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ABSTRACT
A spatiotemporal network is a spatial network (e.g., road network)
along with the corresponding time-dependent travel-time for each
segment of the network. Design and analysis of policies and plans
on spatiotemporal networks (e.g., for path planning with location-
based services) require realistic models that accurately represent
the temporal behavior of such networks. In this paper, for the first
time we propose a temporal modeling framework for spatiotempo-
ral networks that enables 1) generating an accurate temporal model
from real temporal data collected from any spatiotemporal network
(so as to be able to publish the temporal model of the spatiotem-
poral network without having to release the real data), and 2) aug-
menting any given spatial network model with a corresponding re-
alistic temporal model custom-built for the specific spatial network
(in order to be able to generate a spatiotemporal network model
from a solely spatial network model). We validate the accuracy of
our proposed modeling framework via experiments. We also use
the proposed framework to generate the temporal model of the Los
Angeles County freeway network and publish it for public use.

1. INTRODUCTION
The latest developments in online map services (e.g., Google

Maps) and their widespread usage in hand-held devices and car-
navigation systems have led to the recent prevalence of the location-
based services. Many of the location-based services rely on effi-
cient computation of the travel-time between a source and a des-
tination in a spatial network. While the majority of the previous
studies (e.g., [16, 10, 12, 3]) simplistically assume the travel-time
of each segment of the network is constant, in reality the actual
travel-time of a segment heavily depends on the traffic flow on the
segment; hence, a variable function of time. Recently, an increasing
number of new studies [8, 4, 5] consider travel-time computation
in spatiotemporal networks, i.e., spatial networks along with the
corresponding time-dependent travel-time for each segment of the
network. However, most of these studies resort to using simplistic
models and/or synthetic datasets to represent the temporal aspect of
the spatiotemporal networks, mainly because collecting and work-
ing with real temporal data from spatial networks is costly and dif-
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ficult, and the available temporal datasets are often proprietary and
cannot be released for public use. Obviously, inaccurate temporal
representation of spatiotemporal networks can seriously affect the
validity of the design and evaluation of any proposed path planning
techniques for such networks; hence, the need for realistic models
for traffic flows in spatiotemporal networks.

In this paper, we propose a framework for realistic and accurate
modeling of traffic flows in spatiotemporal networks. The benefit
of the proposed framework is twofold. First, anyone (e.g., govern-
mental agencies) in possession of a real temporal dataset collected
from a spatiotemporal network can use the proposed framework
to derive and generate a realistic temporal model for the corre-
sponding network, to be shared for public use (e.g., released to
researchers and policy planners) without infringing the laws of pos-
session and jeopardizing the privacy of the dataset. As an example,
we have used the proposed framework to generate and publish a
realistic model for traffic flows in all freeways of the Los Ange-
les County based on the real (and proprietary) data provided to us
by the county (see Section 4.1 for more details about this dataset)1.
Second, as we describe in Section 4 (since the traffic in Los Angeles
County is arguably typical and generic) one can use the proposed
framework to generate realistic temporal data specific to and cus-
tomized for any given spatial network; hence, augmenting the spa-
tial network model to the corresponding spatiotemporal network
model. In the second case, we use a semi-supervised hierarchial
clustering approach (based on the spatial characteristics of the net-
work) to generate the spatiotemporal model of the network. To the
best of our knowledge, our work is the first attempt in generating
realistic temporal models for spatiotemporal networks.

The remainder of this paper is organized as follows. In Section
2 we review the related work. In Section 3 we provide the pre-
liminary definitions, and subsequently in Section 4 we establish
the theoretical foundation of our proposed traffic flow modeling
framework and discuss the three-phase modeling process of this
framework. In Section 5, we present the results of our experiments
to verify and validate the accuracy of this framework. Finally, in
Section 6 we conclude and discuss our future work.

2. RELATED WORK
In [2], Brinkhoff et al. introduces a system called Network-based

Generator of Moving Objects that models and simulates the behav-
ior of the moving objects (e.g., vehicles) on spatial networks. This
system has been extensively used to benchmark k-nearest neighbor
and location based search algorithms in spatial networks. While
the focus of this system is the moving objects and their mobility
in spatial networks, we primarily study to model the traffic flow of

1http://geodb.usc.edu:8080/transdec/model.html



the network segments. In addition, this work relies on some sim-
plistic assumptions about the network parameters such as minimum
and maximum speed assignment for the segments, and number of
moving objects in the system.

The freeway Performance Evaluation Monitoring System (PeMS)
[13] developed by UC Berkeley collects and stores data from loop
detectors operated by Caltrans. The main goal of PeMS is to con-
vert the freeway sensor data into graphs and tables that show per-
formance measures and traffic patterns on freeways in the State of
California. The scope of PeMS is limited to collection and analysis
of the historical freeway sensor data. However, our goal is to model
the traffic flow for any given spatial network (even without sensor
data) as described in Section 4.

Most of the traffic simulators developed in the recent decade use
microscopic simulation models (aka, agent-based models) [14, 6]
to simulate the traffic flow in spatial networks. The microscopic
simulation models focus on the behavior of the system entities (e.g.,
vehicles and drivers) as well as their interactions with the system
parameters (e.g., traffic lights). For instance, for each vehicle in the
stream, a lane-change is described as a detailed chain of drivers’
decisions. These simulation models, however, ignore the global
descriptions of the traffic flows such as flow-rate, density and ve-
locity and often are restricted to synthetic or simplified data.

There also exist several machine learning techniques developed
for the purpose of traffic modeling. In [7], Kamarianakis et al.
proposed a space-time autoregressive integrated moving average
model to estimate the traffic flows on spatial networks. In [9],
Lint et al. introduced a neural network based technique to model
the traffic flow on freeways. However, all of these approaches are
univariate and ignore most important factors such as road network
geometry and spatiotemporal characteristics of the traffic flow.

3. DEFINITIONS
In this section, we formally define spatiotemporal network. We

assume a spatial network (e.g. the Los Angles road network) con-
taining a set of nodes and segments. We model the spatial network
as a time-dependent weighted graph (i.e., spatiotemporal network)
where the weights are time-varying travel-times (i.e., traffic flow)
between the nodes. Below, we formally define our terminology

DEFINITION 1. Spatiotemporal Network
A Spatiotemporal Network is defined as a graph GT (V,E,W )
where V = {vi} is a set of nodes representing the intersections
and terminal points, and E (E ⊆ V × V ) is a set of edges repre-
senting the network segments each connecting two nodes. Each
edge e is represented by e(vi, vj) where vi and vj are starting
and ending nodes, respectively, and vi 6= vj . For every edge
e(vi, vj) ∈ E, there is an edge travel-time function wi,j(t) ∈ W ,
where t is the time variable in time domain T . An edge travel-time
function wi,j(t) specifies how much time it takes to travel from vi

to vj starting at time t.
Figure 1 illustrates a spatiotemporal network modeled as

GT (V,E,W ). While Figure 1(a) shows the network structure with
five nodes and five edges, Figures 1(b), 1(c), 1(d), 1(e), 1(f) illus-
trate the time-dependent edge costs (i.e., travel-times) for the edges
of the network.

4. METHODOLOGY
Our modeling framework is based on the real-world traffic data

collected from the freeways in Los Angeles County (LA). The pro-
posed framework offers solutions to the following two cases. In
the first case, given the historical temporal data (time-series of traf-

(a) Graph GT (b) w1,2(t)

(c) w2,3(t) (d) w2,4(t)

(e) w4,5(t) (f) w3,5(t)

Figure 1: A Spatiotemporal network GT (V,E,W )

fic flow possibly collected from various sensor locations) of a spa-
tial network, our framework creates the spatiotemporal model of
that network using the temporal data only. We refer to this case
as Modeling with Temporal Data (MTD). However, the tempo-
ral data may not be available for most of the spatial networks as
acquiring such data is a complex and sometimes prohibitively ex-
pensive task. In this (second) case, our framework generates a spa-
tiotemporal network model from the spatial characteristics and the
topology of the spatial network. We refer to the second case as
Modeling with Spatial Characteristics (MSC).

Our approach includes the following three steps. The first step
is traffic flow generation where we compute the time-dependent
travel-times on each network segment using historical sensor data.
In the second step, we attach semantic information to the network
by labeling the regions of the network based on its spatial character-
istics. We refer to this step as spatial characterization. In the third
step, we employ a semi-supervised clustering algorithm to group
the traffic flows of similar kind into respective spatial character-
istics. This step enables us to find the most representative traffic
flows of the network regions based on their spatial characteristics.
While the techniques developed in the first step can directly be used
in MTD, we employ the second and third steps to address MSC.
Below, we explain these steps in detail.

4.1 Traffic Flow Generation
In the past one year, through a system called RIITS [15], we

have been continuously collecting and archiving the sensor (i.e.,
loop detector) data from a collection of approximately 1500 sen-
sors located on the freeways of LA County. The urban area of Los
Angeles County has an area of 4752 square miles (12,308 km2) and
population of approximately nine million people. Figure 2 shows
the spatial span (covering 1183 miles) of the traffic sensors on a
map. The sampling rate of the sensor data is 1 reading/sensor/min.
We average the readings over three consecutive time intervals in
order to ease the implementation and smooth out the noise. There-
fore, each sensor provides 480 distinct measurements per day. We



Figure 2: Traffic sensor layout in LA County

Figure 3: Real travel-time during a weekday on a segment of
I-405 in LA County

only consider the readings from the weekdays. The storage space
required for this streamed dataset is approximately 350 MB/day
without indexing overheads. Currently, our data warehouse con-
sists of data from the period of October 2008 to June 2009.

The main traffic parameters collected from the loop detectors
are occupancy and volume. The loop detectors turn on and off as
cars pass over them. The number of ’on’ readings within a time
interval (e.g., 60 seconds) determines the occupancy measure. Oc-
cupancy is defined as the percentage of time a point on network
segment is occupied by vehicles. The other parameter, volume,
is defined as the number of vehicles flowing past a point during a
time interval. We derive the third parameter, i.e., speed, from the
occupancy and volume readings using the formula introduced in [1]
Speed = C∗V

O
where C is a constant proportional to the average

length of a car, V is volume, and O is occupancy.
In order to determine the time-dependent travel-time on each net-

work segment, we employ a two step process. First, using the
spatial query operators, we map the coordinates of the individ-
ual sensors to network segments. Then, for each segment, we
aggregate the desired traffic measure in both time and space di-
mensions by considering the distances between the sensors. For
instance, for a given time instance (i.e., t), we compute the travel-
time of a segment by the following formula Travel − T ime =∑n

i=1

D(si,si+1)

Si
where Si,D(si, si+1) and n represents the speed

measured on sensor i at time t, distance between two consecutive
sensors, and number of sensors on the segment, respectively. To
illustrate, consider Figure 3 that shows the graph of travel-time (ag-
gregated for each 15 minutes) on a segment of I-405 freeway in LA
between 6:00 AM and 8:00 PM on a weekday.

4.2 Spatial Characterization
In this section, we describe how we characterize the spatial net-

work using geographical and topological characteristics of the net-
work. Studying the real-world traffic data, we observe the follow-

ing three main spatial and temporal characteristics of the traffic
flow which motivated us to pursue the approach discussed in Sec-
tion 4.3. First, the traffic flow on network segments demonstrates
a strong periodicity at various spatial and temporal scales (daily,
weekly, monthly, and quarterly). For example, the traffic flow on
particular segment may exhibit a huge peak on each day at around
8:00 AM, a smaller one at around 4:00 PM, and an absolute mini-
mum at around 2:00 AM during the weekdays in fall season. Sec-
ond, the traffic flow is highly affected by the spatial characteristics
of the network. That is, the traffic flow follows different patterns
near major residential areas, city centers (aka, downtown), attrac-
tion areas (e.g., shopping centers, sports stadiums), and in regions
between them. For instance, while a segment connecting a residen-
tial area to downtown is congested during morning hours, another
segment connecting downtown to a residential area is usually con-
gested in the afternoon. Third, the traffic flows are also affected
by the topology (i.e., another spatial characteristic) of the network.
For example, a dense network topology which contains numerous
nodes (hence many alternative routes) is usually congested in the
hubs (i.e., intersection of the nodes) depending on the time of the
day but has steady traffic flow in the rest of the region.

As we discussed, the main idea behind incorporating the spatial
characteristic of the network to our model comes from the obser-
vation that the traffic flow in certain parts of the network can be
affected by the geographical and topological characteristics. Al-
though, there are various other characteristics (e.g., population and
demographics) that are likely to be offered to characterize a spa-
tial network, we select two major characteristics for the purpose
of this study namely, geographical region and density. We plan to
include more spatial characteristics into our model in the future.
With our study, we developed a graphical user interface (i.e., a map
mashup) that enables users to label the geographical regions (i.e.,
residential, downtown, and attraction) of the spatial network. To
capture the density information, the map interface allows users to
partition the spatial network into regular grid cells (e.g., 5x5 km)
and label the sub-networks (overlapping the grid cells) as dense or
sparse based on the distribution of the number of nodes in each grid
cell. Note that the map interface allows users to control the grid
cell size. Clearly, these characteristics do not consider all possible
aspects of the traffic flow and their specific definitions may vary.
Our main focus is to establish a framework that considers the spa-
tial characteristics of the network for generating a spatiotemporal
network model. We emphasize that our framework allow users to
select their preferred spatial characteristics among the pre-defined
ones. For example, with our case, one can only select regional in-
formation (ignoring density) to generate the spatiotemporal model
of a particular network. In the following section, we explain how
we incorporate the spatial characteristics of a network in to our pro-
posed semi-supervised clustering algorithm.

4.3 Hierarchical Semantic Traffic Flow Clus-
tering

In this section, we explain our proposed Hierarchical Semantic
Traffic Flow Clustering (HSTFC) method that is based on the
semi-supervised clustering algorithm proposed in [17]. Although
the unsupervised clusters can identify the natural groups, it is ex-
tremely difficult to construct the mapping between the representa-
tion of the groups and their semantic meanings. Semi-supervised
clustering addresses this issue by relating prior knowledge (in the
form of labels and constraints) in to clusters. In other words, semi-
supervised clustering not only creates natural groups with similar
features but also provides semantic meanings to the cluster results.
Therefore, in the context of our problem, semi-supervised cluster-



ing technique enables us to associate spatial characterization (i.e.,
semantic information) of the network with the traffic flows.

In the following sections, we first explain pairwise constraint
clustering (a semi-supervised clustering method) and discuss how
it fits in to our problem. Second, we present our proposed hierar-
chical clustering structure.

4.3.1 Pairwise Constraint Clustering Method
Pairwise constraint clustering (PCC) [17] is a classic technique

to employ semi-supervised clustering. PCC introduces prior knowl-
edge in the form of pairwise constraints. In particular, PCC incor-
porates the pairwise cannot-link and must-link constraints of the
data instances, and make the cluster results maximally satisfy all
the constraints. While must-link constraint specifies that two in-
stances should be assigned into one cluster, cannot-link constraint
specifies that two instances should be assigned into different clus-
ters. Let us now explain how this technique is adopted to our prob-
lem. As we discussed, in typical transportation networks, segments
demonstrate different traffic patterns based on their geographical
areas. For example, the traffic pattern of freeways near downtown
may be entirely different than that of a suburban area. On the
other hand, the segments which are spatially close to each other
(e.g., two freeway segments near Hollywood) may generate simi-
lar traffic patterns. With this example, we can consider applying
the knowledge in the later case in the form of must-link constraint
and the former case in the form of cannot-link. The formulation of
pairwise constraint clustering is given below.

Let M be the set of must-link pairs such that (xi, xj) ∈ M
implies xi and xj should be assigned to the same cluster, and C be
the set of cannot-link pairs such that (xi, xj) ∈ C implies xi and
xj should be assigned to different clusters. Let Wm = wij and
Wc = wij be the two sets that give the weight to the constraints
in M and C respectively. Let li be the assigned cluster number of
instance xi, and µli be the centroid of the cluster li. The cost of
violating these pairwise constraints is typically the sum of violating
pair(s) times their penalty weight. Specifically, the cost of violating
a must-link constraint is given by wij ∗ f(li 6= lj), where f is the
indicator function, with f(true) = 1 and f(false) = 0. Similarly,
we could get the cost of violating the cannot-link constraint aswij∗
f(li = lj). Using this model, the problem of PCC is formulated
as the minimization problem on the following objective function:
1
2

∑
xi∈D

‖xi − µli‖
2 +

∑
(xi,xj)∈M

wij ∗ f(li 6= lj)

+
∑

(xi,xj)∈C

wij ∗ f(li = lj)

Algorithm 1 presents our pairwise constraint (k-means) clus-
tering algorithm. The algorithm takes the dataset of the traffic
flow(D) , a set of must-link constraints (M ), and a set of cannot-
link constraints (C). Note that M and C is derived from the spatial
characterization step. At first, we call the function POPULATE-
CONSTRAINTS to generate transitive closure over pair-wise con-
straints denoted as M ′, C′. Then, we initialize the cluster center
by choosing k points from the cannot-link constraints pairs inC′ as
long as they don’t have must-link constraints in M ′. If we cannot
find such k points, we exit the algorithm to enrich the input con-
straint set from the dataset, and restart. Finally, the algorithm re-
turns the centroid of clusters that satisfies all specified constraints.
It is important to note that, with Algorithm 1, we utilize the pair-
wise constraints for initializing the cluster centroid. For example, if
two instances have cannot-link constraint, they should have distinct
spatial category information. This enables us to guide the cluster-
ing process that generates two clusters maintaining distinct spatial
characterizations. We assume that the cluster number (i.e., k) is

equal to the number of pre-defined categories.

Algorithm 1 Pairwise Constraint K-means Clustering Algorithm
Input: Traffic flow D, must-link constraints M ⊆ D×D, cannot-
link constraints C ⊆ D ×D, Cluster Number k
Output: The cluster index of each variable l1, ...ln
1: Call POPULATE-CONSTRAINTS(M,C);
2: Initialize the cluster center µ1, ...µk

3: For each point xi in D, assign it to the closest cluster lj such
that VIOLATE-CONSTRAINTS(di, lj ,M,C) is false.

4: For each cluster Ci, update its center by averaging all of the
points dj that have been assigned to it.

5: Iterate between (3) and (4) until convergence.
6: Return l1, ...ln.

POPULATE-CONSTRAINTS(must-link constraints set M,
cannot-link constraints set C)
1: For each a: if both (a, b), (a, c) ∈M , M = (b, c) ∪M
2: For each a: if (a, b) ∈M , and (a, c) ∈ C, C = (b, c) ∪ C
3: Return M , C and denoted as M ′, C′

VIOLATE-CONSTRAINTS(data point x, cluster L, must-link con-
straints M, cannot-link constraints C)
1: For each (x, y) ∈M : If y /∈ L, return true.
2: For each (x, y) ∈ C: If y ∈ L, return true.
3: Otherwise, return false.

4.3.2 Hierarchical Clustering
So far we have explained the pairwise constraint clustering, but

PCC itself is not satisfactory for our problem. Since our ulti-
mate goal is to find the representative curve for the network seg-
ments, and each specific segment has various spatial characteriza-
tions, we should apply different spatial characteristics in different
levels. This is because, if we apply various spatial characteristics
in one level, we may get contradictions among different character-
istics. For example, let us consider both region and density fea-
ture as two types of characteristics that guide the clustering. Dur-
ing the must-link and cannot-link constraint construction, two in-
stances which have the same density value may lead to a must-link
constraint. However, a cannot-link constraint may be assigned to
them because of their differences in the region values. In this case,
due to the two instances have must-link and cannot-link constraints
simultaneously, our clustering technique would have poor perfor-
mance. To avoid this problem, we propose a hierarchical clustering
method to arrange one type of characteristics to guide the clustering
in one level. It is important to note that our hierarchical structure
makes it very easy to add new characteristics (e.g., segment length)
to the system. Currently, we only have two levels namely, region
and density.

Fig.4 illustrates the schema of our hierarchical clustering method.
With the dataset as the input, the first level applies the region fea-
ture to guide the clustering. In the second level, based on the cluster
results from the first level, we utilize the density characterization to
direct semi-supervised clustering. In the end, we have the centroid
presentation of the category defined by the combination of two level
spatial characteristics as output. Note that the order of the charac-
terizations applied in the two levels are flexible to change.

Let us now explain how this step is useful to address MSC case
discussed in Section 4. After the hierarchical clustering, we ob-
tain the centroid for each semantic cluster based on the two type of
characteristics (i.e. region and density). Therefore, these clusters
could obtain meaningful labels constructed from the combination
of the values from the two characteristics. In addition, we know



Figure 4: Hierarchical semantic clustering flowchart. (1) Clus-
tering by region (2) First level cluster results (3) Result Refine-
ment (4) Clustering by density (5) Second level cluster results
(6) Result Refinement (7) Centroid computation

that the centroid of the clusters as the representative traffic flow for
the area with corresponding label. Given a spatial network and its
spatial characterization, we consider the values of the characteris-
tics as the index to search for the corresponding cluster, and use the
centroid of the result as the simulated traffic curve for the segments.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
We conducted several experiments with different networks and

parameters to evaluate the performance of our algorithm. As we
mentioned in Section 4.1, we used real-world Los Angeles free-
way traffic sensor data to construct our model. Since the traffic
flow on freeways is much simpler than that of the local road net-
work (i.e., no traffic light, no pedestrian), it requires less charac-
terization. Therefore, to simplify our experiments, we only eval-
uate our model on freeway data. The sensor dataset is collected
from 1592 sensors on the freeways during the period from October
2008 to June 2009. In order to represent the traffic flow on each
segment, we compute the average travel time (from the historical
sensor data) from 6:00 AM to 9:00 PM with 15 minute time inter-
vals. As our spatial network dataset, we used Los Angeles (LA)
and San Joaquin County (SJ) freeway network data. We obtained
these datasets from NAVTEQ [11]. Using NAVTEQ dataset, we
constructed the graph G(V,E) representation of LA and SJ freeway
networks. Each network segment is represented in the vector data
format and described by more than 20 attributes such as direction,
speed limit, zip code, location, density, geographical location (e.g.,
residential) and etc. Based on the location and direction informa-
tion, we labeled the freeway segments into eight spatial categories
namely, RR, R, D, A, R2D, D2R, R2A, A2R. The descriptions of
these labels are presented in Table 1. Moreover, in addition to re-
gion labels, we defined another label capturing the density infor-
mation of the network segments. In order to assign density label
to the network segments, we partitioned both LA and SJ freeway
networks into 5 X 5 km regular grid cells. Based on the average
number of nodes(α) in each grid cell (assuming uniform distribu-
tion of the nodes), we labeled the segments as Dense Area (i.e.,
area that has more nodes than α) or Sparse Area. We conducted
our experiments on a workstation with 2.7 GHz Pentium Core Duo
processor and 12GB RAM memory. Due to the space constraints,
we only present the experimental evaluations from LA dataset.
5.2 Performance Study

For performance evaluation, we compared our algorithm with a
naive approach that is based on decision tree technique. To imple-
ment decision tree, we used eight spatial categories (represented in
Table 1) and density information (i.e., dense or sparse) as the nodes
of the decision tree. The leaves of the decision tree contained the

Table 1: Spatial Label Description
Label Spatial Information for Freeway Segments
R Residential Area
RR Remote Area, area far from downtown and res.
D Downtown Area
A Attraction Area
R2D From Residential Area to Downtown Area
D2R From Downtown Area to Residential Area
R2A From Residential Area to Attraction Area
A2R From Attraction Area to Residential Area

(a) Downtown (b) Residential

(c) Residential-to-Downtown (d) Residential-to-Attraction

Figure 5: Instance comparison

traffic flow information of the segments in the same category. Since
each leaf can contain more than one traffic flow, we took the av-
erage value of the traffic flows in the corresponding leaves. This
enabled us to represent each leaf with one traffic flow. With our
experiments, we measured the traffic flow similarity, general error
rate and confidence interval.

5.2.1 Traffic Flow Similarity Comparison
With this experiment, we compare the traffic flow obtained from

the two algorithms with actual (observed) traffic flow on the seg-
ments. We randomly choose one instance in four categories namely:
downtown area, residential area, and residential-to-downtown area,
residential-to-attraction area. Figure 5 shows the traffic flow with
respect to these four categories. The traffic curves cover the period
from 6:00 AM (represented as 0 in the figure) to 9:00 PM with 15
minutes time intervals. As illustrated, the traffic flow generated by
our algorithm is more consistent with actual traffic flows. This is
because, in real-world, some traffic patterns do not follow the major
traffic flow trend in the same category due to some special events



(a) Mean (b) Variation

Figure 6: General error rate comparison

(e.g., accidents, lane closure). However, the naive approach consid-
ers that each instance contributes equally towards the construction
of category presentation. This assumption causes the results devi-
ate from the major pattern trend hence leading to imprecise traffic
flow representation. On the other hand, HSTFC considers both the
spatial correlations and the traffic flow feature; therefore the cen-
troid is calculated only based on the major trend of each category
without possible noisy instances.

5.2.2 General Error Rate Comparison
With the second set of experiments, we compare the overall per-

formance of the two algorithms based on average root mean square
error (MSE) and standard deviation(STD). These two techniques
enable us to quantify the amount by which the estimated centroids
differ from the real instances. The MSE and STD are calculated
based on the distances between individual instance and its corre-
sponding centroid. The lower the value of them, the more precise
the corresponding algorithm is. Figure 6 depicts the performance of
the two algorithms with respect to eight spatial categories. In gen-
eral, the results show that the naive approach maintains less accu-
racy than our algorithm with both MSE and STD measures except
for the RR category. The reason is that for RR region, they require
more types of characterizations to featurize their traffic flow.

5.2.3 Confidence Interval Evaluation
In this set of experiments, we use confidence intervals (CI) to in-

dicate the reliability of our estimates. In particular, we evaluate the
intensity of the featured clusters generated by the algorithms using
CI. We consider the level of confidence interval is 90%, and use the
mean of all distances between the instances and their cluster cen-
troid as the observed mean value. Therefore, the lower mean value
we get, the denser the cluster is. Figure 7 depicts the Euclidean
distance between the instances and the cluster centroids (Y-axis)
for eight spatial categories (X-axis). As illustrated, the naive algo-
rithm has more sparse population of instances in each category.

Figure 7: Confidence interval evaluation

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a framework for realistic and ac-

curate modeling of traffic flows in spatiotemporal networks. We

explained the design and implementation of our framework based
on a real-word traffic sensor dataset. We intend to pursue this work
in three directions. First, we plan to extend the set of spatial char-
acteristics supported by our framework to a complete minimum set
that allows for modeling all typical spatial networks. Second, we
plan to incorporate temporal characteristics (e.g., congestion inter-
vals) of the spatial networks to our framework. Third, we plan to
design efficient query processing algorithms (e.g., nearest neigh-
bor, range) on spatiotemporal networks since commonly assumed
techniques on spatial networks would not hold for spatiotemporal
networks.
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