CONGRESSUS
NUMERANTIUM

VOLUME 61

MAY, 1988

WINNIPEG, CANADA

Generating k-combinations from a family of sets

Tom Altman, University of Kentucky
Marek Chrobak, Columbia University
(on leave from the University of Warsaw)
Miroslaw Truszezynski, University of Kentucky

Let U denote a set of n distinct elements and let S,,Sy,..., S,, be
subsets of U. To list all k-combinations C of U, such that C ¢ S;, for some
1<t < m, an optimal running time algorithm would require at least O (I+kt)
steps, where I is the input size and ¢ is the number of k-combinations. In this
paper, we present an algorithm for generating such k-combinations. Its running
time is bounded by O (I+kt+mt), which is optimal for families of sets S
where m = O (k). We also present two algorithms that are optimal for the so
called acyclic families of sets and for the families of sets whose thickness is
bounded by 2, (i.e., such that for all z; ¢ U, z; is in at most 2 of the S;%).

Keywords: k-combination, generating algorithms, acyclic family.

1. Introduction

In this paper we investigate algorithms for efficient generation of all k-
combinations from a set U of n distinct elements, where S, Sy, ..., S, are
subsets of U, and a k-combination C of U is generated iff C ¢ S;, for some
1<i<m. The problem may be reformulated in terms of objects and proper-
tiess Let U be a set of objects characterized by some properties
S1y Sy, ..., Sp; list all k-tuples whose elements share at least one property.

One possible interpretation of this problem may be as follows: Given a set
of n nodes and a collection of all cliques in a graph, denoted by
S1,S2,..., Sp; find E - the set of edges in the graph. The analogous
interpretation for k-uniform hypergraphs corresponds to the general problem of
generating k-tuples.

CONGRESSUS NUMERANTIUM 61(1988), pp.211-220 *

A naive approach for generating the k-combinations would be to examine
each S; separately and append its k-combinations to some global list. The
problem that surfaces immediately is the duplication of k-combinations. In the
worst case, creation of such a list would require O (mkt) steps. Moreover, the
additional time spent to eliminate duplicate entries could take up to
O (mkt log t) steps.

In this paper we present three algorithms for generating all k-combinations
from a family of sets $ ={$,, S, ..., S, }. The algorithm which generates
the k-combinations for the general case is presented in Section 2. In Section 3,
we define the notion of acyclicity in a family of sets S and present an optimal
algorithm for such families. Our third algorithm, which is optimal for the fami-
lies whose thickness bounded by 2, is described in Section 4.

2. Algorithm for the general case
The algorithm is an extension of the classical recursive algorithm for gen-
erating k-combinations of one set (e.g., see [3]). The problem is to implement it
efficiently. First we present the algorithm and then we show how it could be
m
implemented to run in time O (I+kt+mt), where I = 3},|S;|. We assume
=1
that each set has at least k elements.

Algorithm I
procedure SUBSETS(S, k);
procedure GENERATE(J, X);
begin
if | X | = k then write(X) else
begin
z:=max(|J_T)
Te Jd

9,:={TITy{z}e 3, |XyTlzkorTe J andzg¢ T}
Jy:={TIT y{z}e I, T+Q)
if J, # @ then GENERATE(7,, X);
GENERATE(J,, X y {z})
end
end;
begin
GENERATE(S, @)
end.

Figure 1. Recursive generation of k-combinations of .

212

The choice of z in the inner block can be arbitrary, but by choosing the
maximum value we will generate the k-combinations in antilexicographic order,
The main difficulty in analyzing the complexity of this algorithm is that it is
not clear how the number of calls of procedure GENERATE depends on ¢, the
number of generated combinations. Consider the tree of calls of GENERATE.
If each node had degree 0 or 2 then the number of calls would be at most 2¢.
However, some nodes may have degree 1, when the family J, happens to be
empty. Note that this can happen only when all sets T ¢ J contain z and
have cardinality k —|X |. Below, we show how to avoid this problem.

Now we describe the implementation of Algorithm I. The algorithm works
in two phases. In the first phase we construct some data structures.

We assume that:

Mys={2.,2}

(2) IS; | 2 &, for each i,

(3) each set S; is given on input in increasing order (if not, we can use a
variation of the bin sort algorithm to properly order the S;’s in time pro-
portional to I).

2.1. Phase I

The whole family $ is represented by an array of lists where the list in the
entry j represents the set S;. Each set S;, in turn, is a doubly linked list of
records Ry;. For simplicity we will also denote this list by S;. Each list S; has
two pointers to the beginning and the end of the list. Lists are sorted with
respect to i. A record R;; appears in list S; only when ¢ belongs to the set S;,
and, besides the links, it contains three entries: 1, j, and b;;. The numbers bi;
are defined as follows:

by =min {115 n{1,2,..,i} = §; n{1,2,...,i}}.

Now, we describe how to construct our data structure in time O (I). The

preprocessing consists of three steps:

Step 1: Renumber the sets of the family .S so that their lexicographic order
is Sy, - - ,S, (here we treat sets as increasing sequences of their
elements);

Step 2: construct the lists S; without filling the entries by;;

Step 3: compute the numbers b;;.

Steps 1 and 2 can be done in time O (I). We only need to show how to
implement Step 3 (which could have been merged with Step 2, but will be
described separately for the sake of exposition).

213

We use an auxiliary array P[l..n]. At the beginning we set P[i] = nil for
each 1. Then for j =1,2,...,m we scan the list S;. P[s] will point to the record
R;; with the greatest j among the records which have already been scanned.
Let prev(R;;) be the record which appears on S; before R;;. Then, to compute
the b,-j's of Step 3, we execute the following:

for j:=1 to m do
for each R;; on S; do
begin
if P[¢] = nil then b;; := j else
begin
find the record Ry that is pointed to by Pfif;
if prev(R;;) = nil then
if prev(Ry) = nil then b;; := by else b;; :=j
else
begin
find u such that R,; = prev(R;;);
find v such that R, = prev(R;);
if v =u and b,; < ! then b;; :=b; else b; 1=
end
end;
end

The complexity of Step 3 is trivially O (I). We only have to prove that the
numbers b;; will be computed correctly. This can be proved by considering the
three cases that follow. Suppose that we are in R;;. We adopt the notation from
the above algorithm.

Case 1: v # u. Then clearly, b; = ;.

Case 2: v = u and b,; > [. Since b,; > {, by induction, the intersections of
Sj and S; with the set {l,2,...,u} are different. Therefore, their intersec-
tions with the set {1,2,...,:' } are also different. Furthermore, there is no
set S, containing ¢ such that { < r < j, because of the definition of Pi}.
Therefore, b; = j.

Case 3: v = u and b,; < /. It implies that the intersections of the sets S;
and S; with the set {1,2,...,u} are equal. Also, from the lexicographic
order of the sets in the family S it follows that j = { +1. For suppose that

214

there is a set S, with [<r < j. Il S, c{1,2,...,u }, then S, would appear
before S;. The same can be said if S, contains an z such that v < z < 1.
By the definition of P|i], S, cannot contain i. The only left possibility is
when S, contains a number greater than ¢, but then S, would appear after
S;. Thus we conclude that j =1+41. This, in turn, easily implics that
bij = by.

2.2. Phase II

The generating phase is basically Algorithm I in Figure 1, except that we
have to handle separately the case when all sets in the family 7 have cardinal-
ity k — | X |. From the ordering of the sets S; and from the lexicographic order

of the family S it follows that at the beginning of each call to GENERATE we
have:

(1) There is z such that each set T ¢ 7 is of the form S n {1,2,...,:;: },
(2) |T UX| >k foreach T e I,

(8)z e T, forsome T ¢ I,

(4) l“r I < k_ll

(5) X ¢ {z+1,z42,...,n }.

The second phase now looks as follows:

procedure SUBSETS(S, k);
procedure GENERATE(7, X);
begin
if |7y X|=k for each T ¢ I then PRINT(J, X) else
begin
7 :=max(ng T);

Ty ={TITy{z}e ,|XyTlzk,orTe J andzg T}
Fp:={TIT y{z}e I, T#@})
GENERATE(9,, X);
GENERATE(9, X y {z})
end
end;
begin
GENERATE(S, @)

end.

As it was already noted, each set T is obtained from some S; by deleting
all numbers greater than . Thus we can represent such T in I by a number
nr(T) = j and the pointer to the last record R;; such that 1 is still in T. We

215

also store the cardinality of each set T. Then the family 7 will be represented
as a list of such records T (again, we use the same name for the set and its
representation).

One call of GENERATE(9, X) takes O (m) steps. The number z can be
found by looking at the pointers to the last elements of the sets T in J. Simi-
larly, we can check the condition in the if-statement and construct J, and J,.

The procedure PRINT(J, X) prints out all different sets T y X for T ¢ I.
This can be accomplished as follows. Scan the list J backwards. After printing
out some set T y X we look at the number b;;, where j = nr(T) and i is the
greatest element of J. Then we skip all sets V such that nr(V) 2 b;;. In this
way, no combination will be generated twice.

Consider now the complexity of the algorithm. Let us look at the tree of
recursive calls of the procedure GENERATE. The leaves are calls of PRINT,
and the number of leaves is bounded by ¢, the number of generated combina-
tions. If PRINT is not invoked in a recursive call to GENERATE then both 7,
and J, are nonempty and conditions (1)}-(5) are satisfied. Hence, each internal
node has 2 sons and the number of internal nodes is also bounded by ¢. Thus
the cost of all internal calls is O (mt). If a single call of PRINT generates s k-
combinations, then its cost is O(sk-+m). Therefore, the overall cost is
O (I+mt+kt).

3. Acyclic families of sets

Ideally, an algorithm to generate k-combinations for a family of sets S
would run in O (I +kt) steps. (Certainly, each such algorithm requires at least
that many steps since it has to read in its input and print out the generated k-
combinations.) The algorithm described in Section 2 has worse time complexity.
However, it turns out that for special classes of families of sets § with some
structure, it is possible to take advantage of the structure of S and design
better algorithms than the onme for the general case. Their complexity is
O (I +kt), hence, they are optimal. In the next two sections we discuss two
such classes of families of sets and describe optimal algorithms for each class.

Let U be a finite set. A family of sets S ¢ P(U) is called acyelic (e.g.,
see [2]), if there exists a directed acyclic graph G = (U,E) such that:

(1) the outdegree of each vertex of G is at most 1,
(2) each S; € S is a vertex set of some directed path in G.

An example of an acyclic family S is shown in Figure 2.

216

U ={1.2,.,13}
S = {{9,4,2,1}, {8,3,2,1}, {6,2,1}, {5,2,1}, {13,12}, {9,4,2}, {11,9,4}, {10,5}, {11,9}}

I 12
13

0

4
Level
Figure 2. An acyclic family of sets S and its digraph G.

Acyclicity of S can be determined in linear time using an algorithm by
Dietz et al. [1). Below, we present an algorithm which generates k-combinations
m
for acyclic families in time O (I+kt), where I = 3 |S; | is the input size and
i=1
kt is the output size (¢ is the number of k-combinations to be generated).

Algorithm II

1. Find the acyclic organization of S
(i.e., construct the appropriate digraph G).

2. If necessary, relabel the sets in S, producing Sy, S, . . . , Sp»
so that if the top element of S, is at a "higher" level
(i.e., has lesser depth) than the top element of Sy, then r < .
This is always possible because S is acyclic.

3. Represent each set S; as S; = {=z,, .. ., z, }, where p =|5; |,
so that z, - - - gz, is a directed path in G. Compute j; so that

min{j::rj €S; n US,} if S; n US,#@

r<e r<s

p +1 otherwise

(That j; is well defined follows from acyclicity of S and
from the way the sets in S are labeled in Step 2.)

217

4. for 1:=1 to m do

begin

Generate all k-combinations contained in S; but inno S, ¢t < 1.

Use a modification of the classical algorithm to generate k-combinations

in the lexicographic order (with respect to the labeling z;, . . ., z,
of the elements in S;) that stops as soon as all k-combinations of S;
have been generated, or when the next k-combination to be generated
starts with z; .

end

Figure 3. An algorithm that generates k-combinations from an acyclic S.

Step 1 can be computed in time O (I) using the algorithm of Dietz et al.
[1). Once G is known, the relabeling phase of Step 2 consists of simply ordering
the sets according their top elements. This can be accomplished with a bin
sort, hence, requiring O (m +n) steps (ties are broken arbitrarily). Observe
that the sets of S in Figure 2 are already ordered in a proper fashion.

Once the acyclic organization for S is known, arrangements
{z),...,3,} of sets S;, as well as the index j;, discussed in Step 3 can be
found in time proportional to I Observe that the elements of each S; e § in
Figure 2 are also properly ordered.

To see that the computation time of Step 4 is O (m +kt), observe that the
algorithm that generates k-combinations in the lexicographic order uses O (k)
steps to generate each combination (see e.g., [3]). The only change we have to
make is to add one more conditional statement that will check whether the first
element of the next combination to be generated is z; . This increases the cost
of generating each combination but only by some constant c. Hence, the com-
putational time of Step 4 is O (m +kt) and the whole algorithm works in time
O (I+kt), as claimed.

To justify correctness of then above algorithm, we prove the following fact.

Proposition 3.1. Algorithm II generates all valid k-combinations of S, each
exactly once.

Proof. Consider some valid k-combination C. Let ¢ be the smallest integer such
that C ¢ S;={z,, . .. ,::P}. Then, C ¢ (J S, and C contains an element z,,

r<it

with ¢ < j;, (where j; is defined in Step 3). Hence, C will be generated in the
i iteration of the loop of Step 4.

218

Suppose now that some combination € is generated twice. Then it must
be generated in two different iterations of the loop of Step 4. Suppose, the first
iteration C is generated in is iteration ¢ and the next one is iteration i’ Then,
since C is generated in iteration {', it contains an element with index smaller
than 7y (where j; is computed for Sy in Step 3), hence, it is not contained in

S s & contradiction as it is enerated earlier in the iteration ¢ for some
r ’
rei’

it <1,
Applying Algorithm IT to § of Figure 2, with k=2, will produce the follow-
ing output:

U ={1.2,.,13}
$ ={{94,2,1}, {83,2,1}, {6,2,1}, {5,2,1}, {13,12}, {9,4,2}, {11,9,4}, {10,5}, {11,9}}

{9,4}, {9,2}, {9.1}, {4,2}, {4,1}, {2,1}, {8,3}, {8,2}, {8,1}, {3,2},
{3.1}, {6,2}, {6,1}, {5,2}, {5,1}, {13,12}, {11,9}, {11,4}, {10,5}.

Figure 4. The generated 2-combinations of §.

4. Bounded thickness families

A family of sets § is said to have its thickness bounded by d, if for all
z; € U, z; belongs to at most d of the S;’s. Below, we present an algorithm
which generates k-combinations for the families of sets whose thickness is
bounded by 2. The running time this algorithm is, again, O (1+kt).

Algorithm III

fort := 1 to m do

begin
L. Find the intersections, T, . . ., T,
of S; with Sy, ..., 5;_,, respectively ;

2. Arrange the elements of S; so that each T} (j < i)
and S; — (T, u - - - y Ti_,) are segments of consecutive elements,
with S; — (T, y -+ y T;_,) preceding each s

3. Generate all k-combinations contained in S;,
but not contained in Ty, forall j <4

end

Figure 5. Algorithm to generate k-combinations from S of thickness 2.

219

It is clear that Algorithm III will only generate valid k-combinations (i.e.,
contained in some S;) and there will be no duplicates.

To perform Step 3 we again use the classical algorithm that generates all
k-combinations of a given set in the lexicographic order (we will refer to this
algorithm as algorithm A) and modify it so we never generate a k-combination
contained in any T; To accomplish this, if the next combination to be gen-
erated by algorithm A is C ={g;,...,%; }, where iy < - -+ <, and Cc T;
then the modified version of A prints out €' ={z;,...,%,_,,2'}, where 2’ is
the first element of T;,,. To check that C ¢ T; and to find z' efficiently we
have to compute first and last elements of each segment T; when the sequential
arrangement of objects in which each T} is a segment is created in Step 2.

At each iteration i, Step 1 requires time proportional to |S; | (since any
element of S; can be in at most one other set, and we could represent S bya
collection of linked lists of elements of each set and by associating with each
element the list of 1 or 2 sets it belongs to), hence, the m iterations of Step 1
can be performed in time O (I). Similarly, the m iterations of Step 2 require
only O (I) comparisons. Finally, the m iterations of Step 3 require time propor-
tional to O (kt), therefore, the running time of Algorithm Il is O (I+kt).

References

1. Dietz, P., Furst, M., and Hopcroft, J.E., “A Linear Time Algorithm for the
Generalized Consecutive Retrieval Problem,” Technical Report TR 79-386,
Dept. of Computer Science, Cornell University, 1979.

2. Lipski,.W., “Information Storage and Retrieval - Mathematical Founda-
tions II (Combinatorial Problems),” Theoretical Computer Science, vol. 3,
pp- 183-212, 1976.

3. Nijenhuis, A. and Wilf, H.S., Combinatorial Algorithms, Academic Press,
New York, 1975.

220

