
Optimal Network Location Queries

Parisa Ghaemi, Kaveh Shahabi, John P. Wilson*, Farnoush Banaei-Kashani
Computer Science Department

University of Southern California
Los Angeles, CA 90089

[ghaemi, kshahabi, jpwilson, banaeika]@usc.edu

ABSTRACT
Given a set S of sites and a set O of weighted objects, an
optimal location query finds the location(s) where introducing a
new site maximizes the total weight of the objects that are
closer to the new site than to any other site. With such a query,
for instance, a franchise corporation (e.g., McDonald’s) can
find a location to open a new store such that the number of
potential store customers (i.e., people living close to the store)
is maximized. Optimal location queries are computationally
complex to compute and require efficient solutions that scale
with large datasets. Previously, two specific approaches have
been proposed for efficient computation of optimal location
queries. However, they both assume p-norm distance (namely,
L1 and L2/Euclidean); hence, they are not applicable where sites
and objects are located on spatial networks. In this paper, we
focus on optimal network location (ONL) queries, i.e., optimal
location queries with which objects and sites reside on a spatial
network. We introduce two complementary approaches, namely
EONL (short for Expansion-based ONL) and BONL (short for
Bound-based ONL), which enable efficient computation of
ONL queries with datasets of uniform and skewed
distributions, respectively. Moreover, with an extensive
experimental study we verify and compare the efficiency of our
proposed approaches with real datasets, and we demonstrate
the importance of considering network distance (rather than p-
norm distance) with ONL queries.

Keywords
Optimal Location Query, Query Processing in Spatial Network
Databases

1. INTRODUCTION
Optimal location queries have been widely used in spatial
decision support systems and marketing in recent years. For
instance, a city planner might want to know: “What is the
optimal location to open a new public library?” The optimal
location is the site that would maximize the number of patrons
for whom this is the closest library. Optimal location query is
formally defined as follows: Given a set S of sites and a set O
of weighted objects the optimal location query computes a
location where introducing a new site would maximize the total
weight of objects that are closer to the new site than to any
other site.

Optimal location queries are computationally complex to

answer. The existing work considers L1 distance metrics or
L2/Euclidean as the measure of distance between objects and
sites and proposes efficient solutions in these p-norm metric
spaces [13, 5]. However, with many real world applications
objects and sites are located on a spatial network (e.g., roads,
railways, and rivers), and therefore, the approaches that assume
p-norm distance fail to apply. We show this by an example as
follows. Fig. 1.a (Fig. 1.b) compares the result of a simple
optimal location query assuming L2 (L1) distance between
objects and sites versus the result of the same query assuming
the actual distance on the spatial network (i.e., the network
distance). With this sample query, a set S of two sites S1 and
S2, and a set O of three objects O1, O2, and O3 with equal
weights are located on a road network (shown by thick lines).
Fig. 1.a depicts the approach proposed for optimal location
query computation in L2 space [13], where the intersection of
multiple circles represents the identified optimal region R1. As
shown, the optimal region R1 and the actual optimal network
location, i.e., the network segment n1n2, are completely
disjoint. Similarly, Fig. 1.b illustrates the optimal location
query approach proposed for L1 space [2]. The hatched area
(comprising the rectangular areas R2 and R3) is the optimal
region in L1 space, which significantly overestimates the actual
optimal location n1n2. We further verify the importance of
assuming network distance with ONL queries in Section 6 via
experiments, and we show that in 75% of the cases the results
of optimal location queries in L1 and L2 spaces are totally
disjoint from the actual optimal network location, with less
than 20% overlapping in the rest of the cases.

(a) (b)

Fig. 1. Optimal Location Query (a) L2 space result versus
network space result, (b) L1 space result versus network

space result

In this paper, for the first time we introduce two
complementary approaches for efficient computation of ONL

* John P. Wilson is a Professor of Computer Science, a Professor of
Geography, and Director of GIS Research Laboratory at University of
Southern California.

queries, namely EONL (short for Expansion-based ONL) and
BONL (short for Bound-based ONL), which enable efficient
computation of ONL queries with object-datasets of uniform
and skewed distributions, respectively. We argue that the
dominating computational complexity with ONL queries is
twofold (this also applies to regular optimal location queries).
To answer any ONL query, first one has to compute a spatial
locality around each (and every) object o of the given object-
dataset such that if s is the nearest site to object o, any new site
s introduced within the locality of o will be closer to o as
compared to the distance between s and o. Second, one must
compute the overlapping among object localities to identify the
optimal network location, which is a network segment (or a set
of segments) where the localities of a subset of objects with
maximum total weight overlap.

Accordingly, with our two proposed algorithms, EONL and
BONL, we focus on reducing the computational complexity of
the latter and the former steps in ONL query answering,
respectively. In particular, with Expansion-based ONL (EONL)
we simply compute the locality of an object by expanding the
network around the object until we reach the nearest site s to
the object; hence, a costly computation at the first step of ONL
query answering. However, during network expansion we
identify and record potential overlapping between localities of
the objects to avoid redundant computation at the second step;
thus, efficient computation of overlapping among object
localities at the second step. On the other hand, with Bound-
based ONL (BONL), at the first step we avoid the costly
network expansion and instead approximate object localities by
an upper bound. In particular, we introduce two bound
estimation techniques, which correspondingly result in two
variations of BONL. Subsequently, at the second step we
compute the overlapping among the actual object localities by
network expansion, only if object bounds overlap.

Our experimental results with real datasets show that given
uniformly distributed object-datasets (i.e., datasets with
uniform spatial distribution), EONL is an order of magnitude
faster than BONL, whereas with object-datasets of skewed
distribution BONL outperforms EONL. We attribute the
difference in efficiency of the two approaches with the two
types of datasets to the fact that with skewed/clustered datasets,
there is less overlapping between locality bounds of the objects;
hence, less need for expansion at the second step. In real-world,
skewed and uniform distribution of the object-datasets
correspond to, for example, typical distribution of
people/customers in urban and rural areas, respectively.
Therefore, EONL and BONL have their own exclusive use-
cases in real-world applications and are complementary.

The key contributions of this paper can be summarized as
follows:

1. We define and formalize the optimal network location
query problem.

2. We introduce two complementary approaches for
efficient computation of optimal network location
queries.

3. We experimentally compare our proposed approaches
and discuss their use-cases with different real-world
applications.

The remainder of this paper is organized as follows. Section 2
formally defines optimal network location queries in spatial
network databases. Sections 3 and 4 introduce our proposed
expansion-based and bound-based solutions for optimal
network location queries, respectively. In Section 5, we present
complexity analysis of our proposed approaches. In Section 6,
we evaluate our proposed solutions via experiments with real
data. Section 7 reviews the related work, and finally Section 8
concludes the paper and discusses directions for future
research.

2. PROBLEM FORMALIZATION
In this section, we formalize the problem of optimal network
location as a Maximum Overlap Segment (MaxOSN) problem.
Assume we have a set S of sites (e.g. public schools, libraries,
restaurants) in a 2D environment. Also we have a set O of
objects with a weight w(o) for each object o. For instance,
object o might be a residential building/property where w(o)
represents the number of people living in this building. A
MaxOSN query returns a subset of the spatial network (i.e., a
segment or collection of segments) where introducing a new
site would maximize the total weight of the objects that are
closer to the new site than to any other site. We assume both
sites and objects are located on a spatial network, e.g., a road
network. We model the road network as a graph G (N, E),
where N is the set of intersections/nodes and E is the set of
edges of the road network. Each edge e(n1 , n2) has a travel cost.
In this paper, we assume the cost of each edge e is proportional
to the distance between the two end points n1 and n2 of e.
Accordingly, the network distance dN(n1,n2) between any two
nodes n1 and n2, is the travel cost of the path with least cost
from n1 to n2. Fig. 2 shows a road network with 14 nodes and
weighted edges, four objects o1, o2, o3, and o4 with weights 3,
6, 5, and 4, respectively, and three sites s1, s2, and s3.

Fig. 2. Road network model

Below, we first define our terminology. Thereafter, we describe
the MaxOSN query problem.

DEFINITION 1 (LOCAL NETWORK). Given an object o, the
local network LN(o) of o, is a sub-network expanded at object o
that contains all points on the road network with a network

distance less than or equal to the network distance between o
and its nearest site s.

In Fig. 3, site s1 is the nearest site to the object o1 where
dN(o1,s1)=5. LN(o1) is identified by expansion, i.e., starting
from o1 we traverse all possible paths up to the network
distance equal to 5, and we delimit LN(o1) by marking the
ending points (shown as arrows in Fig. 3). We term this
delimitation process edge marking. The expanded network
(shown as bold lines in Fig. 3) consists of a set of local edges
connecting the associated object to all marked ending points. It
is important to note that local edges can fully or partially cover
an actual edge of the road network. Each local edge e is also
assigned an influence value, denoted by I(e), which is equal to
the weight of the corresponding object. For instance, all local
edges in LN(o1) have an influence value equal to 3 (i.e., the
weight of object o1).

Fig. 3. Local networks

DEFINITION 2 (OVERLAPPING LOCAL NETWORKS). A
local network LN(o1) overlaps a local network LN(o2) if there
exists a local edge e1 in LN(o1) which intersects a local edge e2
in LN(o2).

For instance, in Fig. 3 LN(o1) overlaps with LN(o2) since the
local edge o1n2 in LN(o1) overlaps with the local edge o2n3 in
LN(o2).

DEFINITION 3 (OVERLAP SEGMENT). Given two
overlapping local networks, an overlap segment s is a network
segment where the overlapping edges of the two local networks
intersect. The influence value of segment s is equal to I(e1)
+I(e2), where e1 and e2 are the overlapping local edges from
the two local networks.
For example, the overlap segment jn2 is identified by
overlapping the local edges o1n2 and o2n3 in Fig. 3. The
definition of the overlap segment can be generalized for more
than two local edges: Given multiple local networks and
multiple marked end points on each edge, the overlap segment
on the edge can be identified by considering the direction and
length of the overlapping local edges (in Section 3, we will
discuss this process, called edge collapsing, in detail). For
instance, Fig. 4 shows the overlap segment jk identified by
overlapping local edges ak, ai, bl and bj.

Fig. 4. Overlap segment of multiple local networks

DEFINITION 4 (MAXIMUM OVERLAP SEGMENT QUERY
(MaxOSN)). Given a set O of objects, a set S of sites, the
MaxOSN query returns one or more overlap segment(s) which
have the maximum influence value (I0) among all overlap
segments.
For instance, in the road network illustrated in Fig. 3 the
MaxOSN query returns the set of overlap segments {o3S2,
o3n5}, where each segment has an optimal influence value I0
=11.

LEMMA 1. The MaxOSN query computes an optimal network
location where introducing a new site would maximize the total
weight of objects that are closer to the new site than to any
other site. In other words, the MaxOSN query is equivalent to
the definition of ONL query.

PROOF. The proof is obvious. □

3. Expansion-Based Optimal Network
Location (EONL)
As we mentioned in Section 1, answering an ONL query is a
two-phase process. At the first phase, one needs to build the
local networks of all objects, whereas at the second phase local
networks of the objects are overlapped in order to identify the
overlap segment(s) with maximum influence value (i.e., the
optimal location/segment). With EONL, we focus on reducing
the computational complexity of the second phase.

In particular, at the first phase EONL simply uses network
expansion to build the local networks. At the second phase,
assuming we have n objects (and therefore, n local networks),
one should compute the overlap between 2n combinations of
local networks. In this case, if (for example) one of the network
range-query processing techniques proposed by Papadias et al.
[10] is used for overlap computation, the total computational
complexity would be in the order of O (2|O| (|N| log |N| + |E|)).
Obviously, this approach is not scalable. Instead, with EONL
we identify the potential optimal segments while expanding
local networks at the first phase, and leverage this information
at the second phase to efficiently compute the segment(s) with
maximum influence value. To be specific, while expanding the
local networks at the first phase, for each edge we record all
ending points (i.e., the points that mark the border of the local
networks of the objects) that lie over the edge. Subsequently, at
the second phase we use the information recorded at the first
phase to compute a score for each edge, which is equal to the
total weight of the objects whose local networks end on the
edge. One should observe that a higher score for an edge
indicates higher potential of containing an optimal segment.
Next, through a refinement process we sort the edges based on
their scores in descending order, and starting from the edge
with higher score, we use a technique, termed edge collapsing,
to compute the actual overlap segment(s) on each edge. It is
important to note that through this refinement process we only
have to compute the actual overlap segment(s) for an edge if
the score of the edge is more than the influence value of the
actual segments computed so far. With our experiments, we
observe that EONL only computes the actual overlap segments
for a limited subset of the network edges before it identifies the

optimal location/segment; hence, effective pruning of the search
space for better efficiency.

Below, we explain how we implement EONL in more detail;
we begin by introducing our edge collapsing technique. Table 1
represents four possible cases by which two local edges e1 and
e2 might overlap each other. The dashed lines represent local
edges e1 and e2, the solid line represents the actual edge ab of
the road network, and m1 and m2 are the end points of e1 and e2.
The third column summarizes how the edge collapsing
technique computes the overlap segment (S0) with the
maximum influence value (I0) in each case. Next, we describe
the implementation of EONL as a four-step algorithm (see
Algorithm 1):

Table 1. Edge collapsing technique

Case Overlapping Local Edges Overlap Segment

1

S0 = m1m2

I0 = I(e1) + I(e2)

2

S0 = ab

I0 = I(e1) + I(e2)

3

If (I(e1) > I(e2))

 S0 =a m1 ; I0 = I(e1)

Else

 S0 =b m2 ; I0 = I(e2)

4

S0 = m2m1

I0 = I(e1) + I(e2)

Step 1 (Expanding local networks) (lines 1-6): For each object
point o, we first expand the local network of object o, LN(o),
using the Dijkstra algorithm. Then, we mark the ending points
of the local networks on the edges. Table 2 shows sample
subsets of the marked edges of Fig. 2. Each row of the Marked
Edge Table (MET) is an entry in the form of (e, M, w(e)) where
M is the set of ending points marked on edge e and w(e) is
equal to the sum of influence values of the end points (i.e., the
corresponding local edges).The MET table helps us to identify
the overlapping segments with the maximum influence value.

Table 2. Marked Edge Table (MET)

E M w(e)

Kp {n1} 3

Ji {n2} 3

Ih {n5} 5

Hg {S2,S2} 11

Step 2 (Sorting MET Table) (lines 7-9): We sort all entries in
the MET table in descending order of w(e) because of our
observation that the optimal solution is mostly derived from the
entries with larger w(e) values. Then, we apply the edge

collapsing technique to the first entry of MET and initialize the
S0 and I0 values.

Step 3 (Identifying overlap segments) (lines 10-19): From the
set of marked edges in MET table, we identify the overlap
segments using the edge collapsing technique. We could apply
the edge collapsing technique to all marked edges; however, we
do not need to apply this approach for some marked edges if
there is another marked edge whose influence value has a
greater value than I0. Thus, we can prune some marked edges
using an edge pruning technique based on the following
lemma.

LEMMA 2 (EDGE PRUNING). Let Io be the optimal influence
value. An optimal network location is a collection of overlap
segments that does not involve any marked edge e where w(e)<
Io.

PROOF. We prove by contradiction. Assume the optimal
solution involves a marked edge e where w(e)< Io. This fact
contradicts the definition of the optimal solution which ensures
that I0 has always the maximum influence value. □

Based on Lemma 2, we can prune any marked edge with w(e)<
Io .

Step 4 (Finding the maximum influence value): When the
algorithm terminates, S0 returns the set of optimal overlap
segment(s) and I0, the optimal influence value.

Algorithm 1 EONL Algorithm
 1: For each o  O

 2: Expand the local network of object o

 3: Mark ending points on edges

 4: For each marked edge e  E

 5: M= Set of ending points marked on e

 6: w(e)= Sum (w(m)| m M)

 7: Sort MET table based on w(e)

 8: Apply edge collapsing to the first entry of MET (e1)

 8: So ={ g1 | maximum overlap segment on e1 }

 9: Io = w(g1)

10: For each marked edge e  E

11: If w(e)  Io

12: Apply edge collapsing to edge e

13: g = maximum overlap segment on e

14: Update w(e) : w(e)= w(g)
15: If w(e) > Io

16: Io = w(e)

17: So = {g}

18: If w(e) = Io

19: So = So  {g}

Here, we illustrate application of the EONL algorithm using the
example depicted in Fig. 2. Assume we have performed the
local network expansion for four objects o1, …, o4 and all
ending points are marked on edges as shown using arrows in

Fig. 3. We construct the MET table and sort its entries based
on their w(e) values. The first edge in MET table is hg. By
applying the edge collapsing technique to hg we initialize the
optimal solution set S0 to {o3s2} and the optimal influence value
I0 to 11. Then, we perform the iterative steps on each marked
edge. Among 14 marked edges from the road network shown in
Fig. 2, only the marked edge ih satisfies the condition w(e) 
I0. Thus, we only apply the edge collapsing technique to it. By
applying edge collapsing on ih, the overlapping segment o3n5 is
derived which leaves I0 unchanged and S0= {o3n5} {o3s2}. At
this point the algorithm terminates since all marked edges
eligible for edge collapsing have been processed. Therefore, the
optimal network queries on the dataset shown in Fig. 3 returns
overlapped segments {o3n5, o3s2} with an optimal influence
value of 11.

4. Bound-Based Optimal Network Location
(BONL)
Similar to EONL, our bound-based optimal network location
(BONL), is implemented as a two-phase process. However,
with BONL we avoid the computational complexity of network
expansion at the first phase by approximating the local
networks with their corresponding spatial bounds. In particular,
we define a (circular) spatial bound around each object o such
that it is guaranteed to contain the local network of the object.
For example, given an object point o and its nearest site s in
the spatial network, one can use the Euclidean Restriction
property [10] to define such a circular bound with radius equal
to or greater than dN(o,s), which guarantees containment of the
local network of o. Fig. 5 shows the local bounds of four
objects o1, o2, o3, and o4 as well as their corresponding local
networks. The weight of local bound lb for an object, denoted
by w(lb), is defined to be equal to the weight of the
corresponding object.

In order to form the local bound for an object using the
Euclidean Restriction property, BONL must compute the (exact
or approximate) distance between the object and its
corresponding nearest site in the spatial network. Toward that
end, we propose two variations of BONL. With BONL-U (i.e.,
BONL with upper bound), we approximate the local bound of
an object by an upper bound which is derived using two
different landmark selection techniques. On the other hand,
with BONL-M (i.e., BONL with minimum bound), we
introduce an efficient approach to compute the exact distance
between an object and its nearest site. While BONL-M always
provides a more accurate approximation of the local networks,
with our study we also considered BONL-U as an option with
potentially more efficient bound computation. We explain our
bound computation approaches with BONL-U and BONL-M in
Sections 4.1 and 4.2, respectively.

Here, assuming that local bounds (either upper bound with
BONL-U or exact/minimum bound with BONL-M) are
computed at the first phase of BONL, we explain the second
phase of ONL query answering with BONL. At the second
phase, we need to overlap the computed spatial bounds and
prioritize the investigation of those overlapping areas that have
a higher potential of covering the optimal segments (similar to

the concept of MET table and edge collapsing technique with
EONL). It is important to mention that overlapping spatial
bounds helps us predict those areas that might cover the
optimal segments. However, to identify the exact optimal
overlap segments we need to expand the local networks of
spatial bounds and retrieve the optimal overlap segments using
edge collapsing technique. Below we explain our
implementation of BONL in more detail.

Fig. 5. Local bounds

With BONL, once local bounds of the objects are identified, for
each local bound lb we find a list of other local bounds that
overlap with lb and we call this list the overlapping list OL(lb)
of lb. Lemma 3 defines the condition to identify overlapping
bounds:

LEMMA 3. Local bound lb1 with radius r1 overlaps local
bound lb2 with radius r2 if and only if | r1|+| r2|  |o1o2|.

PROOF. It is easy to verify that the above condition covers all
the possible overlapping relationships between local bounds.□

Once the overlapping list for each local bound is generated, we
construct a Pair-wise Overlapping Table (POT), where each
row is an entry in the form (lb, OL(lb)). We call OL (lb) simply
OL. The entries of POT are sorted in descending order of
w(OL), where w(OL)=  OLlb

lbw)(. Table 3 shows the POT

constructed for the example depicted in Fig. 5.

Table 3. Pair-wise Overlapping Table (POT)

Lb OL(lb)

lb1 Lb2, lb3, lb4

lb3 lb1, lb2

lb2 lb1, lb3

lb4 lb1

Finally, starting from the first entry, BONL processes each
entry of POT to find the optimal segments as follows:

Step 1 (Expanding local networks): For each entry (lb,OL) in
the POT table, we pick the OL list and expand the
corresponding local networks as well as the local network of lb
using the Dijkstra algorithm, while marking all ending points
on each edge of the network.

Step 2 (Identifying overlap segments): For each entry, we
identify the overlap segments for the overlapping local
networks derived from the previous step using the edge
collapsing technique described in Section 3.

Step 3 (Finding the maximum influence value): Among all
identified overlap segments, we pick the one with the
maximum I0 value as the optimal solution.

It is important to note that we do not need to expand the local
networks of some entries if there is another entry in the POT
table whose actual influence value has a greater value. This
means we can prune some entries from the POT table where
w(OL) + w(lb)> Io and Io is the current optimal influence in the
current iteration.

4.1 Bound Based Optimal Location with
Upper Bound (BONL-U)
With BONL-U, the upper bound value of the network distances
between each object point and its nearest site is computed
based on landmarks, and the Dijkstra algorithm [4]. This
approach is inspired by the ALT algorithm of Goldberg et al.
[6]. However, the lower bound of the shortest path distances in
ALT is computed based on an A* search, landmarks and
triangle inequality. Our upper bound value computation
approach entails carefully choosing a small (constant) number
of landmarks, then computing shortest path distances between
all nodes of the spatial network and from/to each of these
landmarks using the Dijkstra algorithm. Then, upper bounds
are computed in constant time using these distances.

Calculating “From” and “To” distances: Since each edge of
our experimental road network (LA County road network) is
directional, we calculate the shortest path distances between all
nodes of the road graph both “From” and “To” all Landmarks
points using the Dijkstra algorithm (Fig. 6).

Fig. 6. Distance from

and to landmarks

Fig. 7. Upper bound value

calculation

Calculating Upper Bound Value: Fig. 7 illustrates how we
compute the upper bound value of the network distance
dN(o,s), UdN(o,s). The UdN(o,s) is calculated from the network
distance o and landmark L, dN(o,L), and the network distance
dN(L,s) as UdN(o,s) = dN(o,L) + dN(L,s)  dN(o,s).

For calculating the upper bound value of object point o and its
nearest site s, first we calculate the shortest path distance value
between object o and all site points traversing all possible
landmark points. Then, from all computed upper bound values
we pick the one with the minimum value as the UdN(o,s).

Landmark Selection: Finding good landmarks is critical for the
overall performance of upper bound value computation. The
optimal approach is the one which contributes to the
computation of an upper bound value very close to the actual

value of the network distance. In the following we discuss two
alternate techniques used for landmark selection: uniform and
variable grid-based landmark selection. In both techniques we
guarantee two landmarks are spatially located farther than a
specific range from each other.

In the uniform landmark selection approach, we randomly
select a constant number of landmarks in a series of grid cells
spanning the Los Angeles (LA) County road network. With the
variable approach, we select more landmarks in regions with
more site points. For this purpose, we count the number of sites
which falls within each cell, denoted by Tc. Then, we assign k *
Tc / |S| landmarks to this particular grid cell where k is the total
number of landmarks, and |S| is the total number of site points
in the entire dataset. The grid cells measured 10 km on a side,
given that larger cells gave a result similar to the uniform
selection strategy and grid sizes smaller than 10 km generate
numerous grid cells with no assigned landmarks. Our
experimental results (see section 6) show that the uniform
landmark selection outperforms the grid-based landmark
selection in terms of computation cost.

Our experimental results showed that the BONL-U algorithm
has low performance due to the cost of the upper bound value
computation for network distances using landmark selection.
The drawback of using landmark selection is that the radius of
local bounds (UdN(o,s)) is always larger than the actual one.
This fact produces large numbers of overlapping local bounds
and local networks which leads to relatively high computation
cost when using the BONL algorithm.

In the next section, we introduce the Bound Based Optimal
Location Queries with Minimum Bound (BONL-M) in which
we improve the local bounds by computing the actual network
distance between objects and their nearest sites.

4.2 Bound Based Optimal Location with
Minimum Bound (BONL-M)
With BONL-M, we compute the actual network distance value
between each object point and its nearest site, dN(o,s), using
the following three-step approach:

Step 1 (Reversing the road network graph): We first reverse the
road network graph.

Step 2 (Calculating the network distance of each node to its
nearest site): We then calculate the shortest distance between
each node and its nearest site using the Dijkstra Algorithm.
Toward this end, we run the Dijkstra algorithm from each site
point s, and traverse all nodes of the graphs. By traversing each
node n, we store a value called gn, which represents the
shortest path distance value between site s and node n. Each
time we pick a new site s, we check the gn value while
traversing the nodes and if the current gn value is greater than
the shortest distance value between node n and site s, we
update the gn value and set it to the shortest distance value
between n and s. After processing all site points, the gn values
stored with the nodes represent the shortest path distances
between the nodes and the nearest sites.

Step 3 (Computing the network distance of each object to its
nearest site): We calculate the network distance of each object
to its nearest site using the gn values computed with the
previous step.

This three-step approach calculate the actual network distance
value, dN(o,s) and these values are used in place of the upper
bound values used in BONL-U. Our experiments demonstrate
that the BONL-M approach reduced the radius of the local
bounds and improved the performance of the BONL-M
algorithm compared to the BONL-U approach.

5. COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of our
proposed approaches.

BONL-U: Below, we discuss the computational complexity of
various tasks with BONL-U:

Landmark Selection: The running time of landmark selection
step takes O (k2 |N|) (Recall k is the number of selected
landmark points).
Calculating “From” and “To” Distances: Given k landmark
points, computing “From” and “To” distances takes O (k (|N|
log |N| +|E|)) and O (|N| (|N| log |N| +|E|)), respectively. In
total, the running time of upper bound value computation
would be O (|N| (|N| log |N| + |E|)) which is extremely high in
very large road networks. To improve the running time of this
step we reverse the road graph (O (|E|)) and calculate the
distances ”From” landmarks to nodes. This technique improves
the running time to O (k (|N| log |N| + |E|)).
Calculating Upper Bound Value: This step takes O (k |O| |S|)
and the total running time for computing Ud(N,S) is O (k2 |N|) +
O (k (|N| log |N| + |E|)) + O (k |O| |S|).
Forming Local Bounds: This step takes O (1) time.
Constructing the POT Table: This step takes O (|O|) time since
there are |O| local bounds.
Sorting the POT Table: Sorting takes O (|O| log |O|) running
time.
Expanding the Local Networks: Since the maximum number of
overlapping local bounds can theoretically be equal to |O|, the
running time for expanding the local networks takes O (|O| (|N|
log |N|) + |E|)). Then, we mark all ending points on edges
which requires O (|E|)) time. Note that the edge marking step
cannot be performed at the same time as expanding the Dijkstra
algorithm in step 1. Because Dijkstra’s algorithm assumes that
the objects and sites fall on network nodes while in our
scenario ending points may fall on edges.
Identifying Overlap Segments with the Maximum Influence
Values: The edge collapsing technique takes O (|E| O|2) time.
Thus, considering |O| entries in POT table, edge collapsing step
has a complexity equal to O (|E| |O|3).
Finding the Maximum Influence Value: This task takes O (1)
time.
The overall running time of BONL-U is O (k2 |N|) + O (k(|N|
log |N| + |E|)) + O(k |O| |S|) + O(|O|) + O(|O| log |O|) + O(|O|2
(|N| log |N| + |E| + |O| |E|)).

BONL-M: The complexity of BONL-M is similar to BONL-U
but for the computation of the actual network distance values
which requires the following steps:

Reversing the Road Network Graph: This step can be done in O
(|E|) time.
Calculating the Network Distance of Each Node to Its Nearest
Site: The running time of this step is O (|S| (|N| log |N| + |E|)).
Computing the Network Distance of Each Object to Its Nearest
Site: This step can be done in O (|O|).
The overall running time of BONL-M is O (|E|) + O (|S| (|N|
log |N| + |E|)) + O(|O|) + O(|O| log |O|) + O(|O|2 (|N| log |N| +
|E| + |O| |E|)).

EONL: In this case, we reduce the running time of optimal
network location query by eliminating the cost of upper
bound/minimum upper bound value computation. The cost of
constructing the MET table is O (|E|) and sorting the table O
(|E| log |E|). The overall running time is O (|E| log |E|) + O (|O|
(|N| log |N| +|E|)) +O (|E| |O|2) because edge collapsing is
performed only once for each edge. Thus, the complexity of this
technique improves to O (|E| |O|2) in EONL. However, in
BONL-U and BONL-M we needed to apply edge collapsing for
each entry of POT table.

6. EXPERIMENTAL EVALUATION
We next describe the experimental setup we used for the
experiments and then present and discuss the experimental
results.

6.1 Experimental Setup
All experiments are performed on an Intel Core Duo 3GHz, 4
GB of Ram, running Windows 7 and the .NET platform 3.5.
The algorithms are implemented in Microsoft C#. We use a
spatial network of |N| = 375691 nodes and |E| = 871715
bidirectional edges, representing the LA County road network.
The spatial network covers 130 km * 130 km and is cleaned to
form a connected graph. We use real dataset for objects and
sites. Objects are population data derived from LANDSCAN
population data compiled on a 30" x 30" latitude/longitude
grid. The centroid of each grid cell is treated as the location of
each object and the population within each grid cell as the
weight of object. In total we have |O|= 9662 objects. The
weights of objects are distributed nearly uniformly with an
average of 1100. For each experiment, we use a subset of
object points selected from this base dataset that we will
describe them in each part of experiments. We also deployed
five datasets consisting of Johnny Rockets restaurants,
McDonald’s restaurants, hospitals, schools, and all fast food
restaurants in LA County (including McDonald’s and Johnny
Rockets) for the sites. The cardinality of each site dataset is
shown in Table 4. All sites, objects, nodes and edges are stored
in memory-resident data structures.

Table 4. Five real datasets for sites

Datasets Cardinality

Johnny Rockets 28

McDonald’s 328

Hospitals 308

Schools 2621

Fast Foods 19160

6.2 Experimental Results
Below we present the results of the four series of experiments
that we ran on the aforementioned datasets.

Accuracy: We first verified that the optimal location query in
L1 and L2/Euclidean space is not applicable to spatial networks.
For this test, we selected four datasets with 20, 40, 60, and 85
object points that were randomly selected from the population
data (DS1-DS4). All four sets of object points were located on
LA county road network. For site points, we selected a subset
of McDonald’s including seven sites. We applied the L2 [13]
and L1 [5] distance approaches and identified the optimal
location in each case. Then, we performed the EONL
algorithms on each dataset and retrieved their corresponding
optimal network location. The result of this experiment showed
that in 75% of cases (we call it set A) the optimal locations
derived by the L1/L2 approach did not overlap the optimal
network location derived by EONL and when they did overlap,
there was < 20% common coverage. Fig. 8 shows one of the
non-overlapping cases of set A (the circles represent objects
and triangles represents sites). From cases included in set A,
the average distance between the optimal network location and
the optimal location derived from the L1 and L2 approaches
(<N, L1>, <N, L2 >) are similar to the size of the entire area
covered by these datasets (see Table 5) and verifies that using
the existing L1 and L2 approaches for optimal location queries
on spatial network databases is not accurate and likely to return
irrelevant results.

Figure 8. Non-overlapping case

We also observed that the maximum influence value returned
by the optimal network location query is 13% and 12% higher
than those returned by the optimal location queries in the L1
and L2 approaches, respectively and would therefore identify
larger numbers of customers for those interested in running
these kinds of queries.

Table 5. Average distance of optimal network location and
optimal location derived by L1 and L2 approaches

 (size of the entire area is 6.2 km x 9 km)
Dataset <N, L1> (meters) <N, L2 > (meters)

DS1 Overlaps (< 20% coverage)

DS2 4998 5305

DS3 4995 2743

DS4 6663 6396
Average 5552 4814

Execution Time: In order to evaluate the execution times of
our proposed approaches, we implemented two experiments.
With the first one, we considered a fixed site-dataset and used
various object-datasets with different sizes and spatial
distributions. With the second experiment, we fixed the object-
dataset and used various site-dataset. Below, we describe each
experiment in more detail.

Effect of Object-Dataset: For this experiment, we sub-sampled
four subsets of objects from the base dataset with sizes 366
(C1), 567 (C2), 1049 (C3) and 1533 (C4). We sub-sampled the
objects with two different spatial distributions: uniform and
skewed. To select each object, we randomly picked both X and
Y dimensions of the grid cell corresponding to the object using
a uniform or skewed distribution. As for the fixed site dataset,
we picked the set of Johnny Rockets restaurants which has a
small number of site data points comparing to other site
datasets in Table 4. Thereafter, we applied BONL-M and
EONL approach to the aforementioned datasets and computed
the execution times (as we show later, BONL-M outperforms
BONL-U, hence excluded from this experiment). Fig. 9 depicts
the results of our experiment. We observe that when the size of
the object-dataset is small (C1) and its distribution is skewed,
the execution time of BONL-M is higher than EONL. This is
because the cost of computing the radius of the local bounds (O
(|E|) + O (|S| (|N| log |N| + |E|)) is comparable to the cost of
expansion of local networks (O (|O| (|N| log |N| +|E|))) when
the number of object points (|O|) is low. However, with the
larger object-datasets (C2 to C4), the performance of BONL-M
increasingly improves as compared to EONL, because with a
skewed object distribution, the number of overlapping local
bounds is significantly reduced. Therefore, the cost of overlap
computation with BONL-M becomes less than the cost of local
network expansion with EONL.

On the other hand, with uniformly distributed object points, the
EONL outperforms BONL-M with all object-datasets (Fig. 10).
This is because with uniform distribution of object points, the
number of overlapping local bounds is always high which
results in higher cost of identifying overlap segments as
compared to the cost of local network expansion.

0
1
2
3
4
5
6

C1 C2 C3 C4

Object datasets with skewed distribution

Execution Time (min)

BONL-M

EONL

Fig 9. Execution times of the algorithms with fixed site

dataset and skewed distributed objects

0

2

4

6

8

10

C1 C2 C3 C4
Object datasets with uniform distribution

Execution Time (min)

BONL-M

EONL

Fig 10. Execution times of the algorithms with fixed site

dataset and uniformly distributed objects

Effect of Site-Dataset: For this experiment, we applied all three
algorithms to the four sites datasets of Table 4 and we selected
the uniformly distributed population data as the fixed object
dataset (including all 9662 points). Thereafter, we computed
the execution times to compare their performance. Fig. 11
shows that EONL has the highest performance, beating BONL-
M and BONL-U by factors of 6 and 12 on average, respectively.

0

5

10

15

20

25

BONL-U BONL-M EONL

Execution Time (min)

McDonald's Hospitals Schools Fast Foods

Fig. 11. Execution times of the algorithms with uniformly
distributed objects

The three algorithms behaved similarly with the small
McDonald’s, Hospitals, and Schools datasets. The Hospitals
sites were more skewed and this variability meant that the
expansion and edge marking took longer in those parts of the
graph with few hospitals (see Fig. 11). The most important
result was the significant improvement in the execution time of
EONL for the Fast Foods restaurants (despite their uniform
distribution) because the complexity of EONL is O (|E| log |E|)
+ O (|O| (|N| log |N| +|E|)) +O (|E| |O|2) which is not
proportional to the number of site points, |S|.

Tightness of Local Bounds: The radius of the local bounds
was improved an average of 53% by using BONL-M in place of

the BONL-U algorithm. Fig. 12 shows how the radius of local
bounds was reduced by using the BONL-M algorithm in place
of BONL-U for each of the aforementioned datasets.
Furthermore, we observed that the Hospital dataset has the
highest average of local bound radius in both algorithms. With
a non-uniform and more skewed site distribution, expansion of
the local network traverses a longer path until it hits the nearest
site. This fact results in producing larger local bounds
comparing to other datasets.

0

5000

10000

15000

20000

25000

McDonald's Schools Hospitals FastFoods

Average of local bounds radius (meters)

BONL-U
BONL-M

Fig. 12. Average size of local bounds

Landmark Selection: For this experiment, we selected 100
landmarks and applied the BONL-U algorithm to four datasets.
The results in Table 6 show that the grid-based approach took
more time for three of the four datasets and especially the
McDonald’s and Hospitals datasets which are sparser. This is
because the grid-based approach assigns more landmark points
to the areas with more site points; hence, it takes more time for
Dijkstra expansion in the areas with lower site density.

Table 6. Comparing the execution time of BONL-U with the
two landmark selection techniques

 McDonald’s Hospitals Schools Fast Foods

BONL-U

 Uniform 10 min 21.5 min 10.5 min 22 min
BONL-U

Grid-based > 1hr > 1hr 10.5 min 31 min

7. RELATED WORK
Optimal location queries have been studied by researchers in
operations research (OR) and database systems. In OR, most
optimal location problems (also called facility location
problems) are formulated as covering problems. These involve
locating n sites to cover all or most of the (so-called) demand
objects assuming a fixed service distance for sites. Covering
problems are generally classified into two main classes. The
first is the Location Set Covering Problems (LCSPs) [12] that
seek to position a minimum number of sites in such a way that
each and every demand object has at least one site placed
within some threshold distance. The second class is the
Maximal Covering Location Problems (MCLPs) [3] which seek
to establish a set of m sites to maximize the total weight of the
“covered” objects, where an object is considered covered if it is
located within a specified distance from the closest facility.
Many other problems in this class extend the original MCLP by
imposing various placement restrictions for sites [8, 2],

assuming various types of objects (points, lines and polygons)
[9], and considering various definitions for coverage [1].

While OR-based solutions are effective and address various
types of optimal location problems, many of these solutions fail
to scale with real datasets that consist of large numbers of sites
and objects due to their computational complexity. Accordingly,
a number of complementary solutions are proposed by the
database community for scalable optimal location query
answering.

One is the Bichromatic Reverse Nearest Neighbor (BRNN)
query [7, 15, 11] studied by the database community. With the
BRNN query, all objects o  O whose nearest neighbor site is s
are returned. The optimal location query can be formulated as a
BRNN maximization problem, with which we try to locate a
new site s such that the size of the BRNN set of s is
maximized; hence, BRNN and optimal location are orthogonal
problems. Another relevant problem involves finding the top-k
most influential sites [14]. Here, the influence of a site s is
defined as the total weight of the objects in a BRNN set of s.
With this problem, a set of existing sites are assumed among
which we want to find the most influential sites, whereas with
the optimal location problem, the goal is to locate a new site
with maximum influence.

Wong et al. [13] and Du et al [5] tackle the optimal location
problem. Both approaches form a spatial bound around each
object o such that it includes a location l if and only if o is
closer to l than to any other site. The intersection areas where
these bounds overlap are the best candidate locations to
introduce a new site. Therefore, to compute the optimal
location query one can start with the areas with the maximum
number of overlapping bounds and avoid other areas to reduce
the search space and improve the query efficiency. While
efficient, both of the aforementioned approaches assume p-
norm space (namely, [13] assumes L2 and [5] assumes L1),
which as shown in Fig. 1 cannot support optimal location
queries on spatial networks. Our proposed solutions utilized
network distance to address optimal network location queries.

8. CONCLUSION AND FUTURE
DIRECTIONS
In this study, for the first time we introduced the problem of
optimal location for objects and sites located on spatial
networks. Accordingly, we proposed EONL and BONL as two
complementary approaches for efficient computation of optimal
network location queries with datasets of different spatial
distributions. In particular, we showed that avoiding network
expansion with BONL is more effective when the given object-
dataset has a skewed spatial distribution, whereas EONL
outperforms BONL with uniformly distributed objects. We
verified and compared the performance of our proposed
solutions with rigorous complexity analysis as well as extensive
experimental evaluation with real data.

We intend to extend this study in two ways. First, with the
optimal network location problem, alike all previous work we
assumed a site covers an object if and only if the site is the
closest site to the object. We plan to study optimal network

location queries under a more generalized definition of
coverage where a site covers an object based on a combination
of mutual relationships (not only proximity), such as
accordance of site properties (e.g., hotel amenities) with the
requirements of an object (e.g., the interests of potential
travelers). Second, we want to study a more complex optimal
location problem setting where the sets of sites and/or objects
might be located both on and off spatial networks. With this
problem, we will investigate and develop hybrid solutions.

9. REFERENCES
[1] Berman, O., and Krass, D. 2002. The Generalized

Maximal Covering Location Problems. Computers and
Operations Research, 29, 6, 2002, 563-581.

[2] Church, R. L. 1984. The Planar Maximal Covering
Location Problem. Journal of Regional Science, 24, 1984,
185-201.

[3] Church, R. L., and Revelle, C. 1974. The Maximal
Covering Location Problem. Papers of the Regional
Science Association, 32, 1974, 101-118.

[4] Dijkstra, E. W. A Note on Two Problems in Connection
with Graphs. Numeriche Mathematik, 1, 1, 269-271.

[5] Du, Y., Zhang, D., and Xia, T.2005. The Optimal-
Location Query. SSTD 2005, 163-180.

[6] Goldberg, A. V., and Harrelson, C. 2005. Computing the
Shortest Path: A* Search Meets Graph Theory. ACM-
SIAM 2005, 156-165.

[7] Korn, F., and Muthukrishnan, S. 2000. Influence Sets
Based on Reverse Nearest Neighbor Queries. SIGMOD
2000, 29, 2, 201-212.

[8] Mehrez, A., and Stulman, A. 1982. The Maximal
Covering Location Problem with Facility Placement on the
Entire Plane. Journal of Regional Science, 22, 1982, 361-
365.

[9] Murray, A.T., and Tong, D. 2007. Coverage Optimization
in Continuous Space Facility Siting. International Journal
of Geographical Information Science, 21, 7, 2007, 757-
776.

[10] Papadias D., Zhang, J., Mamoulis N., and Tao, Y. 2003.
Query Processing in Spatial Network Databases. VLDB
2003, 802-813.

[11] Stanoi, I., Riedwald, M., and El Abbadi, A. 2001.
Discovery of Influence Sets in Frequently Updated
Databases. VLDB 2001, 99-108.

[12] Toregas, C., Swain, R., Revelle, C., and Bergman, L.
1971. The Location of Emergency Service Facilities.
Operations Research, 19, 6, 1971, 1363-1373.

[13] Wong, R. C., Ozsu, M. T., Yu, P. S., Fu, A. W., and Liu,
L 2009. Efficient Method for Maximizing Bichromatic
Reverse Nearest Neighbor. VLDB 2009, 1126-1149.

[14] Xia, T., Zhang, D., Kanoulas, E., and Du, Y. 2005. On
Computing Top-t Most Influential Spatial Sites. VLDB
2005, 946-957.

[15] Yang, C., and Lin, K. I. 2001. An Index Structure for
Efficient Reverse Nearest Neighbor Queries. ICDE 2001,
51-60.

