.

Consider the contact network depicted in Figure 1 which shows

the position of a set of objects at each time instance within the time

interval T=[0,3]. In this figure, two objects are connected by a

link if they are in contact; for instance, o1 and o2 are in contact

at time 0. The object o4 is reachable from o1 during time interval

of [0, 1]. The reason is that if an item initiated by o1 at time 0, it

can pass from o1 to o2 at time 0 and then from o2 to o4 at time

1. Note that in the same figure, o1 is not reachable from o4 during

[0, 1]. Consider the following examples on how reachability query

evaluation plays a fundamental role in analyzing item propagation

through contact networks in the context of some application sce-

narios mentioned above. With the first example, assume a set of

individuals O are known to carry a dangerous contagious virus. By

performing a batch of reachability queries between each individual

in O and the rest of the population, the individuals who could have

been directly or indirectly contaminated within a certain time inter-

val can be identified by determining the set of individuals reachable

from O in the same time interval. Note that this application requires

running potentially numerous reachability queries between pairs of

individuals which can be very time consuming, On the other hand,

timely medication administration can save lives with most viral dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 9
Copyright 2012 VLDB Endowment 2150-8097/12/05... $ 10.00.

848

Figure 1: Objects positions and contacts between them during

the time interval [0,3]

eases. Next, imagine a set of individuals O, e.g., criminals, on a

watch list and need to be monitored. Law enforcement agencies

may need to discover those who have been potentially in contact

with any of the individuals in O. Again, this requires performing

batch of reachability queries to find all the individuals reachable

from/to any individual in O. Such analysis may help in preventing

new crimes and to analyze the relationship between criminals.

Graph reachability problems which verify whether a path exists

between two given vertices of a graph are extensively studied in the

recent years [18, 19]. Our problem is different from the existing

work on graph reachability in two ways. First, while previous work

on graph reachability assumes the graph is memory-resident, we fo-

cus on very large disk-resident contact networks. Accordingly, we

study how to index the contact network on disk to enable efficient

query processing. Second, with our problem objects are associated

with time and space information as they move in an environment

over time. We show that we can leverage such information for ef-

ficient reachability query processing, whereas the existing work on

graph reachability only focuses on datasets that are modeled by ab-

stract graphs with no connection to space and time.

In this paper, we propose two index structures for indexing con-

tact networks, namely ReachGrid and ReachGraph. Consider a

reachability query which verifies whether an object (query source)

can reach another object (query destination) through the contact

network, if we consider only the contacts occurring during a given

query time interval (query interval). With ReachGrid, our approach

is to compute reachability on-the-fly by expanding the contact net-

work starting from the query source. However, the naı̈ve expansion

of the network is prohibitively costly. Instead, to enable “guided”

expansion, we leverage the following simple and powerful obser-

vation about contact networks; only contacts that occur in the same

spatial and temporal locality are relevant for exploration and there-

fore, exploration of the contacts can be guided through relevant spa-

tiotemporal localities and can avoid other localities for enhanced

performance. In particular, with ReachGrid we propose a spa-

tiotemporal grid to index all contacts in the contact network dataset

into distinct spatiotemporal localities. At the query time, this in-

dex is used to guide on-the-fly expansion of the contact network to

verify reachability.

On the other hand, with ReachGraph we use the alternative ap-

proach of precomputing the reachability between objects. It is im-

practical to precompute reachability for all combinations of query

source, destination and interval. Therefore, we propose to precom-

pute reachability query only for carefully selected combinations of

query source, destination and interval, and leverage these combina-

tions to compute reachability for all other combinations on-the-fly.

In turn, at the query time this allows recursively breaking the given

reachability query to a set of precomputed reachability queries for

efficient query processing.

Finally, with both ReachGrid and ReachGraph, the placement of

index on disk can significantly affect the efficiency of query pro-

cessing. A naı̈ve approach of placing indexes (graph nodes and

grid cells) on random disk blocks significantly deteriorate query ef-

ficiency. Accordingly guided by the two following observation, we

develop enhanced disk placement approaches for ReachGrid and

ReachGraph. First, contacts are processed ordered by occurrence

time during query processing. Second, during index traversal, an

object o′ is traversed after o, if o′ is reachable from o. We present

our proposed disk placement approaches for ReachGrid and Reach-

Graph on disk in Sections 4 and 5, respectively.

While ReachGrid evaluates reachability by sweeping contacts

along space and time dimensions, ReachGraph computes reachabil-

ity by traversing a connectivity graph. Accordingly, one can expect

ReachGrid to be comparable with ReachGraph when query time in-

terval is small, and vice versa. This expectation is confirmed by our

empirical study in Section 6. Moreover, our proposed approaches

outperform the existing reachability query processing algorithms

by 76% on average.

The rest of the paper is organized as follows. The related work is

outlined in Section 2. We formally define reachability query in con-

tact networks in Section 3. We present ReachGrid and ReachGraph

indexing techniques in Sections 4 and 5, respectively. Section 6

presents our experimental results. We discuss extensions of our

reachability problem in Section 7. Finally, we conclude the paper

and discuss the possible future work in Section 8.

2. RELATED WORK
We review the related work in four categories: graph reachabil-

ity, trajectory indexing and trajectory join, external graph traversal

and graph indexing and finally, contact networks analysis.

2.1 Graph Reachability
Given two vertices u and v in a directed graph G, graph reacha-

bility verifies whether there is a path from u to v [19, 18]. Although

we also reduce our problem to graph reachability by converting the

contact network into a hypergraph, our problem is different from

previous work on graph reachability in several ways. First, in con-

trast with the previous work where the focus is on memory-resident

graphs, we consider disk-resident graphs. Second, we focus on

”spatiotemporal” graphs and accordingly leverage the spatial and

temporal properties of such graphs for enhanced index construc-

tion and graph traversal. In particular, our graph vertex may repre-

sent multiple objects and moreover an object can be associated with

multiple vertices. Finally, our proposed multi-resolution graph in-

dexing and bidirectional graph traversal approaches are unique and

novel, allowing for unprecedented improvement in the efficiency of

state of the art reachability query processing approaches.

2.2 Trajectory Join and Trajectory Indexing
The research on moving objects data management has tradition-

ally focused mainly on range and nearest neighbor queries. Re-

cently, trajectory join has also been studied [2, 1]. The problem of

Closest-Point-of-Approach (CPA) is proposed and studied in [1].

Given a set of trajectories, CPA finds the pair of objects whose

closest distance is less than d. Although CPA problem is different

from trajectory join, the solution to CPA problem can be adopted

to solve trajectory join. Although we use trajectory join algorithms

in constructing the contact network, our focus is on indexing a con-

tact network for efficient reachability query processing. Another

relevant body of related work on trajectory processing is trajec-

tory indexing [5] which focuses on indexing trajectories for effi-

cient processing of range queries and its variations. In contrast, our

problem is how to index a contact network for efficient reachabil-

ity query processing which is much more complex as compared to

range query and its variations.

849

Shortest path on graphs [13, 7] is another body of related work.

Given a graph G=(V ,E), the shortest path finds the optimally short-

est path assuming a traveling cost between each pair of graph ver-

tices. In contrast, with reachability query we are only interested in

verifying whether any contact path exists between two objects.

2.3 External Graph Traversal and Graph In
dexing

With external memory graph traversal [12, 17], researches have

extended the classic graph traversal approaches such as Depth-

First-Search (DFS) and Breadth-First-Search (BFS). As mentioned

earlier, both DFS and BFS can be leveraged to answer reachabil-

ity queries. However, with our work we try to avoid unneces-

sary expansion of the graph nodes by designing an efficient multi-

resolution index structure and traversal approaches.

Another category of work focuses on indexing temporal graphs.

Time expanded network (TEN) and Time aggregated network

(TAN) [14] are two models to represent time varying networks.

TEN represents the time dependence by instantiating a snapshot

of the network at every time instance. TAN extends TEN where

the time varying attributes are further aggregated over edges and

vertices. We utilize TEN to initially model a contact network but

afterward convert it to a more complex index structure as discussed

in Section 5. Recently, [8] studied efficient indexing of spatiotem-

poral networks represented by TEN. However, in this paper the fo-

cus is on indexing techniques to enable efficient processing of route

evaluation and retrieval queries as opposed to our work which fo-

cuses on the complex reachability query processing.

2.4 Contact Networks Analysis
Recent studies [16, 10] have focused on analyzing characteris-

tics of the contact networks such as average contact path length be-

tween two objects, or time duration until two objects contact each

other again are studied recently. This area of work is orthogonal

to our work as we are focusing on indexing a contact network for

efficient reachability query processing.

Routing in delay-tolerant networks (DTN) which lack continu-

ous network connectivity is another body of relevant work [9]. The

difference between this body of work and our work is two fold.

First, the goal of routing in DTN is to find a best path from a source

to a destination node based on a cost metric such as messages deliv-

ery ratio. Next, our reachability query is associated with a time in-

terval parameter which is leveraged during index construction and

query processing to enable efficient reachability query processing.

3. PROBLEM DEFINITION
In this section, we first define contact network and afterward for-

malize the reachability query in a contact network.

3.1 Contact Network
Consider a set of objects O moving in an environment E. We say

a contact c={oi, oj} has happened between two objects oi, oj ∈
O, when they are within a sufficiently close distance to transmit

an item, i.e., when their distance is less than a threshold dT . The

value of dT depends on the application of interest. For example,

for disease propagation through human populations dT is in the

order of meters while with Bluetooth data transfer through a set of

mobile devices dT is in the order of hundred meters. We call oi and

oj the contacting objects during c, and we define the time interval

Tc within which contact persists the validity interval of c.
Consider a time interval T during which objects in O are moving

in an environment E, and making various contacts over time. The

movement of each object o ∈ O can be modeled by the trajectory

of o which captures the position of o at each time instant t ∈ T. We

term the collection of contacts between pairs of objects in O during

the time interval T as contact network of O during T and repre-

sent it by C. For example with Figure 1, c1={o1, o2}, c2={o2, o4},

c3={o3, o4} and c4={o1, o2} are the contacts occurring during

T=[0, 3] having validity intervals Tc1=[0, 0], Tc2=[1, 1], Tc3=[1, 2]
and Tc4=[2, 3]. Notice that we differentiate c1 and c4 although they

have the same contacting objects, because by definition a validity

interval is required to be continuous.

3.2 Reachability Query
Consider a contact network C which is constructed based on the

history of movement of objects O in an environment E during a

time interval T. Given a pair of objects (oi, oj), oi, oj ∈ O, and

a time interval Tp ⊆ T, the reachability query q verifies whether

there exists a contact path pij from oi to oj during time interval Tp.
Intuitively, a contact path between two objects oi and oj consists of

a sequence of contacts in the contact network C through which any

virtual item i can travel the network to go from oi to oj . We define

a contact path from object oi to object oj as a series of contacts

(c1, c2, . . . , cn) in C, where Tci overlaps Tp (1 ≤ i ≤ n), and for

each pair of contacts ci and ci+1 (1 ≤ i ≤ n − 1) we have 1) the

contacts share an object, i.e., if c1={o1, o2} and c2={o3, o4} then

o2=o3, and 2) Tci starts before Tci+1
in time.

We call oi, oj and Tp, query source, query destination and query

interval, respectively, and denote such a query by q : oi
Tp
❀ oj .

4. REACHGRID

To evaluate q:oi
Tp
❀ oj , one approach is to first materialize

the contact network C′, which captures all contacts that have

occurred during Tp. It is obvious that other contacts are irrel-

evant to processing q. One can construct C′ as follows. Sup-

pose trajectory of an object oi ∈ O during T is represented by

ri={(
−→v1 , t1), . . . , (

−→vn, tn)} which is a sequence of position-vector

and time stamp pairs (−→vj , tj), where −→vj is the position vector of oi
at time tj ∈ T. Accordingly, a segment ri(w) of a trajectory ri dur-

ing a time window w is defined as a subset of (−→vj , tj) pairs from

r whose timestamps belong to w, i.e., ri(w)={(−→vj , tj)|tj ∈ w}.

Assume that the set of trajectories segments from all moving ob-

jects o ∈ O during Tp is denoted by R(Tp), i.e., R(Tp)={ri(Tp)}.

A window trajectory join between two sets of trajectories P and

Q, denoted by P ⊲⊳dT Q, returns tuples (p, q, w) where p ∈ P
and q ∈ Q are within the distance of dT during w. C′ can be con-

structed by performing a self spatiotemporal join on R(Tp), i.e.,

R(Tp) ⊲⊳dT R(Tp), and subsequently creating a contact between

object oi and oj at time t if the join result includes (oi, oj , w) where

t ∈ w. Once generated, C′ can be traversed to identify any existing

contact path between oi and oj .
Although the aforementioned approach correctly answers reach-

ability queries, it can be very inefficient due to redundant process-

ing. In particular, one may not need to consider all the contacts

in C′ to process a query q in two cases. First, all contacts be-

tween objects which are not reachable from query source oi dur-

ing query interval Tp are irrelevant to q. For example for Figure 1

and q:o1
[2,3]
❀ o2, it is unnecessary to process the contact between

o3 and o4 as neither can possibly be reachable from o1 during

[2, 3]. Second, we observe that oj may be reachable from oi during

T ′
p ⊂ Tp where |T ′

p| ≪ |Tp|. In this case, the contacts whose valid-

ity time interval do not overlap T ′
p are irrelevant to q and redundant

for query processing. For example for Figure 1 and q : o1
[0,3]
❀ o4,

850

there is no need to process the contacts occurring during [2, 3] as

o4 is reachable from o1 during [0, 1].
Inspired by the aforementioned observations, we introduce an

efficient query processing approach that given a reachability query

q tries to only construct the portion of C′ which is necessary for

processing q. To this end, first during an offline phase we construct

a spatiotemporal index structure, dubbed ReachGrid. ReachGrid

enables pruning most of the contacts irrelevant to the query q. Dur-

ing the online processing phase, we incrementally find the objects

reachable from the query source in the order of becoming reachable

from query source when sweeping over query interval. We stop the

process either if query destination is discovered reachable from the

query source, or all the contacts occurring during query interval and

between objects reachable from query source are processed.

4.1 Index Construction
ReachGrid leverages the locality of objects over space and time

to avoid traversing irrelevant contacts to a reachability query. It

leverages temporal locality to stop query processing as soon as a

contact path between query source and destination is discovered

when traversing the contacts ordered by their occurrence time. To

this end, the object trajectories segments are grouped based on the

time stamp of the position-vector pairs in the objects trajectories. A

contact between two objects occurs when they are in close proxim-

ity. Therefore, grouping the objects based on spatial locality tends

to aggregate the objects, which are in contact over time, together

and in a same group. This enables traversing a subset of groups

which includes only the objects reachable from query source when

processing the query. ReachGrid enables temporal and spatial lo-

cality by imposing two grids on the objects trajectories. The first

grid partitions the time interval T (T is the the time interval during

which all the contacts in C occurred). The second grid spatially

partitions the trajectories segments within each time interval in T.
We construct ReachGrid as follows. First, we partition the time

interval T into a set of disjoint time intervals, i.e., T=(T1,. . .,Tn).

Next, we spatially partition the trajectories segments during each

Ti, the trajectories segments in R(Ti), based on locality. To this

end, for each time interval Ti we impose a grid Ci on the environ-

ment E which subsequently partitions the trajectory segments in

R(Ti). In this way, a grid cell c in Ci includes trajectories segment

which span the area represented by c. Notice that a trajectory seg-

ment ri(ti) ∈ R(Ti) may span multiple cells of Ci. The temporal

and spatial grids’ resolutions depend on the input contact network

and query workload and we select them empirically in Section 6.

An example for constructed index is shown in Figure 2 where

T is partitioned into six time intervals. Furthermore, a 4 × 4 grid

imposed on the environment to spatially partition the trajectories

segments during T0 and T1. T0 and T1 have three and two time

instances, respectively. The grid cells for the first two time inter-

vals, i.e., the grids in C0 and C1, are shown while the rest are not

shown for illustration purposes. Three different objects are in O
and represented by circle, square and triangle over time.

As the query processing progress by exploring trajectory seg-

ments in spatial grid cells, we propose to place the trajectories in

a cell c in Ci on consecutive blocks on disk to enable efficient re-

trieval of necessary trajectories segments during query processing.

Moreover, the position-vector and time stamp pairs (−→v , t) of tra-

jectories segments in c are placed on disk ordered by their time

stamps. This enables avoiding processing all the trajectories seg-

ments within c as soon as a contact path between query source and

destination is discovered. Accordingly, placement of the cells in

different time grids on disk, i.e., cells in Ci versus the cells in Cj

where i < j, should be decided. Based on the same goal of early

query processing termination, we place the cells in Ci before the

cells in Cj on disk.

Figure 2: ReachGrid Index

Example
Figure 3: ReachGrid Query

Processing

4.2 Query Processing
Query processing aims to incrementally find the objects reach-

able from query source by sweeping the query interval. To this

end, at the beginning of the query processing, the query interval

is broken into a subset of time intervals by imposing the temporal

grid constructed in the previous section, i.e., Tp=(Tj , . . . , Tk). Af-

terward, the grid cell c in Cj which includes the query source at

the beginning of query interval is located, i.e., cell c includes the

query source position at the beginning of query interval. This can

be be executed in constant number of IOs assuming that an exter-

nal hash table maps each object to its trajectory over time. Assume

we call the set of objects reachable from query source during query

processing, the seed set. Initially, the seed set includes only the

query source. To process the reachability query, the algorithm iter-

ates over each Ti in Tp and discovers new seeds. To this end, at the

beginning of Ti the grid cells which include the current seeds are

located. Subsequently, objects which are reachable from at least

one of the seeds during Ti are found and added to the seed set. No-

tice that as soon as a new object reachable from query source is

discovered, it is added to the seed set and hence the process con-

tinues with the updated seed set. The order in which new seeds

are discovered is based on the time order they become reachable

from any of the current seeds. In some cases, Tj may be an interval

whose start point different from the query interval start point. In

these cases, we start processing Tj from the query interval start-

ing point. We stop the query processing if the query destination is

added to seed set or when the entire query interval is processed.

The main step in the query processing is discovering new seeds

during each Ti, j ≤ i ≤ k. Assume that the set of current seeds

at the beginning of Ti is Si. The goal is to discover Si+1, i.e., the

set of seeds at the beginning of Ti+1 which is the same as that

of end of Ti. Presume the set of grid cells in which the seeds in

Si are located is denoted by CSi
. We first discover all the other

cells which may contain an object o in contact with a seed dur-

ing Ti. We call such cells potential seeds cells and denote them by

Ni. The cells within Ni can be found efficiently by creating the

minimum bounding regions (MBR) of the trajectories segments of

objects in Si and consequently finding and filtering the cells which

are at the distance of maximum dT from those MBRs. During the

query processing, whenever Ni is updated, the first object o′ in Ni

is discovered which is not in Si but becomes reachable from any

of seeds in Si. Intuitively, we propagate a virtual item i from the

objects in the seed set at the beginning of Ti and find the first object

which receives i. This can be done by performing spatiotemporal

join which works by sweeping time during the join interval. Con-

sequently, we add o′ to Si and accordingly find Ni. Assume that

o′ is discovered reachable form a seed during [t1, t
′] (Ti=[t1, t2]).

We continue the process recursively with the updated sets but dur-

ing [t′, t2]. Notice that during Ti, the retrieved cells are buffered to

851

prevent unnecessary future retrievals from disk and are discarded

at the end of Ti.
An example is shown in Figure 3 for query processing during a

Ti. The objects o1, o2, o3 and o4 locations at time instance t0, t1
and t2, t0 < t1 < t2, during Ti are highlighted. The trajecto-

ries for each object are shown by links connecting positions at the

aforementioned time stamps. Assume the query source and desti-

nation are o1 and o2, respectively, and query interval is [t0, t2]. The

shaded area around the trajectory segment of oi denotes the MBR

of the trajectory segment with the width of dT . This MBR shows

that o is in the seed set Si and any other object whose trajectory is

within the MBR of the trajectory segment of o will make a contact

with o and be added to Si. At t0, Si contains o1. At t1, o1 and o3
make a contact and hence o3 is added to Si. During [t1, t2] both

o1 and o3 are in Si. Finally, at t2 the cells c1 and c2 in which o2
and o4 are located, respectively, are added to Ni and subsequently,

o2 is added to Si. Therefore, during [t0, t2] query destination is

reachable from query source. Due to illustration purposes, we only

discussed how Ni changes at t2 in this example.

The entire online processing step is summarized in Algorithm 1.

The algorithm gets query source, destination, interval and the in-

dex constructed during the offline process. First, query interval is

quantized into time intervals from T. Afterward, the initialization

is performed in lines 2-5. The algorithm iterates over Ti in Tp and

for each Ti it performs a join in line 9 to find the first object reach-

able from a seed during the interval w. RCSj
(w) denotes the set of

object trajectories segments during w which span the cells in CSj
.

We adopt the join approach in [1] which sweeps the time interval

w and terminates whenever a new object, not in the seed set and

reachable from query source, is discovered. Consequently, the sets

are updated in line 10. Finally, the algorithm terminates when oj is

added to the seeds set or all the intervals in Tp are processed.

Assume each cell of Cj includes the trajectories of nc distinct

objects on average and each disk block contains bc cells of Cj

on average. Finally, assume T ′
p=[t1, t] ⊆ Tp=[t1, t2] is the small-

est time interval during which query destination is reachable from

source. If query destination is not reachable from query source

during Tp, we assume T ′
p=Tp. The following theorem proves the

complexity of ReachGrid query processing and index construction.

THEOREM 4.1. ReachGrid can be constructed with O(|O||T |)

IOs. The IO complexity of query processing is O(
|O||T ′

p|

nc×bc
).

We skip the details of the proof due to lack of space.

Algorithm 1 Query Processing

1: procedure QUERY PROCESSING(oi , oj , Tp, I)

2: Tp=(Tj , Tj+1, . . . , Tk)

3: Sj=oi ⊲ Initializing the seed set

4: CSj
=FindCells(Sj ,t) ⊲ Find the cells containing the seed

5: CSj
=Update(CSj

, Nj) ⊲ Update CSj
based on the cells in Nj

6: for i=j to k do

7: w=Ti = [t1, t2]
8: repeat

9: (o′, t′) = RCSi
(w) ⊲⊳dT

RCSi
(w) ⊲ o′ 6∈ Si and is reachable

from a seed

10: w=[t′, t2]

11: Update Ni, CSi
and Si

12: until o′ = NULL or o′ = oj ⊲ Termination condition

13: if oj ∈ Si then

14: Return ‘reachable’

15: end if

16: end for

17: Return ‘not reachable’

18: end procedure

5. REACHGRAPH
In this section, we first present ReachGraph index construction

steps and thereafter discuss ReachGraph query processing.

5.1 Index Construction
To construct the ReachGraph for a given contact network C, we

start from C and apply a series of transformations to C that eventu-

ally converts it to the ReachGraph hyper graph HN . The transfor-

mations are performed in two phases, namely reduction phase and

augmentation phase. First, we observe that in a contact network C
one can identify disjoint subset of nodes, where all nodes in a sub-

set are equivalently reachable or not reachable to/from any other

node v in C. Accordingly, at the reduction phase we precompute

these subsets and reduce all nodes in each subset (along with their

connections) to a single hyper node. We call the resulting hyper

graph DN which is a significantly reduced version of C in size.

Next, at the augmentation phase, to further improve ReachGraph

we precompute the reachability between pairs of nodes in DN at

predefined time intervals. We perform this precomputation at sev-

eral time resolutions and accordingly augment DN with a hierarchy

of extra links to generate the ReachGraph hyper graph HN . With

HN , a reachability query can be effectively broken into a set of

precomputed reachability queries for real-time query answering.

There are two principles in disk placement of HN vertices which

can improve the query processing. First, an efficient placement

should place vertices which are reachable to each other on a same

disk block. In this way, while retrieving a vertex during the query

processing, a set of vertices which should retrieved in the future

are read and buffered as well. Second, there is an order inherited

in how the vertices of HN are traversed during query processing

which should be leveraged when storing HN on disk. This ordering

is enforced by the time order at which the contacts in the vertices of

HN are occurred. We explain how to consider these two principles

in storing HN on disk to enable efficient query processing.

In the rest of this section, we first present our model for C as a

so-called time expanded network. Next, we explain the aforemen-

tioned transformations C
Reduction
−→ DN and DN

Augmentation
−→ HN in

detail. Finally, we discuss how to store HN on disk.

5.1.1 Contact Network Model

We represent a contact network C with Time Expanded Network

(TEN) model [14]. TEN captures the time dependency of a net-

work by including a separate instance of the network at each time

instance. Accordingly, each object oi at time instance t ∈ T is as-

sociated with a separate vertex oi(t). To capture contacts, a bidirec-

tional edge e=(oi(t), oj(t)) is introduced between oi(t) and oj(t)
if they are in contact at time t. Such an edge captures the fact that

an item can transfer from oi to oj at t. Note that we assume transfer

delay is negligible and hence, e is bidirectional. Moreover, an edge

is introduced between vertices corresponding to the same object at

consecutive time instances, i.e., an edge e′=(oi(t), oi(t + 1)) is

created between oi(t) and oi(t+ 1) at each time t. In this case, e′

is a directional edge which shows that oi can hold an item during

[t, t + 1]. We define a graph Gt of all vertices and edges at time t,
i.e., Gt=(V, E) where V ={oi(t)|oi ⊆ O}, as a snapshot of C at t.

Figure 4 (a) shows an example C which corresponds to the con-

tact network in Figure 1. With G0 in Figure 4 (a), V ={o1(0),o2(0),
o3(0),o4(0)} and E=(o1(0), o2(0)). It is easy to observe that oj
is reachable from oi during Tp=[t1, t2] if and only if there is a

path from oi(t1) to oj(t2). This path is representing the con-

tact path from oi to oj during Tp. For example, in Figure 4

(a), o4 is reachable from o1 during Tp=[0, 1] given the path

(o1(0),o2(0),o2(1),o4(1)).

852

(a) C (b) DN

Figure 4: TEN model of C (a) and the corresponding DAG (b)

5.1.2 Transforming the Contact Network

5.1.2.1 Transforming by Reduction.
In the reduction phase, we perform two distinct steps to convert

C into a hypergraph DN with significantly smaller size. Reducing

C makes it more efficient to traverse for finding possible contact

paths during query processing. Notice that these reduction steps

are lossless and preserve the accuracy of query processing. we first

state two properties which are utilized for reduction.

PROPERTY 5.1. [Snapshot Symmetry] If oj is reachable from

oi during a time instance t, i.e., query interval Tp=[t, t], oi is

reachable from oj at the same interval.

PROPERTY 5.2. [Transitivity] Suppose oj is reachable from oi
during Tp=[t1, t2] and ok is reachable from oj during T ′

p=[t′1, t
′
2].

If t2 ≤ t′2 then ok is reachable from oi during T ′′
p =[t1, t

′
2].

At the first step of the reduction phase, the idea is to precompute

and materialize the reachability between objects at each time in-

stance t. According to properties 5.1 and 5.2, the connected com-

ponents of C capture the set of objects that are reachable from each

other at t. For instance, in Figure 4(b), c4={o2(1), o3(1), o4(1)}
which captures the fact that all objects o2, o3 and o4 are reachable

from each other at time instance t=1. Furthermore, if one object

from a connected component c ∈ Gt is reachable from another

object in a connected competent c′ ∈ Gt′ during Tp=[t, t′], then

it is easy to deduct from properties 5.1 and 5.2 that all object in c
are reachable from all other objects in c′ during Tp. Accordingly,

at the first step of the reduction phase, we transform C to a graph

DN whose vertices are the connected components of C. To this

end, first in every Gt ∈ C we replace all the vertices within the

same connected component c by a single vertex represented by c.
Suppose the collection of the connected components of Gt are de-

noted by Ct. Next, we create an edge from every c ∈ Ct to every

other c′ ∈ Ct+1, if in C we find at least one edge from a ver-

tex in c to a vertex in c′. This transforms C into a directed acyclic

graph (DAG) DN with significantly smaller number of vertices and

edges as compared to C while preserving reachability between ob-

jects. With DN , oj is reachable from oi during Tp=[t1, t2] if the

connected component of oj(t2) is reachable from the connected

component of oi(t1). Therefore to answer a reachability query, we

need to find the corresponding connected components of oi(t1) and

oj(t2) given oi(t1) and oj(t2) at the query time. As we explain

later, we generate and use external hash table Ht for each time in-

stance t ∈ T to locate the the connected component corresponding

to each vertex oi(t).
The second step of reduction phase merges identical connected

components in consecutive Gts over time. If a set of objects

O′ ⊆ O are reachable from each other (and only from each other)

during a time interval T ′ ⊆ T, in DN they all belong to snapshots

Figure 5: DN at the end of re-

duction step

Figure 6: DN3
for HN whose

DN1
is the graph in Figure 5

of the same connected component during T ′. Therefore, to further

reduce the size of DN we can keep one copy of such connected

component during T ′ and consider it as the connected component

of objects in O′ during the entire T ′. For example, in Figure 4(b)

c5 and c7 are snapshots of the same connected component during

T ′=[3, 4] and can be merged. To generalize, assume a set of con-

nected components ct ∈ Ct, ct+1 ∈ Ct+1, . . . , ct+n ∈ Ct+n all

have the same members O′, and T ′=[t, t + n]. In such a case, we

remove ct, . . . , ct+n−1 and connect parent of ct in DN (say a con-

nected component in Gt−1 denoted by d) to ct+n by a weighted

edge e(n). We call e(n) an aggregated edge where the weight cap-

tures the fact that for the next n time instances, d is only reachable

to objects in O′. Figure 5 shows DN from Figure 4(b) after this

step of reduction. c5 is removed, c4 and c3 are connected to c7 by

aggregated edges e(2) and e′(2). This reduction can significantly

shrink DN , especially when the sampling rate for objects positions

is high relevant to the objects moving speed.

5.1.2.2 Transforming by Augmentation.
In order to find a path between two connected components

ci ∈ Ct and cj ∈ Ct′ , we can simply expand DN starting from

ci and check if we can find a path that reaches cj . Although DN is

much smaller than C, such expansion can still take a long time to

terminate. Hence, we propose to precompute reachability between

certain vertices of DN to enable quick traversal of DN .
In particular, we propose to precompute reachability during dif-

ferent predefined time intervals. To this end, we break T into a set

of disjoint intervals I1, I2, . . . , In with equal length L, and pre-

compute reachability between vertices in Cta and Ctb for each

Ii=[ta, tb]. Accordingly, DN is augmented with a new directed

edge from every connected component c ∈ Cta to every other

connected component c′ ∈ Ctb if there is a path of length L
from c to c′. We call such edges the long edges and weight them

by L which indicates the number of time instances that encom-

pass. The resulted augmented hyper graph HN can be consid-

ered as the union of DN with a new graph consisting of long

edges each with a weight L. We term the latter graph contact

network at the L-th resolution and denote it by DNL
. Accord-

ingly, DN can be considered as the contact network at first reso-

lution or DN1
. One can extend this idea and precompute reacha-

bility at other time intervals to generate a multi-resolution graph

HN=DN ∪ DNL1
∪ DNL2

∪ . . . ∪ DNLn
. However, this can

significantly increase the number of edges if overdone and hence

adversely reduce the efficiency of query expansion. In Section 6,

we experimentally select the optimal resolutions for HN . Figure 6

depicts DN3
where DN shown in Figure 5.

5.1.3 Disk Placement

We distinguish two cases in traversal of HN which is a disk-

resident hyper graph. With the first case, internal memory can hold

c×|V (HN)| values where V (HN) is the set of vertices in HN and

853

Figure 7: ReachGraph for the contact network in Figure 5

c is a small constant (c ≈ 12.375) [15]. In this case, it is possible to

construct the DFS tree of the graph and maintain it in the internal

memory and traverse it during query processing to verify reacha-

bility. With the second case, the aforementioned assumption on the

number of vertices does not satisfy. For this case, we adopt the

idea of external BFS presented in [12] to enable efficient retrieval

of vertices during query processing. Similar to [12], we partition

HN and place the vertices within the same partition on consecutive

disk blocks. However, we adopt the technique for directed graphs

as HN is a DAG. To this end, we first sort the vertices of HN in

topological order which is the same order in which HN is traversed

during reachability query processing. Notice that finding such or-

der is trivial as HN vertices are created over T in topological order

(vertices in Ci are generated before that of Ci+1). Afterward, from

each vertex v we find all the vertices U with the shortest distance

of of at most dp from v, i.e., vertices at the depth of at most dp
from v. The set of vertices in U ∪v are reachable from v and forms

a partition pv. We term v the root of pv. We iterate over the ver-

tices and create a partition rooted at a vertex u if u is not already

assigned to a partition. Notice that only the edges in DN are con-

sidered in creating the partitions and hence long edges are ignored

during the partitioning process to preserve the temporal locality of

graph vertices within the same partition. The partitions are placed

on disk in the same order they are generated.

The final index for our running example is shown in Figure 7

where the long edges are denoted by ei(3), i = 1, . . . , 4, and

the aggregated edges by e(2) and e′(2). The hyper graph HN

and the hash tables which associate objects with the partitions of

HN are located on the disk. Each hash table Ht locates the parti-

tion which contains oj(t) given object oj and the time instance t.
In this example, five partitions p0, p1, . . . , p4 are generated where

their connected component members are {c0, c3, c4}, {c1}, {c2},
{c6, c8, c9} and {c7}, respectively. The members of the connected

components are placed within the vertices of HN as we discuss in

next section. Although not shown in the figure, we store the reverse

graph of DN1
on disk as well, i.e., if e=(u, v) ∈ DN1

then we add

e = (v, u) to HN . This enables efficient bidirectional traversal of

HN as we discuss in the next section. Finally, a hash table is stored

in main memory to enable fast lookup of Ht for a given t and con-

sequently finding the partition of HN which includes query source

(destination) at the beginning (end) of query interval on disk.

5.2 Query Processing

Consider a reachability query q:oi
Tp
❀ oj where Tp=[t1, t2]. To

process q, one can first find the vertices v1 and v2 in HN which

representing the connected component of oi and oj at t1 and t2, re-

spectively. Afterward, starting from v1, HN can be traversed either

by BFS or DFS techniques to visit all the vertices at the depth of at

most |t2−t1| from v1. oj is reachable from oi during Tp if and only

if v2 is among the visited vertices. Unfortunately, this approach

may visit a huge number of vertices specially when t1 ≪ t2. In

this section, we propose two powerful ideas which significantly re-

duce the number of visited vertices during HN traversal. First,

we leverage multi-resolution index to traverse HN . Consequently,

whenever possible the long edges with the largest weights are taken

during traversal (the traversal is performed on the higher resolu-

tions first) to enable fast traversal of HN . Second, motivated by

transitivity property 5.2, we traverse HN from both directions to

find a possible contact path between query source and destination

faster. In particular, HN is traversed forward starting from query

source and in parallel it is traversed backward on the reverse of DN

starting from query destination. The traversal is terminated in two

cases. Either, an object which is reachable from query source and

reachable to query destination is found, or HN is traversed in both

directions until the bidirectional traversal stops at the middle of the

query interval.

Counterpart to traversal algorithm for memory-resident graphs,

external graphs traversal algorithms are studied in the literature as

well [12, 17]. We denote external BFS and DFS by E-DFS and

E-BFS, respectively. Although both E-DFS and E-BFS can be

adopted to traverse HN , we adopt E-BFS to enable bidirectional

traversal of HN . Accordingly, our ReachGraph query processing

works by performing E-BFS in parallel from v1 and v2 where the

search from v2 traverses the reverse graph of DN1
. Assume the set

of objects in vertices visited during forward traversal, i.e., traver-

sal originating from v1, is denoted by OF . Accordingly, we de-

note the set of objects in vertices visited during backward traver-

sal by OB . The traversal is terminated either when OB

⋃
OF be-

comes non-empty or when all the vertices reachable from oi dur-

ing [t1,
(t1+t2)

2
] and reachable to oj during [(t1+t2)

2
, t2] are tra-

versed. In the first case query destination is reachable from source

while this is not true for the latter case. A partition is retrieved and

buffered during traversal to enable in-memory lookup of some of

the future vertices. Older partitions in memory can be discarded

when there is not enough space for new partitions. During forward

traversal, if a vertex is connected to long edges, the edges with the

largest weight are traversed and the other edges are ignored. We

term this approach Bidirectional Multi-resolution BFS or BM-BFS.

The pseudocode of BM-BFS technique is presented in Algo-

rithm 2. The algorithm first finds the vertices v1, v2 ∈ HN in lines

2-3. The function FindVertex(p, o, t) gets a partition p, an object

o and a time instance t and returns the vertex of HN which con-

tains o(t). Afterward, two queues are initialized for the forward

and backward traversal of the input graph in line 4. OF and OB

are also initialized in line 5. We denote the set of object whose

instances are included in v by Ov. The algorithm runs forward

(line 7) and backward traversal (lines 8) in parallel by running

ProcessQueue procedure until both QF and QB become empty or

reachability is verified. With ProcessQueue procedure, the vertex

vh in the head of either queue is extracted in line 2. Each object

in Ovh is examined to check whether it is already visited in the

reverse traversal (lines 5-8). If this is the case, query destination

is reported reachable from query source. Afterward, each children

v of vh is added to the traversal queue to enable the next steps

of traversal. Child(v,direction) procedure returns the edges at the

highest resolution originating from v whose end points are the ver-

tices representing time instance t ∈ [t1,
t1+t2

2
] and t ∈ [t1+t2

2
, t2]

for forward and backward traversal directions, respectively. The

854

following proves the correctness of BM-BFS.

Algorithm 2 BM-BFS

1: procedure BM-BFS(oi , oj, Tp = [t1, t2], HN)

2: v1=FindVertex(Ht1
(oi), oi, t1)

3: v2=FindVertex(Ht2
(oj), oj , t2)

4: QF .push(v1), QB .push(v2)
5: OF .add(Ov1

), OB .add(Ov2
)

6: while !QF .isEmpty()||!QB .isEmpty() do

7: ProcessQueue(OB ,QF ,F)

8: ProcessQueue(OF ,QB ,B)

9: end while

10: return false

11: end procedure

1: procedure PROCESSQUEUE(O,Q,direction)

2: if !Q.isEmpty and vh = Q.pop() is not visited before then

3: for o ∈ Ovh
do

4: if O.contains(o) then

5: return true

6: end if

7: end for

8: for c ∈ Child(vh,direction) do

9: Q.add(c)
10: end for

11: end if

12: end procedure

THEOREM 5.3. BM-BFS verifies the reachability from query

source to destination during query interval.

PROOF. First, assume that HN only includes one resolution,

i.e., HN=DN1
. HN is a DAG whose vertices are topologi-

cally sorted and time stamped. The forward traversal visits all

the vertices representing contacts with validity interval subset of

[t1,
t1+t2

2
] and reachable from query source. Accordingly, the

backward traversal visits all the vertices representing contacts with

validity interval subset of [t1+t2
2

, t2]. Therefore, if a path p from v1
to v2 exists, then the vertices in p are discovered after forward and

backward traversal of HN . In addition, the vertices in p are time

stamped and therefore, the order of vertices in p are preserved dur-

ing traversal of HN . When we consider long edges during traver-

sal, some vertices of HN which representing specific time instances

may not be visited. However, general connectivity of the graph is

preserved at all the resolutions and therefore by taking long edges

the query can be still verified correctly. Also, based on the transitive

property 5.2 the early termination condition accurately terminates

the traversal. This completes the proof.

Assume that each partition includes instances of np distinct objects

and each disk block holds bp partitions on average. The following

theorem proves the complexity of ReachGraph query processing

and index construction (|T ′
p| is defined in Theorem 4.1).

THEOREM 5.4. The ReachGraph index can be constructed

with O(|O||T |) IOs. The query processing IO complexity is

O(
|O|||T ′

p|

np×bp
).

We skip the details of the proof due to lack of space.

GRAIL [18] is one of the most efficient graph reachability ap-

proaches for memory resident graphs. It works based on the idea

of randomized interval labeling of graph vertices. Table 1 com-

pares the index construction and query time complexity of Reach-

Grid and ReachGraph with that of GRAIL when adopted on disk-

resident DN to process reachability queries. Our approaches sig-

nificantly outperforms GRAIL because of efficient disk placement

and also early termination of queries (|T ′
p| ≤ |Tp|). With GRAIL,

d is a small constant and it is the number of intervals assigned to

each graph vertex. nr is the average number of objects which are

reachable from any object o ∈ O at each time instance t ∈ T.

GRAIL ReachGraph ReachGrid

Query Time O(|O||Tp|nr) O(
|O||T ′

p|

np×bp
) O(

|O||T ′
p|

nc×bc
)

Construction Time O(d|O||T |) O(|O||T |) O(|O||T |)

Table 1: Complexity Comparison

Dataset Size

RWP10k 190GB

RWP20k 380GB

RWP40k 760GB

V N1k 23GB

V N2k 46GB

V N4k 92GB

Table 2: Data Collection Size

Memory Size 4GB

Disk Size 5 disks each 1.36 TB

OS Windows 7 SP1 64-bit

CPU 3.34GHz

Page Size 4kb

Table 3: System Specifications

6. EXPERIMENTS
We perform our experiments on both synthetic and real datasets

modeling the contacts between moving objects which are either ve-

hicles or individuals. Our synthetic data sets are generated by two

different data generators. The first data generator, GMSF [3], mod-

els the movement of individuals in an environment of 100km2 as-

suming their movement patterns follow random waypoint model

with the average speed of 2m/s. The trajectories samples are cap-

tured every 6 seconds. Random waypoint is one of the most used

models in literature to model individuals’ movement. With this

model, every individual selects a random destination and speed and

then moves toward that destination. Afterward, she selects another

random destination and moves toward it [11]. The second data gen-

erator is the Brinkoff generator which is commonly used for gener-

ating realistic moving objects [4]. We generated the trajectories of

a constant set of vehicles moving on the road network in San Fran-

cisco city covering an area of approximately 300km2. The vehicles

locations are recorded on average every 5 seconds. The reason of

using two different synthetic data generators is to study the differ-

ence between the case of reachability query processing for differ-

ent categories of moving objects, i.e., individuals and vehicles. In

particular, vehicles are restricted to move on a road network while

individuals can move to any environment point. With the first syn-

thetic data generator we generate 1000, 2000 and 4000 vehicles

trajectories. We denote these datasets by VN1k , VN2k and VN4k,
respectively, and term the collection, VN datasets. With the second

synthetic data generator, we generate 10, 000, 20, 000 and 40, 000
individuals’ trajectories. We term these datasets RWP10k, RWP20k

and RWP40k, respectively, and call the set of these datasets, RWP

datasets. The reason of generating more objects trajectories with

the second dataset is that the objects are distributed in the entire

space with the second generator as opposed to the first generator in

which objects only move on the road network. With both genera-

tors, we generate trajectories for the duration of four months (more

than 119 days). Accordingly, RWP and VN datasets include more

than 1,700,000 and 2,048,000 time instances, respectively. The size

of the data for each dataset is represented in Table 2.

Our real dataset captures the movements of vehicles in the city

of Beijing. This dataset covers the GPS tracks of more than 2500
distinct vehicles collected during a day. The vehicles GPS tracks

cover an area of approximately 600km2. The vehicles locations

are recorded every minute and further interpolated to reflect the lo-

cations for every five seconds. Unfortunately, because of the small

scale of this datasets we only use it in a subset of experiments.

Our experimental system specification is presented in Table 3.

For each experiment setting, we run the algorithm 400 times to

compute the average values. The query sources, destinations are

855

selected randomly and query interval is selected as a random in-

terval where the length of the interval is a random number between

150 and 350 unless otherwise stated. We presume vehicles are con-

tacting each other by communicating over DSRC protocol which

has the effective range of 300 meters. Accordingly, we assume in-

dividuals are making contacts by communicating over Bluetooth

protocol which has the typical range of 25 meters. Therefore, we

set dT =25 for RWP and dT =300 for VN datasets.

Finally, to measure the performance of reachability query pro-

cessing we measure the number of random IOs. Hence, the sequen-

tial IOs are normalized to random accesses by assuming that each

random access costs as much as 20 sequential accesses [6]. No-

tice that these numbers are system dependent, however, the general

trends in the results should be obtained for machines with the differ-

ent settings as well. The rest of this section is organized as follows.

We first evaluate the efficiency of ReachGrid and ReachGraph ap-

proaches, respectively. Thereafter, we present the empirical com-

parison between ReachGrid and ReachGraph. Finally, we compare

our approaches with existing graph reachability algorithms.

6.1 ReachGrid
In this section, we first focus on the efficiency of the index con-

struction and then query processing step of our ReachGrid.

6.1.1 Index Construction

The performance of the ReachGrid depends on the resolution of

temporal and spatial grids which quantize time interval T and envi-

ronment E, accordingly. There is a tradeoff in selecting both tem-

poral and spatial resolutions. By increasing any of the resolutions,

the number of random accesses to disk blocks increases when pro-

cessing a reachability query and hence the number of IOs increases.

The reason is that the locality in time and space is not fully lever-

aged. On the other hand, decreasing the resolution of grids results

in placement of huge number of trajectory segments within a grid

cell. As the result, many trajectory segments which are irrelevant

for query processing are processed for each reachability query. This

increases the number of IOs during query processing.

Here, we empirically optimize the grids resolutions by varying

both temporal and spatial grids and selecting a combination which

minimizes the number of IOs when processing reachability queries.

There are huge possible number of values for the the combination

of temporal and spatial resolutions, and therefore, we assume the

same resolution for all the spatial grids Ci to reduce the number

of possible combinations. We vary temporal resolution from 5 to

80 for both datasets and spatial resolution from 128m to 10km
(17km) for RWP (VN) datasets and select a combination which

minimizes the number of IOs while processing reachability queries.

We denote the optimal spatial and temporal resolutions by RS and

RT , respectively. With RWP datasets, RS=1024m and RT =20
and accordingly, with VN datasets, RS=17km and RT =20. With

VN datasets, the optimal ReachGrid indexes have lower resolutions

than that of RWP datasets. The reason is that VN datasets capture

the movement of fewer objects as compared to RWP datasets and

hence spatial grids are larger to place more objects within the same

cell. Figures 8 (a) and (b) show how IO count varies when temporal

and spatial resolutions vary for RWP datasets, respectively. With

Figure 8 (a) temporal resolution is 20 and with Figure 8 (b) the

spatial resolution equals 1024m. Because of lack of space and the

fact that VN datasets results also follow the same pattern, we do

not show the results for VN datasets.

We also measured the time required to construct the optimal

ReachGrid indices. The results are shown in Figures 9 (a) and (b)

for RWP and VN datasets. The x-axis shows the length of time pe-

(a) IO count vs. spatial grid res-
olution

(b) IO count vs. temporal grid
resolution

Figure 8: ReachGrid resolutions optimization

(a) RWP datasets (b) VN datasets

Figure 9: ReachGrid construction time

riod T over which ReachGrid index is constructed. All these inter-

vals share the same starting point but different ending point. Over

all the cases, the index construction time is less than 4.3 hours.

As expected, increasing the number of objects and duration of T
makes index construction slower.

6.1.2 Query Processing

To evaluate the efficiency of online ReachGrid query processing,

we compare ReachGrid and naı̈ve approach, termed SPJ, which

generates the contact network C′ relevant to query interval on the

fly and afterward traverse it to verify reachability between query

source and destination. SPJ generates C′ by retrieving all the tra-

jectories segments which overlap with the query interval. Based

on our experiments, our ReachGrid approach outperforms SPJ by

at least 96% for all RWP and VN datasets. The reason is that our

ReachGrid online query processing algorithm avoids constructing

the portion of contact network which is irrelevant for query pro-

cessing by intelligent traversal of the contact network.

6.2 ReachGraph
Here, we first study the efficiency of index construction and af-

terward the online query processing approaches of ReachGraph.

6.2.1 Index Construction

In this section, we first focus on evaluating the efficiency of in-

dex construction for the basic contact network (DN) and afterward,

evaluate the efficiency of the augmentation step. We conclude this

section by studying the placement of ReachGraph on disk.

6.2.1.1 Contact Network Size.
Here, we empirically measure the contact network size by count-

ing the number of vertices (|V |) and edges (|E|) of contact network

(DN) when generating contact network for different time intervals

T. The results for RWP datasets are shown in Figures 10 (a) and (b)

for edges and vertices, respectively. The results for VN datasets fol-

low the similar pattern and omitted due to space constraints. The

x-axis represents the length of time interval T during which the

856

857

858

859

