
Distributed Memory Partitioning of
High-Throughput Sequencing Datasets

for Enabling Parallel Genomics Analyses
Nagakishore Jammula, Sriram P. Chockalingam, and Srinivas Aluru

Georgia Institute of Technology

ACM BCB – August 2017

Presented by: Evan Stene

Outline

• Introduction

• Background

• Methods

• Results

Introduction

• Large volume of short biological sequence data

• Construction of long sequences from short is time consuming
• Use existing sequence for reference

• Compare short sequences to each other

• Distributed computing is a promising direction for speed up

• Can intelligent partitioning benefit sequence construction?

Introduction – Case 1: Alignment

• Assuming a copy of a reference exists in each partition

• Partitioning dataset is simply balancing partition sizes (always true?)

• Reference acts as global coordinate system

• Position on reference will infer relations across partitions

Reference

Two closely related sequences

Introduction – Case 2: Assembly

• Ideally, group reads with greatest relation

• How can we calculate overlap quickly?

Partition 1 Partition 2

No relation in this partition Would be related in this partition

Introduction – Motivation

• Intelligently partitioning entire dataset can be time consuming
(depending on method)

• Partitioning a graph that represents the dataset is a good partition of
the dataset as well

• Related works:
• Pairwise similarity – very time consuming

• Hash partition of graph – destroys data locality

Background – de Bruijn Graph

• Used to bring down number of comparisons in assembly

• Captures connection and frequency of common subsequences

• Tracing paths through graph recreate sequence dataset

Background – de Bruijn Graph

A A B C D D

A A B C E D

Input Sequences, k = 3

Graph

A A B

Background – de Bruijn Graph

A A B C D D

A A B C E D

Input Sequences, k = 3

Graph

A A B A B C

Background – de Bruijn Graph

A A B C D D

A A B C E D

Input Sequences, k = 3

Graph

A A B A B C

B C D

B C E

Background – de Bruijn Graph

A A B C D D

A A B C E D

Input Sequences, k = 3

Graph

A A B A B C

B C D

B C E

C D D

C E D

Methods

• Construction

• Compaction

• Graph Partition

• Dataset Partition

Methods - Construction

• Each vertex has at most 8 neighbors
• Alphabet of size 4 for DNA

• 4 edges in, 4 out

• 2 Classes of vertex:
• Vertices that branch (>1 in/out edges)

• Vertices in a chain

Methods - Construction

• Build hash table of all subsequence of size k in dataset

• For each subsequence check the 8 possible neighbors

• Add 1 to weight of edge for each occurrence

• Trim edges below some threshold

Methods - Compaction

• Essentially connected components

• Combine chain vertices into single node

• Concatenate labels (subsequences) and sum edge weights

Methods – Graph Partition

• Optimize two parameters – min cut and balance

• Cut defined as weight of edges between partitions

• Bound the balance of partitions by some threshold (1 + ε)

Balance function
C(Vi) = sum of weights of vertices in Vi

m = total number of partitions

Methods – Graph Partition

• Recursively coarsen graph

• Partition coarsest graph

• Recursively un-coarsen graph, refining cut after each iteration

From [1]

Methods – Dataset Partitioning

• Map partition id to each subsequence of length k
• Chains will contain multiple subsequences that will need to map

• Build distributed index from mapping

• Assign sequence r to partition id most frequently assigned
• Sequence r will contain |r| - k + 1 subsequences

Results – Test Environment

• 32 nodes
• 16 cores

• 128GB memory

• OpenMPI 1.8.6

Results - Compaction

Results – Graph Partitioning

Results – Graph Runtimes

Results – Dataset Quality

Results – Dataset Runtimes

Total runtime for Bird dataset on 512 cores: 11 min

References

[1] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2015.
Parallel Graph Partitioning for Complex Networks. In Proceedings of the
2015 IEEE International Parallel and Distributed Processing Symposium.
1055–1064.

