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ABSTRACT 
Given a set S of sites and a set O of weighted objects, an 
optimal location query finds the location(s) where introducing a 
new site maximizes the total weight of the objects that are 
closer to the new site than to any other site. With such a query, 
for instance, a franchise corporation (e.g., McDonald’s) can 
find a location to open a new store such that the number of 
potential store customers (i.e., people living close to the store) 
is maximized. Optimal location queries are computationally 
complex to compute and require efficient solutions that scale 
with large datasets. Previously, two specific approaches have 
been proposed for efficient computation of optimal location 
queries. However, they both assume p-norm distance (namely, 
L1 and L2/Euclidean); hence, they are not applicable where sites 
and objects are located on spatial networks. In this paper, we 
focus on optimal network location (ONL) queries, i.e., optimal 
location queries with which objects and sites reside on a spatial 
network. We introduce two complementary approaches, namely 
EONL (short for Expansion-based ONL) and BONL (short for 
Bound-based ONL), which enable efficient computation of 
ONL queries with datasets of uniform and skewed 
distributions, respectively. Moreover, with an extensive 
experimental study we verify and compare the efficiency of our 
proposed approaches with real datasets, and we demonstrate 
the importance of considering network distance (rather than p-
norm distance) with ONL queries.   

Keywords 
Optimal Location Query, Query Processing in Spatial Network 
Databases 

1. INTRODUCTION 
Optimal location queries have been widely used in spatial 
decision support systems and marketing in recent years. For 
instance, a city planner might want to know: “What is the 
optimal location to open a new public library?” The optimal 
location is the site that would maximize the number of patrons 
for whom this is the closest library. Optimal location query is 
formally defined as follows: Given a set S of sites and a set O 
of weighted objects the optimal location query computes a 
location where introducing a new site would maximize the total 
weight of objects that are closer to the new site than to any 
other site.  

Optimal location queries are computationally complex to 

answer. The existing work considers L1 distance metrics or 
L2/Euclidean as the measure of distance between objects and 
sites and proposes efficient solutions in these p-norm metric 
spaces [13, 5]. However, with many real world applications 
objects and sites are located on a spatial network (e.g., roads, 
railways, and rivers), and therefore, the approaches that assume 
p-norm distance fail to apply. We show this by an example as 
follows. Fig. 1.a (Fig. 1.b) compares the result of a simple 
optimal location query assuming L2 (L1) distance between 
objects and sites versus the result of the same query assuming 
the actual distance on the spatial network (i.e., the network 
distance). With this sample query, a set S of two sites S1 and 
S2, and a set O of three objects O1, O2, and O3 with equal 
weights are located on a road network (shown by thick lines). 
Fig. 1.a depicts the approach proposed for optimal location 
query computation in L2 space [13], where the intersection of 
multiple circles represents the identified optimal region R1. As 
shown, the optimal region R1 and the actual optimal network 
location, i.e., the network segment n1n2, are completely 
disjoint. Similarly, Fig. 1.b illustrates the optimal location 
query approach proposed for L1 space [2]. The hatched area 
(comprising the rectangular areas R2 and R3) is the optimal 
region in L1 space, which significantly overestimates the actual 
optimal location n1n2. We further verify the importance of 
assuming network distance with ONL queries in Section 6 via 
experiments, and we show that in 75% of the cases the results 
of optimal location queries in L1 and L2 spaces are totally 
disjoint from the actual optimal network location, with less 
than 20% overlapping in the rest of the cases.  

  
(a) (b) 

Fig. 1. Optimal Location Query (a) L2 space result versus 
network space result, (b) L1 space result versus network 

space result 

In this paper, for the first time we introduce two 
complementary approaches for efficient computation of ONL 
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queries, namely EONL (short for Expansion-based ONL) and 
BONL (short for Bound-based ONL), which enable efficient 
computation of ONL queries with object-datasets of uniform 
and skewed distributions, respectively. We argue that the 
dominating computational complexity with ONL queries is 
twofold (this also applies to regular optimal location queries). 
To answer any ONL query, first one has to compute a spatial 
locality around each (and every) object o of the given object-
dataset such that if s is the nearest site to object o, any new site 
s introduced within the locality of o will be closer to o as 
compared to the distance between s and o. Second, one must 
compute the overlapping among object localities to identify the 
optimal network location, which is a network segment (or a set 
of segments) where the localities of a subset of objects with 
maximum total weight overlap.  

Accordingly, with our two proposed algorithms, EONL and 
BONL, we focus on reducing the computational complexity of 
the latter and the former steps in ONL query answering, 
respectively. In particular, with Expansion-based ONL (EONL) 
we simply compute the locality of an object by expanding the 
network around the object until we reach the nearest site s to 
the object; hence, a costly computation at the first step of ONL 
query answering. However, during network expansion we 
identify and record potential overlapping between localities of 
the objects to avoid redundant computation at the second step; 
thus, efficient computation of overlapping among object 
localities at the second step. On the other hand, with Bound-
based ONL (BONL), at the first step we avoid the costly 
network expansion and instead approximate object localities by 
an upper bound. In particular, we introduce two bound 
estimation techniques, which correspondingly result in two 
variations of BONL. Subsequently, at the second step we 
compute the overlapping among the actual object localities by 
network expansion, only if object bounds overlap.  

Our experimental results with real datasets show that given 
uniformly distributed object-datasets (i.e., datasets with 
uniform spatial distribution), EONL is an order of magnitude 
faster than BONL, whereas with object-datasets of skewed 
distribution BONL outperforms EONL. We attribute the 
difference in efficiency of the two approaches with the two 
types of datasets to the fact that with skewed/clustered datasets, 
there is less overlapping between locality bounds of the objects; 
hence, less need for expansion at the second step. In real-world, 
skewed and uniform distribution of the object-datasets 
correspond to, for example, typical distribution of 
people/customers in urban and rural areas, respectively. 
Therefore, EONL and BONL have their own exclusive use-
cases in real-world applications and are complementary. 

The key contributions of this paper can be summarized as 
follows: 

1. We define and formalize the optimal network location 
query problem. 

2. We introduce two complementary approaches for 
efficient computation of optimal network location 
queries. 

3. We experimentally compare our proposed approaches 
and discuss their use-cases with different real-world 
applications. 

The remainder of this paper is organized as follows. Section 2 
formally defines optimal network location queries in spatial 
network databases. Sections 3 and 4 introduce our proposed 
expansion-based and bound-based solutions for optimal 
network location queries, respectively. In Section 5, we present 
complexity analysis of our proposed approaches. In Section 6, 
we evaluate our proposed solutions via experiments with real 
data.  Section 7 reviews the related work, and finally Section 8 
concludes the paper and discusses directions for future 
research.  

2. PROBLEM FORMALIZATION 
In this section, we formalize the problem of optimal network 
location as a Maximum Overlap Segment (MaxOSN) problem. 
Assume we have a set S of sites (e.g. public schools, libraries, 
restaurants) in a 2D environment. Also we have a set O of 
objects with a weight w(o) for each object o. For instance, 
object o might be a residential building/property where w(o) 
represents the number of people living in this building. A 
MaxOSN query returns a subset of the spatial network (i.e., a 
segment or collection of segments) where introducing a new 
site would maximize the total weight of the objects that are 
closer to the new site than to any other site. We assume both 
sites and objects are located on a spatial network, e.g., a road 
network. We model the road network as a graph G (N, E), 
where N is the set of intersections/nodes and E is the set of 
edges of the road network. Each edge e(n1 , n2) has a travel cost. 
In this paper, we assume the cost of each edge e is proportional 
to the distance between the two end points n1 and n2 of e. 
Accordingly, the network distance dN(n1,n2) between any two 
nodes n1 and n2, is the travel cost of the path with least cost 
from n1 to n2. Fig. 2 shows a road network with 14 nodes and 
weighted edges, four objects o1, o2, o3, and o4 with weights 3, 
6, 5, and 4, respectively, and three sites s1, s2, and s3.  

 
Fig. 2.  Road network model 

Below, we first define our terminology. Thereafter, we describe 
the MaxOSN query problem. 

DEFINITION 1 (LOCAL NETWORK). Given an object o, the 
local network LN(o) of o, is a sub-network expanded at object o 
that contains all points on the road network with a network 



distance less than or equal to the network distance between o 
and its nearest site s.  

In Fig. 3, site s1 is the nearest site to the object o1 where 
dN(o1,s1)=5. LN(o1) is identified by expansion, i.e., starting 
from o1 we traverse all possible paths up to the network 
distance equal to 5, and we delimit LN(o1) by marking the 
ending points (shown as arrows in Fig. 3). We term this 
delimitation process edge marking. The expanded network 
(shown as bold lines in Fig. 3) consists of a set of local edges 
connecting the associated object to all marked ending points. It 
is important to note that local edges can fully or partially cover 
an actual edge of the road network. Each local edge e is also 
assigned an influence value, denoted by I(e), which is equal to 
the weight of the corresponding object. For instance, all local 
edges in LN(o1) have an influence value equal to 3 (i.e., the 
weight of object o1).  

 
Fig. 3. Local networks 

DEFINITION 2 (OVERLAPPING LOCAL NETWORKS). A 
local network LN(o1) overlaps a local network LN(o2) if there 
exists a local edge e1 in LN(o1) which intersects a local edge e2 
in LN(o2).  

For instance, in Fig. 3 LN(o1) overlaps with LN(o2) since the 
local edge o1n2 in LN(o1) overlaps with the local edge o2n3 in 
LN(o2).  

DEFINITION 3 (OVERLAP SEGMENT). Given two 
overlapping local networks, an overlap segment s is a network 
segment where the overlapping edges of the two local networks 
intersect.  The influence value of segment s is equal to I(e1) 
+I(e2), where e1 and e2 are the overlapping local edges from 
the two local networks. 
For example, the overlap segment jn2 is identified by 
overlapping the local edges o1n2 and o2n3 in Fig. 3. The 
definition of the overlap segment can be generalized for more 
than two local edges: Given multiple local networks and 
multiple marked end points on each edge, the overlap segment 
on the edge can be identified by considering the direction and 
length of the overlapping local edges (in Section 3, we will 
discuss this process, called edge collapsing, in detail). For 
instance, Fig. 4 shows the overlap segment jk identified by 
overlapping local edges ak, ai, bl and bj. 

 

Fig. 4. Overlap segment of multiple local networks 

DEFINITION 4 (MAXIMUM OVERLAP SEGMENT QUERY 
(MaxOSN)). Given a set O of objects, a set S of sites, the 
MaxOSN query returns one or more overlap segment(s) which 
have the maximum influence value (I0) among all overlap 
segments.  
For instance, in the road network illustrated in Fig. 3 the 
MaxOSN query returns the set of overlap segments {o3S2, 
o3n5}, where each segment has an optimal influence value I0 
=11. 

LEMMA 1. The MaxOSN query computes an optimal network 
location where introducing a new site would maximize the total 
weight of objects that are closer to the new site than to any 
other site. In other words, the MaxOSN query is equivalent to 
the definition of ONL query. 

PROOF. The proof is obvious. □ 

3. Expansion-Based Optimal Network 
Location (EONL) 
As we mentioned in Section 1, answering an ONL query is a 
two-phase process.  At the first phase, one needs to build the 
local networks of all objects, whereas at the second phase local 
networks of the objects are overlapped in order to identify the 
overlap segment(s) with maximum influence value (i.e., the 
optimal location/segment). With EONL, we focus on reducing 
the computational complexity of the second phase.  

In particular, at the first phase EONL simply uses network 
expansion to build the local networks. At the second phase, 
assuming we have n objects (and therefore, n local networks), 
one should compute the overlap between 2n combinations of 
local networks. In this case, if (for example) one of the network 
range-query processing techniques proposed by Papadias et al. 
[10] is used for overlap computation, the total computational 
complexity would be in the order of O (2|O| (|N| log |N| + |E|)). 
Obviously, this approach is not scalable. Instead, with EONL 
we identify the potential optimal segments while expanding 
local networks at the first phase, and leverage this information 
at the second phase to efficiently compute the segment(s) with 
maximum influence value. To be specific, while expanding the 
local networks at the first phase, for each edge we record all 
ending points (i.e., the points that mark the border of the local 
networks of the objects) that lie over the edge. Subsequently, at 
the second phase we use the information recorded at the first 
phase to compute a score for each edge, which is equal to the 
total weight of the objects whose local networks end on the 
edge. One should observe that a higher score for an edge 
indicates higher potential of containing an optimal segment. 
Next, through a refinement process we sort the edges based on 
their scores in descending order, and starting from the edge 
with higher score, we use a technique, termed edge collapsing, 
to compute the actual overlap segment(s) on each edge. It is 
important to note that through this refinement process we only 
have to compute the actual overlap segment(s) for an edge if 
the score of the edge is more than the influence value of the 
actual segments computed so far. With our experiments, we 
observe that EONL only computes the actual overlap segments 
for a limited subset of the network edges before it identifies the 



optimal location/segment; hence, effective pruning of the search 
space for better efficiency.  

Below, we explain how we implement EONL in more detail; 
we begin by introducing our edge collapsing technique. Table 1 
represents four possible cases by which two local edges e1 and 
e2 might overlap each other. The dashed lines represent local 
edges e1 and e2, the solid line represents the actual edge ab of 
the road network, and m1 and m2 are the end points of e1 and e2. 
The third column summarizes how the edge collapsing 
technique computes the overlap segment (S0) with the 
maximum influence value (I0) in each case. Next, we describe 
the implementation of EONL as a four-step algorithm (see 
Algorithm 1): 

Table 1. Edge collapsing technique 

Case Overlapping Local Edges Overlap Segment 

1 
 

S0 = m1m2  

I0 =  I(e1 ) + I(e2 )  

2 
 

S0 = ab 

I0 =  I(e1 ) + I(e2 ) 

3 

 

If (I(e1 ) > I(e2 ) ) 

  S0 =a m1 ; I0 =  I(e1 )    

Else 

  S0 =b m2 ; I0 =  I(e2 )    

4 

 

S0 = m2m1 

I0 =  I(e1 ) + I(e2 ) 

 

Step 1 (Expanding local networks) (lines 1-6): For each object 
point o, we first expand the local network of object o, LN(o), 
using the Dijkstra algorithm. Then, we mark the ending points 
of the local networks on the edges. Table 2 shows sample 
subsets of the marked edges of Fig. 2. Each row of the Marked 
Edge Table (MET) is an entry in the form of (e, M, w(e)) where 
M is the set of ending points marked on edge e and w(e) is 
equal to the sum of influence values of the end points (i.e., the 
corresponding local edges).The MET table helps us to identify 
the overlapping segments with the maximum influence value. 

Table 2. Marked Edge Table (MET) 

E M w(e) 

Kp {n1} 3 

Ji {n2} 3 

Ih {n5} 5 

Hg {S2,S2} 11 

Step 2 (Sorting MET Table) (lines 7-9): We sort all entries in 
the MET table in descending order of w(e) because of our 
observation that the optimal solution is mostly derived from the 
entries with larger w(e) values. Then, we apply the edge 

collapsing technique to the first entry of MET and initialize the 
S0 and I0 values. 

Step 3 (Identifying overlap segments) (lines 10-19): From the 
set of marked edges in MET table, we identify the overlap 
segments using the edge collapsing technique. We could apply 
the edge collapsing technique to all marked edges; however, we 
do not need to apply this approach for some marked edges if 
there is another marked edge whose influence value has a 
greater value than I0. Thus, we can prune some marked edges 
using an edge pruning technique based on the following 
lemma.  

LEMMA 2 (EDGE PRUNING). Let Io be the optimal influence 
value. An optimal network location is a collection of overlap 
segments that does not involve any marked edge e where w(e)< 
Io.  

PROOF. We prove by contradiction. Assume the optimal 
solution involves a marked edge e where w(e)< Io. This fact 
contradicts the definition of the optimal solution which ensures 
that I0 has always the maximum influence value. □ 

Based on Lemma 2, we can prune any marked edge with w(e)< 
Io .  

Step 4 (Finding the maximum influence value): When the 
algorithm terminates, S0 returns the set of optimal overlap 
segment(s) and I0, the optimal influence value.  

Algorithm 1 EONL Algorithm 
  1:  For each o   O 

  2:      Expand the local network of object o 

  3:      Mark ending points on edges 

  4:  For each marked edge e   E 

  5:      M=  Set of ending points marked on  e 

  6:      w(e)= Sum (w(m)| m M) 

  7:  Sort MET table based on w(e) 

  8:  Apply edge collapsing to the first entry of MET (e1 ) 

  8:  So ={ g1 | maximum overlap segment on e1 } 

  9:  Io = w(g1) 

10:  For each marked edge e   E 

11:      If w(e)   Io 

12:         Apply edge collapsing to edge e 

13:         g = maximum overlap segment on e 

14:        Update w(e) : w(e)= w(g) 
15:        If w(e) > Io  

16:              Io = w(e) 

17:              So = {g}    

18:         If w(e) = Io 

19:              So = So  {g} 

Here, we illustrate application of the EONL algorithm using the 
example depicted in Fig. 2. Assume we have performed the 
local network expansion for four objects o1, …, o4 and all 
ending points are marked on edges as shown using arrows in 



Fig. 3. We construct the MET table and sort its entries based 
on their w(e) values. The first edge in MET table is hg. By 
applying the edge collapsing technique to hg we initialize the 
optimal solution set S0 to {o3s2} and the optimal influence value 
I0 to 11. Then, we perform the iterative steps on each marked 
edge. Among 14 marked edges from the road network shown in 
Fig. 2, only the marked edge ih satisfies the condition w(e)  
I0. Thus, we only apply the edge collapsing technique to it. By 
applying edge collapsing on ih, the overlapping segment o3n5 is 
derived which leaves I0 unchanged and S0= {o3n5}  {o3s2}. At 
this point the algorithm terminates since all marked edges 
eligible for edge collapsing have been processed. Therefore, the 
optimal network queries on the dataset shown in Fig. 3 returns 
overlapped segments {o3n5, o3s2} with an optimal influence 
value of 11. 

4. Bound-Based Optimal Network Location 
(BONL) 
Similar to EONL, our bound-based optimal network location 
(BONL), is implemented as a two-phase process. However, 
with BONL we avoid the computational complexity of network 
expansion at the first phase by approximating the local 
networks with their corresponding spatial bounds. In particular, 
we define a (circular) spatial bound around each object o such 
that it is guaranteed to contain the local network of the object. 
For example, given an object point o and its nearest site s in 
the spatial network, one can use the Euclidean Restriction 
property [10] to define such a circular bound with radius equal 
to or greater than dN(o,s), which guarantees containment of the 
local network of o. Fig. 5 shows the local bounds of four 
objects o1, o2, o3, and o4 as well as their corresponding local 
networks. The weight of local bound lb for an object, denoted 
by w(lb), is defined to be equal to the weight of the 
corresponding object. 

In order to form the local bound for an object using the 
Euclidean Restriction property, BONL must compute the (exact 
or approximate) distance between the object and its 
corresponding nearest site in the spatial network. Toward that 
end, we propose two variations of BONL. With BONL-U (i.e., 
BONL with upper bound), we approximate the local bound of 
an object by an upper bound which is derived using two 
different landmark selection techniques. On the other hand, 
with BONL-M (i.e., BONL with minimum bound), we 
introduce an efficient approach to compute the exact distance 
between an object and its nearest site. While BONL-M always 
provides a more accurate approximation of the local networks, 
with our study we also considered BONL-U as an option with 
potentially more efficient bound computation. We explain our 
bound computation approaches with BONL-U and BONL-M in 
Sections 4.1 and 4.2, respectively.  

Here, assuming that local bounds (either upper bound with 
BONL-U or exact/minimum bound with BONL-M) are 
computed at the first phase of BONL, we explain the second 
phase of ONL query answering with BONL. At the second 
phase, we need to overlap the computed spatial bounds and 
prioritize the investigation of those overlapping areas that have 
a higher potential of covering the optimal segments (similar to 

the concept of MET table and edge collapsing technique with 
EONL). It is important to mention that overlapping spatial 
bounds helps us predict those areas that might cover the 
optimal segments. However, to identify the exact optimal 
overlap segments we need to expand the local networks of 
spatial bounds and retrieve the optimal overlap segments using 
edge collapsing technique. Below we explain our 
implementation of BONL in more detail. 

 
Fig. 5. Local bounds 

With BONL, once local bounds of the objects are identified, for 
each local bound lb we find a list of other local bounds that 
overlap with lb and we call this list the overlapping list OL(lb) 
of lb. Lemma 3 defines the condition to identify overlapping 
bounds: 

LEMMA 3. Local bound lb1 with radius r1 overlaps local 
bound lb2 with radius r2 if and only if | r1|+| r2|  |o1o2|. 

PROOF. It is easy to verify that the above condition covers all 
the possible overlapping relationships between local bounds.□ 

Once the overlapping list for each local bound is generated, we 
construct a Pair-wise Overlapping Table (POT), where each 
row is an entry in the form (lb, OL(lb)). We call OL (lb) simply 
OL. The entries of POT are sorted in descending order of 
w(OL), where w(OL)=  OLlb

lbw )( .  Table 3 shows the POT 

constructed for the example depicted in Fig. 5. 

Table 3. Pair-wise Overlapping Table (POT) 

Lb OL(lb) 

lb1  Lb2, lb3, lb4 

lb3 lb1, lb2 

lb2 lb1, lb3 

lb4 lb1 

Finally, starting from the first entry, BONL processes each 
entry of POT to find the optimal segments as follows: 

Step 1 (Expanding local networks): For each entry (lb,OL) in 
the POT table, we pick the OL list and expand the 
corresponding local networks as well as the local network of lb 
using the Dijkstra algorithm, while marking all ending points 
on each edge of the network.   



Step 2 (Identifying overlap segments): For each entry, we 
identify the overlap segments for the overlapping local 
networks derived from the previous step using the edge 
collapsing technique described in Section 3.  

Step 3 (Finding the maximum influence value): Among all 
identified overlap segments, we pick the one with the 
maximum I0 value as the optimal solution. 

It is important to note that we do not need to expand the local 
networks of some entries if there is another entry in the POT 
table whose actual influence value has a greater value. This 
means we can prune some entries from the POT table where 
w(OL) + w(lb)> Io and Io is the current optimal influence in the 
current iteration. 

4.1 Bound Based Optimal Location with 
Upper Bound (BONL-U) 
With BONL-U, the upper bound value of the network distances 
between each object point and its nearest site is computed 
based on landmarks, and the Dijkstra algorithm [4]. This 
approach is inspired by the ALT algorithm of Goldberg et al. 
[6]. However, the lower bound of the shortest path distances in 
ALT is computed based on an A* search, landmarks and 
triangle inequality. Our upper bound value computation 
approach entails carefully choosing a small (constant) number 
of landmarks, then computing shortest path distances between 
all nodes of the spatial network and from/to each of these 
landmarks using the Dijkstra algorithm. Then, upper bounds 
are computed in constant time using these distances. 

Calculating “From” and “To” distances: Since each edge of 
our experimental road network (LA County road network) is 
directional, we calculate the shortest path distances between all 
nodes of the road graph both “From” and “To” all Landmarks 
points using the Dijkstra algorithm (Fig. 6). 

 

 
Fig.  6. Distance from 

and to landmarks 

 
Fig.  7. Upper bound value 

calculation 

Calculating Upper Bound Value: Fig. 7 illustrates how we 
compute the upper bound value of the network distance 
dN(o,s), UdN(o,s). The UdN(o,s) is calculated from the network 
distance o and landmark L, dN(o,L), and the network distance 
dN(L,s) as UdN(o,s) = dN(o,L) + dN(L,s)  dN(o,s). 

For calculating the upper bound value of object point o and its 
nearest site s, first we calculate the shortest path distance value 
between object o and all site points traversing all possible 
landmark points. Then, from all computed upper bound values 
we pick the one with the minimum value as the UdN(o,s). 

Landmark Selection: Finding good landmarks is critical for the 
overall performance of upper bound value computation. The 
optimal approach is the one which contributes to the 
computation of an upper bound value very close to the actual 

value of the network distance. In the following we discuss two 
alternate techniques used for landmark selection: uniform and 
variable grid-based landmark selection. In both techniques we 
guarantee two landmarks are spatially located farther than a 
specific range from each other. 

In the uniform landmark selection approach, we randomly 
select a constant number of landmarks in a series of grid cells 
spanning the Los Angeles (LA) County road network. With the 
variable approach, we select more landmarks in regions with 
more site points. For this purpose, we count the number of sites 
which falls within each cell, denoted by Tc. Then, we assign k * 
Tc / |S| landmarks to this particular grid cell where k is the total 
number of landmarks, and |S| is the total number of site points 
in the entire dataset. The grid cells measured 10 km on a side, 
given that larger cells gave a result similar to the uniform 
selection strategy and grid sizes smaller than 10 km generate 
numerous grid cells with no assigned landmarks. Our 
experimental results (see section 6) show that the uniform 
landmark selection outperforms the grid-based landmark 
selection in terms of computation cost. 

Our experimental results showed that the BONL-U algorithm 
has low performance due to the cost of the upper bound value 
computation for network distances using landmark selection. 
The drawback of using landmark selection is that the radius of 
local bounds (UdN(o,s)) is always larger than the actual one. 
This fact produces large numbers of overlapping local bounds 
and local networks which leads to relatively high computation 
cost when using the BONL algorithm.  

In the next section, we introduce the Bound Based Optimal 
Location Queries with Minimum Bound (BONL-M) in which 
we improve the local bounds by computing the actual network 
distance between objects and their nearest sites. 

4.2 Bound Based Optimal Location with 
Minimum Bound (BONL-M) 
With BONL-M, we compute the actual network distance value 
between each object point and its nearest site, dN(o,s), using 
the following three-step approach: 

Step 1 (Reversing the road network graph): We first reverse the 
road network graph. 

Step 2 (Calculating the network distance of each node to its 
nearest site): We then calculate the shortest distance between 
each node and its nearest site using the Dijkstra Algorithm. 
Toward this end, we run the Dijkstra algorithm from each site 
point s, and traverse all nodes of the graphs. By traversing each 
node n, we store a value called gn, which represents the 
shortest path distance value between site s and node n. Each 
time we pick a new site s, we check the gn value while 
traversing the nodes and if the current gn value is greater than 
the shortest distance value between node n and site s, we 
update the gn value and set it to the shortest distance value 
between n and s. After processing all site points, the gn values 
stored with the nodes represent the shortest path distances 
between the nodes and the nearest sites. 



Step 3 (Computing the network distance of each object to its 
nearest site): We calculate the network distance of each object 
to its nearest site using the gn values computed with the 
previous step. 

This three-step approach calculate the actual network distance 
value, dN(o,s) and these values are used in place of the upper 
bound values used in BONL-U. Our experiments demonstrate 
that the BONL-M approach reduced the radius of the local 
bounds and improved the performance of the BONL-M 
algorithm compared to the BONL-U approach.  

5. COMPLEXITY ANALYSIS 
In this section, we analyze the computational complexity of our 
proposed approaches.  

BONL-U: Below, we discuss the computational complexity of 
various tasks with BONL-U: 

Landmark Selection: The running time of landmark selection 
step takes O (k2 |N|) (Recall k is the number of selected 
landmark points). 
Calculating “From” and “To” Distances: Given k landmark 
points, computing “From” and “To” distances takes O (k (|N| 
log |N| +|E|)) and O (|N| (|N| log |N| +|E|)), respectively. In 
total, the running time of upper bound value computation 
would be O (|N| (|N| log |N| + |E|)) which is extremely high in 
very large road networks. To improve the running time of this 
step we reverse the road graph (O (|E|)) and calculate the 
distances ”From” landmarks to nodes. This technique improves 
the running time to O (k (|N| log |N| + |E|)). 
Calculating Upper Bound Value: This step takes O (k |O| |S|) 
and the total running time for computing Ud(N,S) is O (k2 |N|) + 
O (k (|N| log |N| + |E|)) + O (k |O| |S|).  
Forming Local Bounds: This step takes O (1) time. 
Constructing the POT Table: This step takes O (|O|) time since 
there are |O| local bounds. 
Sorting the POT Table: Sorting takes O (|O| log |O|) running 
time. 
Expanding the Local Networks: Since the maximum number of 
overlapping local bounds can theoretically be equal to |O|, the 
running time for expanding the local networks takes O (|O| (|N| 
log |N|) + |E|)). Then, we mark all ending points on edges 
which requires O (|E|)) time. Note that the edge marking step 
cannot be performed at the same time as expanding the Dijkstra 
algorithm in step 1. Because Dijkstra’s algorithm assumes that 
the objects and sites fall on network nodes while in our 
scenario ending points may fall on edges. 
Identifying Overlap Segments with the Maximum Influence 
Values: The edge collapsing technique takes O (|E| O|2) time. 
Thus, considering |O| entries in POT table, edge collapsing step 
has a complexity equal to O (|E| |O|3). 
Finding the Maximum Influence Value: This task takes O (1) 
time. 
The overall running time of BONL-U is O (k2 |N|) + O (k(|N| 
log |N| + |E|)) + O( k |O| |S|) +  O(|O|) + O(|O| log |O|) + O(|O|2 
(|N| log |N| + |E| + |O| |E|)).   

BONL-M: The complexity of BONL-M is similar to BONL-U 
but for the computation of the actual network distance values 
which requires the following steps:  

Reversing the Road Network Graph: This step can be done in O 
(|E|) time.  
Calculating the Network Distance of Each Node to Its Nearest 
Site: The running time of this step is O (|S| (|N| log |N| + |E|)). 
Computing the Network Distance of Each Object to Its Nearest 
Site: This step can be done in O (|O|). 
The overall running time of BONL-M is O (|E|) + O (|S| (|N| 
log |N| + |E|)) + O(|O|) + O(|O| log |O|) + O(|O|2 (|N| log |N| + 
|E| + |O| |E|)). 

EONL: In this case, we reduce the running time of optimal 
network location query by eliminating the cost of upper 
bound/minimum upper bound value computation. The cost of 
constructing the MET table is O (|E|) and sorting the table O 
(|E| log |E|). The overall running time is O (|E| log |E|) + O (|O| 
(|N| log |N| +|E|)) +O (|E| |O|2) because edge collapsing is 
performed only once for each edge. Thus, the complexity of this 
technique improves to O (|E| |O|2) in EONL. However, in 
BONL-U and BONL-M we needed to apply edge collapsing for 
each entry of POT table. 

6. EXPERIMENTAL EVALUATION 
We next describe the experimental setup we used for the 
experiments and then present and discuss the experimental 
results.  

6.1 Experimental Setup 
All experiments are performed on an Intel Core Duo 3GHz, 4 
GB of Ram, running Windows 7 and the .NET platform 3.5. 
The algorithms are implemented in Microsoft C#. We use a 
spatial network of |N| = 375691 nodes and |E| = 871715 
bidirectional edges, representing the LA County road network. 
The spatial network covers 130 km * 130 km and is cleaned to 
form a connected graph. We use real dataset for objects and 
sites. Objects are population data derived from LANDSCAN 
population data compiled on a 30" x 30" latitude/longitude 
grid. The centroid of each grid cell is treated as the location of 
each object and the population within each grid cell as the 
weight of object. In total we have |O|= 9662 objects. The 
weights of objects are distributed nearly uniformly with an 
average of 1100. For each experiment, we use a subset of 
object points selected from this base dataset that we will 
describe them in each part of experiments. We also deployed 
five datasets consisting of Johnny Rockets restaurants, 
McDonald’s restaurants, hospitals, schools, and all fast food 
restaurants in LA County (including McDonald’s and Johnny 
Rockets) for the sites. The cardinality of each site dataset is 
shown in Table 4. All sites, objects, nodes and edges are stored 
in memory-resident data structures. 



Table 4. Five real datasets for sites 

Datasets Cardinality 

Johnny Rockets 28 

McDonald’s 328 

Hospitals 308 

Schools 2621 

Fast Foods 19160 

6.2 Experimental Results 
Below we present the results of the four series of experiments 
that we ran on the aforementioned datasets. 

Accuracy: We first verified that the optimal location query in 
L1 and L2/Euclidean space is not applicable to spatial networks. 
For this test, we selected four datasets with 20, 40, 60, and 85 
object points that were randomly selected from the population 
data (DS1-DS4). All four sets of object points were located on 
LA county road network. For site points, we selected a subset 
of McDonald’s including seven sites.  We applied the L2 [13] 
and L1 [5] distance approaches and identified the optimal 
location in each case. Then, we performed the EONL 
algorithms on each dataset and retrieved their corresponding 
optimal network location. The result of this experiment showed 
that in 75% of cases (we call it set A) the optimal locations 
derived by the L1/L2 approach did not overlap the optimal 
network location derived by EONL and when they did overlap, 
there was < 20% common coverage. Fig. 8 shows one of the 
non-overlapping cases of set A (the circles represent objects 
and triangles represents sites). From cases included in set A, 
the average distance between the optimal network location and 
the optimal location derived from the L1 and L2 approaches 
(<N, L1>, <N, L2 >) are similar to the size of the entire area 
covered by these datasets (see Table 5) and verifies that using 
the existing L1 and L2 approaches for optimal location queries 
on spatial network databases is not accurate and likely to return 
irrelevant results. 

 
Figure 8. Non-overlapping case 

We also observed that the maximum influence value returned 
by the optimal network location query is 13% and 12% higher 
than those returned by the optimal location queries in the L1 
and L2 approaches, respectively and would therefore identify 
larger numbers of customers for those interested in running 
these kinds of queries. 

Table 5. Average distance of optimal network location and 
optimal location derived by L1 and L2 approaches 

 (size of the entire area is 6.2 km x 9 km) 
Dataset <N, L1> (meters) <N, L2 > (meters) 

DS1 Overlaps (<  20% coverage) 

DS2 4998 5305 

DS3 4995 2743 

DS4 6663 6396 
Average 5552 4814 

Execution Time: In order to evaluate the execution times of 
our proposed approaches, we implemented two experiments. 
With the first one, we considered a fixed site-dataset and used 
various object-datasets with different sizes and spatial 
distributions. With the second experiment, we fixed the object-
dataset and used various site-dataset. Below, we describe each  
experiment in more detail.  

Effect of Object-Dataset: For this experiment, we sub-sampled 
four subsets of objects from the base dataset with sizes 366 
(C1), 567 (C2), 1049 (C3) and 1533 (C4). We sub-sampled the 
objects with two different spatial distributions: uniform and 
skewed. To select each object, we randomly picked both X and 
Y dimensions of the grid cell corresponding to the object using 
a uniform or skewed distribution. As for the fixed site dataset, 
we picked the set of Johnny Rockets restaurants which has a 
small number of site data points comparing to other site 
datasets in Table 4.  Thereafter, we applied BONL-M and 
EONL approach to the aforementioned datasets and computed 
the execution times (as we show later, BONL-M outperforms 
BONL-U, hence excluded from this experiment). Fig. 9 depicts 
the results of our experiment. We observe that when the size of 
the object-dataset is small (C1) and its distribution is skewed, 
the execution time of BONL-M is higher than EONL. This is 
because the cost of computing the radius of the local bounds (O 
(|E|) + O (|S| (|N| log |N| + |E|)) is comparable to the cost of 
expansion of local networks (O (|O| (|N| log |N| +|E|))) when 
the number of object points (|O|) is low. However, with the 
larger object-datasets (C2 to C4), the performance of BONL-M 
increasingly improves as compared to EONL, because with a 
skewed object distribution, the number of overlapping local 
bounds is significantly reduced. Therefore, the cost of overlap 
computation with BONL-M becomes less than the cost of local 
network expansion with EONL. 

On the other hand, with uniformly distributed object points, the 
EONL outperforms BONL-M with all object-datasets (Fig. 10). 
This is because with uniform distribution of object points, the 
number of overlapping local bounds is always high which 
results in higher cost of identifying overlap segments as 
compared to the cost of local network expansion.  
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Fig 9. Execution times of the algorithms with fixed site 

dataset and skewed distributed objects 
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Fig 10. Execution times of the algorithms with fixed site 

dataset and uniformly distributed objects 

Effect of Site-Dataset: For this experiment, we applied all three 
algorithms to the four sites datasets of Table 4 and we selected 
the uniformly distributed population data as the fixed object 
dataset (including all 9662 points). Thereafter, we computed 
the execution times to compare their performance. Fig. 11 
shows that EONL has the highest performance, beating BONL-
M and BONL-U by factors of 6 and 12 on average, respectively.  
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Fig. 11. Execution times of the algorithms with uniformly 
distributed objects 

The three algorithms behaved similarly with the small 
McDonald’s, Hospitals, and Schools datasets. The Hospitals 
sites were more skewed and this variability meant that the 
expansion and edge marking took longer in those parts of the 
graph with few hospitals (see Fig. 11). The most important 
result was the significant improvement in the execution time of 
EONL for the Fast Foods restaurants (despite their uniform 
distribution) because the complexity of EONL is O (|E| log |E|) 
+ O (|O| (|N| log |N| +|E|)) +O (|E| |O|2) which is not 
proportional to the number of site points, |S|. 

Tightness of Local Bounds: The radius of the local bounds 
was improved an average of 53% by using BONL-M in place of 

the BONL-U algorithm. Fig. 12 shows how the radius of local 
bounds was reduced by using the BONL-M algorithm in place 
of BONL-U for each of the aforementioned datasets. 
Furthermore, we observed that the Hospital dataset has the 
highest average of local bound radius in both algorithms. With 
a non-uniform and more skewed site distribution, expansion of 
the local network traverses a longer path until it hits the nearest 
site. This fact results in producing larger local bounds 
comparing to other datasets. 
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Fig. 12. Average size of local bounds 

Landmark Selection: For this experiment, we selected 100 
landmarks and applied the BONL-U algorithm to four datasets. 
The results in Table 6 show that the grid-based approach took 
more time for three of the four datasets and especially the 
McDonald’s and Hospitals datasets which are sparser.  This is 
because the grid-based approach assigns more landmark points 
to the areas with more site points; hence, it takes more time for 
Dijkstra expansion in the areas with lower site density.  

Table 6. Comparing the execution time of BONL-U with the 
two landmark selection techniques 

 McDonald’s Hospitals Schools Fast Foods 

BONL-U 

 Uniform 10 min 21.5 min 10.5 min 22 min 
BONL-U 

Grid-based > 1hr > 1hr 10.5 min 31 min 

7. RELATED WORK 
Optimal location queries have been studied by researchers in 
operations research (OR) and database systems. In OR, most 
optimal location problems (also called facility location 
problems) are formulated as covering problems. These involve 
locating n sites to cover all or most of the (so-called) demand 
objects assuming a fixed service distance for sites. Covering 
problems are generally classified into two main classes. The 
first is the Location Set Covering Problems (LCSPs) [12] that 
seek to position a minimum number of sites in such a way that 
each and every demand object has at least one site placed 
within some threshold distance. The second class is the 
Maximal Covering Location Problems (MCLPs) [3] which seek 
to establish a set of m sites to maximize the total weight of the 
“covered” objects, where an object is considered covered if it is 
located within a specified distance from the closest facility. 
Many other problems in this class extend the original MCLP by 
imposing various placement restrictions for sites [8, 2], 



assuming various types of objects (points, lines and polygons) 
[9], and considering various definitions for coverage [1].  

While OR-based solutions are effective and address various 
types of optimal location problems, many of these solutions fail 
to scale with real datasets that consist of large numbers of sites 
and objects due to their computational complexity. Accordingly, 
a number of complementary solutions are proposed by the 
database community for scalable optimal location query 
answering. 

One is the Bichromatic Reverse Nearest Neighbor (BRNN) 
query [7, 15, 11] studied by the database community. With the 
BRNN query, all objects o  O whose nearest neighbor site is s 
are returned. The optimal location query can be formulated as a 
BRNN maximization problem, with which we try to locate a 
new site s such that the size of the BRNN set of s is 
maximized; hence, BRNN and optimal location are orthogonal 
problems. Another relevant problem involves finding the top-k 
most influential sites [14]. Here, the influence of a site s is 
defined as the total weight of the objects in a BRNN set of s. 
With this problem, a set of existing sites are assumed among 
which we want to find the most influential sites, whereas with 
the optimal location problem, the goal is to locate a new site 
with maximum influence.  

Wong et al. [13] and Du et al [5] tackle the optimal location 
problem. Both approaches form a spatial bound around each 
object o such that it includes a location l if and only if o is 
closer to l than to any other site. The intersection areas where 
these bounds overlap are the best candidate locations to 
introduce a new site. Therefore, to compute the optimal 
location query one can start with the areas with the maximum 
number of overlapping bounds and avoid other areas to reduce 
the search space and improve the query efficiency. While 
efficient, both of the aforementioned approaches assume p-
norm space (namely, [13] assumes L2 and [5] assumes L1), 
which as shown in Fig. 1 cannot support optimal location 
queries on spatial networks. Our proposed solutions utilized 
network distance to address optimal network location queries. 

8. CONCLUSION AND FUTURE 
DIRECTIONS 
In this study, for the first time we introduced the problem of 
optimal location for objects and sites located on spatial 
networks. Accordingly, we proposed EONL and BONL as two 
complementary approaches for efficient computation of optimal 
network location queries with datasets of different spatial 
distributions. In particular, we showed that avoiding network 
expansion with BONL is more effective when the given object-
dataset has a skewed spatial distribution, whereas EONL 
outperforms BONL with uniformly distributed objects. We 
verified and compared the performance of our proposed 
solutions with rigorous complexity analysis as well as extensive 
experimental evaluation with real data. 

We intend to extend this study in two ways. First, with the 
optimal network location problem, alike all previous work we 
assumed a site covers an object if and only if the site is the 
closest site to the object. We plan to study optimal network 

location queries under a more generalized definition of 
coverage where a site covers an object based on a combination 
of mutual relationships (not only proximity), such as 
accordance of site properties (e.g., hotel amenities) with the 
requirements of an object (e.g., the interests of potential 
travelers). Second, we want to study a more complex optimal 
location problem setting where the sets of sites and/or objects 
might be located both on and off spatial networks. With this 
problem, we will investigate and develop hybrid solutions.  
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