
Information Processing Letters 35 (1990) 111-114

North-Holland

20 July 1990

A NOTE ON AMBIGUITY IN CONTEXT-FREE GRAMMARS

Tom ALTMAN

Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

George LOGOTHETIS

AT&T Bell Laboratories, Summit, NJ 07901, USA

Communicated by W.M. Turski

Received 15 December 1989

Revised 19 March 1990

Keywords: Formal languages, theory of computation, ambiguity

1. Introduction

We show that ambiguity in context-free gram-
mars can be decomposed into union-ambiguity and
concatenation-ambiguity. We also show that the
traditional proof of the undecidability of ambigu-
ity in context-free grammars addresses only one
part of ambiguity, namely the union-ambiguity.
We extend this result by showing that the con-
catenation-ambiguity is also undecidable.

Context-free grammars (CFGs) and the lan-
guages they generate, the context-free languages
(CFLs), are useful in defining the syntax of pro-
gramming languages, formalizing the notion of
parsing, and numerous other string-processing ap-
plications. Chomsky [2,3,4] originated the CFG
formalism. Ambiguity in CFGs was first studied
by Floyd [6], Cantor [l], and Greibach [7].

Traditionally, the definition of context-free lan-
guages from CFGs is expressed in terms of deriva-
tions or, equivalently, in terms of parse trees. Let
G be a CFG (T, N, P, Z), where T and N are
the sets of terminals and nonterminals, respec-
tively, P is the set of productions, and Z E N is
the start symbol. A grammar symbol X is a termi-
nal or a nonterminal. The productions in P have
the form A -+ CY, where A is a nonterminal and (Y
is either the empty string z or a string Xi.. . X,, of
grammar symbols. Each nonterminal A defines a

language L(A) over the alphabet T: a terminal
string x is a sentence of L(A) iff there exists a
parse tree with root A and frontier x. By defini-
tion, the language L(G) is the language L(Z). A
grammar is called ambiguous iff there is a sentence
of L(G) that has more than one parse tree, and
unambiguous, otherwise.

2. An algebraic view of ambiguity

We now proceed to describe ambiguity in CFGs
in algebraic terms, namely in terms of the stan-
dard algebraic operations of U (union) and 0
(concatenation) on languages. Let L, and L, be
languages over a common alphabet Z.

l L,UL,={xE~*~xEL, orxEL,}.

l L,~L,={x,x,~~*lx,~L~ andx,E&}.

We start by defining the notions of ambiguous
union and ambiguous concatenation.

Definition 2.1. The operation L, U L, is ambigu-
ous if L,nL,#fl.

Definition 2.2. The operation L, 0 L, is ambiguous
if there exist x,, yi E L,, x2, y2 E L,, x1 +YI and
x2 zy,, such that xix1 =yIy2.

0020-0190/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 111

Volume 35. Number 3 INFORMATION PROCESSING LETTERS 20 July 1990

Property 2.3. Both union-ambiguity and concatena-
tion-ambiguity are monotonic: Let L,, L,, M,, and

M2 be languages that satisfy L, c M, and L, c M2.
If L, U L, is ambiguous, then M, U M2 is ambigu-

ous. Furthermore, if L, 0 L, is ambiguous, then
M1 0 M2 is ambiguous.

An algebraic formula built in terms of these
operations on languages will be called a language
expression. Definitions 2.1 and 2.2 describe the
ambiguity of single language operations; they can
also be extended to general language expressions.

Definition 2.4. A language expression is called
ambiguous if one or more of the operations into
which it is decomposed is ambiguous.

Property 2.5. It can be shown that a language
expression of the form L, U L, U . . . U L, is am-

biguou.siffL,~L,+~forsomel<i<j<n.

Property 2.6. It can be shown that a language
expression of the form L, 0 L, 0 . . . 0 L, is ambigu-

ous iff there exist strings xi, y, E L;, i = 1,. . . , n,
such that x,x1 . . . x, = y, y, . . . yn and xi # y, for

somel<i<n.

The definition of context-free languages by a
CFG can be expressed as the solution to a system
of algebraic equations. The unknowns in these
equations are the languages of the various non-
terminals in the grammar. The equations contain
language expressions that are formed from the
right-hand sides of the productions in the gram-
mar. More specifically, we first group all produc-
tions A -+ q, A -+ a*, . . . , A -+ a,, of a nontermi-
nal A into the form A + a, Ia2] . . *] LY,,. This
“composite” production for A can then be trans-
formed into the equation L(A) = L(aI 1 a2 1 . . .
(a,) that “defines” the language L(A), based on
the following simple transformations.

l L(%I%I ... I%>
= L(q) UL(az) u ... u L(a,).

l L(X,X,... x,) = L(X,)o L(X,)Q ... 0 L(X,).

l Fort~T, L(t)= {t}.

l L(e) = {E}.

112

Therefore, to each nonterminal A in a CFG corre-
sponds an equation L(A) = le defining L(A).

The language expression le, the defining expres-
sion of L(A), has the form of unions of con-
catenations of languages. Collectively, the defini-
tions of the nonterminal languages form a com-
plete system of language equations that determine
a unique minimal solution for each of these lan-
guages. For a comprehensive treatment of this
algebraic view of context-free languages, the reader
is referred to [5].

Definition 2.7. The language L(A) of a nontermi-
nal A in a CFG is ambiguously defined if the
language expression in the equation defining L(A)

is ambiguous. A CFG is algebraically ambiguous if
the language of one or more of its nonterminals is
ambiguously defined.

Theorem 2.8. A CFG without useless nonterminal
symbols is algebraically ambiguous iff it is ambigu-
ous (in the traditional sense).

Proof. (-) Let us assume that a grammar is
ambiguous in the traditional sense. Consider two
distinct parse trees, T and T’, with the same root
label A and the same frontier x. There are two
possibilities:

(a) The top children nodes in the two parse
trees are different. This means that the top level
decompositions in the two trees use two different
productions, A + aI and A -+ a,_, respectively.
This implies that L(a,) U L(a,) in the equation
defining L(A) is ambiguous, since x E L(a,) n
L(%).

(b) The top children nodes in the two parse
trees are the same, meaning that the top level
decompositions in both trees are based on the
same production, say A -+ X, . . . X,. Each of the
two trees is decomposed into n subtrees, T,, _ . . , T,
and T,‘, . _. , T,‘, respectively. Let xi,. . . , x, be the
frontiers of T,, . . . , T, and xi,. . . , x,: be the fron-
tiers of T,‘, . _ _, T,‘, respectively. Clearly, we have

I x1 _. . x, = x1 . . . XL = x. Two possibilities arise:
(1) x, # x,’ for some 1 < i < n. In this case, the

language expression y X,) 0 . . * 0 L(X,) in
the equation defining L(A) is ambiguous.

Volume 35, Number 3 INFORMATION PROCESSING LETTERS 20 July 1990

(2) x, = x: for all 1 < i < n. In this case, for
each 1 < i =z n, 7; and 7;’ have the same
root, Xi, and the same frontier, x,. Since
T # T’, some q must be different from T,‘,
and we can then apply the same approach
to each of the tree pairs. This process will
eventually terminate under case (a) or case
(bl), since each subtree is shorter than its
parent tree.

This shows that traditional ambiguity implies al-
gebraic ambiguity.

(-) Let us assume that the definition of some
L(A) has a union-ambiguity. This means that
there are two productions A -+ (pi and A + (Y~ of
A such that L((Y~) f? L((Y,) Zfl. It follows that for
every x E L(a,) n L((Y~) there are two distinct
parse trees with root A and frontier x, differing at
the top-level decomposition because one tree uses
production A -+ ~yi and the other A -+ (Ye.

Now, let us assume that the definition of some
L(A) has a concatenation-ambiguity. This means
that there is a production A + X,X,. . X,, such
that t(X,)0 L(X2)0 . . . 0 L(X,,) is ambiguous.
This, in turn, implies that there are strings x,,
Y, E L(X,), i = 1,. . . , n, such that x1x2.. . x, =

YIYZ... y, = x and xi # y, for some 1 < i 6 n.
Therefore, there are two distinct parse trees with
the same root A, the same frontier x, and the
same top-level decomposition via the production
A + X, . . . X,, differing in the subtrees with root
X, that have different frontiers, namely x, and y,,
respectively. 0

3. Undecidability of concatenation-ambiguity

The problem of detecting ambiguity in CFGs
can be shown to be undecidable by reducing Post’s
correspondence problem (PCP) to it. The proof,
reproduced below, is basically the one found in
[8]. An instance PCP(A, B) of Post’s correspon-
dence problem consists of two lists of strings over
a common alphabet 2, A = wi, w2,. . . , w, and
B = ul, u2,. . . , uk. The instance PCP(A, B) has a
solution iff there exists a sequence i,, i,, . . . , i, of
integerssuchthatn>l,l<ij<kforj=l,...,n,
and

w,,wi*_.. w, = UI,u,2... Ui . II n

Let A = wi, w,,..., w, and B=u,, Us,..., uk
be the lists of strings over 2 in an instance of a
PCP(A, B). Also, let ui, u2,. . . , uk be k distinct
symbols not in 2, and consider the following
CFG corresponding to the PCP(A, B).

S-, WIU,

W+w,Wa,Iw,a;, i=l,.._, k,

U -+= u,Va, 1 u,ui, i = 1,. . . , k.

Clearly, the PCP(A, B) has a solution iff this
grammar is ambiguous. See [8] for details.

Now, since a,, u2, . . . , uk are distinct symbols
not in 2, this grammar can be ambiguous if and
only if the union L(W) U L(U) implied in the
definition of S is ambiguous. In other words, the
ability to decide whether the union of two
context-free languages is ambiguous is all that is
needed to solve PCP. The above proof leaves open
the decidability question for the problem of de-
tecting ambiguity of concatenation of context-free
languages. As we show next, this problem is unde-
cidable too.

Theorem 3.1. The problem of union-ambiguity de-

tection is reducible to the problem of concatenation-

ambiguity detection.

Proof. Let L and M be two languages over a
common alphabet 2. Let us suppose that we want
to determine whether or not L U M is ambiguous,
i.e., whether or not L n A4 # 0. Let $ be a symbol
not in 2, and consider the languages L’ = L 0 {$)

U {c} and M’=Mo{$} U {c} over the alphabet
_Z u {$}. We wiil show that L u M is ambiguous
iff L’ 0 M’ is ambiguous.

(-) Let’s assume that L U M is ambiguous,
and let x E L n M. Consider y, = x$ E L’, z1 = c
EM’ and y2 = E E L’, z2 = x$ E M’. Clearly,

y,z, = y2z2 = x$, and y, Z y2, z, f z2. Therefore,
L’ 0 M’ is ambiguous.

(-) Let us assume that L’ 0 M’ is ambiguous,
and consider y,, _y2 E L’, y, f yz, and z,, z2 E M’,
z1 f z2, such that y,zi = y2z2. Since y, f y,, w.1.o.g.
let y, be the longer of the two strings. Since
y, #E, y, must have the form y$, where y E L.
Since y, must be a prefix of y, and y cannot
contain $, y2 can only be E. Therefore, we have

113

Volume 35, Number 3 INFORMATION PROCESSING LETTERS 20 July 1990

y$z, = z2. Since z2 f E, z2 must have the form z$,
where z E M. Therefore, we have y$zr = z$. Since
z cannot contain $, z, must be e. Therefore, we
have y$ = z$, which implies y = z, which implies
that L f~ M # $3, i.e., that L U M is ambiguous.

0

Theorem 3.2. The problem of concatenation-am-
biguity detection for context-free languages is unde-
cidable.

Proof. If L and M are context-free languages, the
languages L’ = L 0 {$} U { z } and M’ = A4 0 { $}
u (c} used in the proof of Theorem 3.1 are both
context-free. It follows that for context-free lan-
guages the union-ambiguity detection is reducible
to the concatenation-ambiguity detection. q

References

[l] D.C. Cantor, On the ambiguity problem of Backus systems,

J. ACM 9 (4) (1962) 471-419.

[2] N. Chomsky, Three models for the description of language,
IEEE Trans. Inform. Theory 2 (3) (1956) 113-124.

[3] N. Chomsky, On certain formal properties of grammars,

Inform. and Control 2 (2) (1959) 137-167.

[4] N. Chomsky, Formal properties of grammars, in: Handbook

of Math. Psych. Vol. 2 (Wiley, New York, 1963).

[5] J.H. Conway, Regular Algebra and Finite Machines (Chap-

man & Hall, London, 1971).

[6] R.W. Floyd, On ambiguity in phrase structure languages,

Comm. ACM 5 (10) (1962) 526-534.

[7] S.A. Greibach, The undecidability of the ambiguity prob-

lem for minimal linear grammars, Znform. and Control 6 (2)

(1963) 119-125.

[8] J.E. Hopcroft and J.D. Ullman, Introductron to Automata

Theory, Languages, and Computation (Addison-Wesley,

Reading, MA, 1979).

114

