Distributed Memory Partitioning of
High-Throughput Sequencing Datasets
for Enabling Parallel Genomics Analyses

Nagakishore Jammula, Sriram P. Chockalingam, and Srinivas Aluru

Georgia Institute of Technology
ACM BCB — August 2017

Presented by: Evan Stene

Outline

* Introduction
e Background

 Methods
e Results

Introduction

 Large volume of short biological sequence data

e Construction of long sequences from short is time consuming
* Use existing sequence for reference
 Compare short sequences to each other

* Distributed computing is a promising direction for speed up
* Can intelligent partitioning benefit sequence construction?

Introduction — Case 1: Alignment

* Assuming a copy of a reference exists in each partition

* Partitioning dataset is simply balancing partition sizes (always true?)
* Reference acts as global coordinate system

* Position on reference will infer relations across partitions

Two closely related sequences

Reference

Introduction — Case 2: Assembly

* |deally, group reads with greatest relation
* How can we calculate overlap quickly?

Partition 1 Partition 2

No relation in this partition Would be related in this partition

Introduction — Motivation

* Intelligently partitioning entire dataset can be time consuming
(depending on method)

* Partitioning a graph that represents the dataset is a good partition of
the dataset as well

e Related works:

e Pairwise similarity — very time consuming
* Hash partition of graph — destroys data locality

Background — de Bruijn Graph

* Used to bring down number of comparisons in assembly
e Captures connection and frequency of common subsequences
* Tracing paths through graph recreate sequence dataset

Background — de Bruijn Graph

Input Sequences, k=3

AAB|ICDD
AAB|CED

Graph

AAB

Background — de Bruijn Graph

Input Sequences, k=3

AIABCDD
AIABCED

Graph

AAB ABC

Background — de Bruijn Graph

Input Sequences, k=3

AABCDD
AABCED

Graph

BCD
AAB ABC<
BCE

Background — de Bruijn Graph

Input Sequences, k=3

AAB‘CDD

AABCED

Graph

BCD CDD
AAB ABC<

BCE CED

Methods

* Construction

* Compaction

e Graph Partition
* Dataset Partition

Methods - Construction

* Each vertex has at most 8 neighbors
* Alphabet of size 4 for DNA
* 4 edgesin, 4 out

e 2 Classes of vertex:

* Vertices that branch (>1 in/out edges)
e Vertices in a chain

Methods - Construction

 Build hash table of all subsequence of size k in dataset
* For each subsequence check the 8 possible neighbors
* Add 1 to weight of edge for each occurrence

* Trim edges below some threshold

Methods - Compaction

* Essentially connected components
 Combine chain vertices into single node
* Concatenate labels (subsequences) and sum edge weights

Methods — Graph Partition

* Optimize two parameters — min cut and balance
e Cut defined as weight of edges between partitions
* Bound the balance of partitions by some threshold (1 + €)

maxi<i<m C(Vi)
Zliiiiim C(VI)/m

Balance function
C(V,) = sum of weights of vertices in V,
m = total number of partitions

Methods — Graph Partition

* Recursively coarsen graph
* Partition coarsest graph
* Recursively un-coarsen graph, refining cut after each iteration

__l_—_

- mp—u:\ / \ \)/ out ut \“

] | |
| |\ gaph \ / a mn ?
= N L / » \p\ E
3 | ¥ local improvement _-i: >
S /;-_ o (sl o0ute <
3 . @
ﬂ:}- __ _._ ..4"/‘ l\\a.,,: 'f‘)}\\t Eﬂij
3 | contract & ‘ uncontract 3
| 1 Nitial -gT =
| N/ = r_ D/ -
v T b From [1]

pEl[’tITIGﬂII‘IQ

Methods — Dataset Partitioning

* Map partition id to each subsequence of length k
e Chains will contain multiple subsequences that will need to map

* Build distributed index from mapping

* Assign sequence r to partition id most frequently assigned
» Sequence r will contain |r| - k + 1 subsequences

Results — Test Environment

e 32 nodes

* 16 cores
* 128GB memory

* OpenMPI 1.8.6

Table 1: Datasets used for experimental evaluation

Dataset Genome length Dataset size Read length

(Giga base-pairs) (Giga bases) (Bases)
Fish 1.0 Gbp 52.7 Gb 101
Bird 1.2 Gbp 70.7 Gb 101
Snake 1.6 Gbp 84.1 Gb 121

Results - Compaction

Table 2: Reduction in the size of the DBG due to compaction

Dataset Plain graph Compacted graph Compaction

(No. of vertices) (No. of vertices) ratio
Fish 733,774,187 16,672,988 4
Bird 1,208,521,390 25,740,770 47
Snake 1,361,026,568 27,199,895 50

Results — Graph Partitioning

Table 3: Quality of de Bruijn graph partitioning

Dataset || Sum of weights of all Sum of weights Cut

edges in the graph of edges cut ratio
Fish 13,593,910,042 19,252,245 1.42x 1073
Bird 22,462,771,436 22,337,839 0.99 x 107>

Snake

29,754,489,857

47,197,297 1.59 X 107

Results — Graph Runtimes

Table 4: Runtime in seconds for the Bird dataset for de
Bruijn graph construction (Algorithm 1), chain labeling (Al-
gorithm 2) and compaction (Algorithm 3).

No. of || Algorithm 1 Algorithm 2 Algorithm 3 Total
cores (s) (s) (s) (s)
64 391 790 33 1214
128 159 309 11 479
256 76 180 6 262
512 45 115 3 163

Results — Dataset Quality

Table 5: Read partitioning quality evaluation for all datasets

Dataset || No. overlapping inter-pairs Cut

read pairs ratio
Fish 20,930,646,131 193,013,621 0.92x10™2
Bird 14,302,047,674 304,849,664 2.13x1072
Snake 6,728,041,314 263,882,542 3.92x10™2

Results — Dataset Runtimes

Table 6: Runtime in seconds for the Bird dataset for comput-
ing read partitioning from de Bruijn graph partitioning.

No. of cores H 64 | 128 | 256 | 512
Runtime (s) || 2090 | 950 | 456 | 226

Total runtime for Bird dataset on 512 cores: 11 min

References

[1] Henning Meyerhenke, Peter Sanders, and Christian Schulz. 2015.
Parallel Graph Partitioning for Complex Networks. In Proceedings of the
2015 IEEE International Parallel and Distributed Processing Symposium.

1055-1064.

