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1. Introduction 

We show that ambiguity in context-free gram- 
mars can be decomposed into union-ambiguity and 
concatenation-ambiguity. We also show that the 
traditional proof of the undecidability of ambigu- 
ity in context-free grammars addresses only one 
part of ambiguity, namely the union-ambiguity. 
We extend this result by showing that the con- 
catenation-ambiguity is also undecidable. 

Context-free grammars (CFGs) and the lan- 
guages they generate, the context-free languages 
(CFLs), are useful in defining the syntax of pro- 
gramming languages, formalizing the notion of 
parsing, and numerous other string-processing ap- 
plications. Chomsky [2,3,4] originated the CFG 
formalism. Ambiguity in CFGs was first studied 
by Floyd [6], Cantor [l], and Greibach [7]. 

Traditionally, the definition of context-free lan- 
guages from CFGs is expressed in terms of deriva- 
tions or, equivalently, in terms of parse trees. Let 
G be a CFG (T, N, P, Z), where T and N are 
the sets of terminals and nonterminals, respec- 
tively, P is the set of productions, and Z E N is 
the start symbol. A grammar symbol X is a termi- 
nal or a nonterminal. The productions in P have 
the form A -+ CY, where A is a nonterminal and (Y 
is either the empty string z or a string Xi.. . X,, of 
grammar symbols. Each nonterminal A defines a 

language L(A) over the alphabet T: a terminal 
string x is a sentence of L(A) iff there exists a 
parse tree with root A and frontier x. By defini- 
tion, the language L(G) is the language L(Z). A 
grammar is called ambiguous iff there is a sentence 
of L(G) that has more than one parse tree, and 
unambiguous, otherwise. 

2. An algebraic view of ambiguity 

We now proceed to describe ambiguity in CFGs 
in algebraic terms, namely in terms of the stan- 
dard algebraic operations of U (union) and 0 
(concatenation) on languages. Let L, and L, be 
languages over a common alphabet Z. 

l L,UL,={xE~*~xEL, orxEL,}. 

l L,~L,={x,x,~~*lx,~L~ andx,E&}. 

We start by defining the notions of ambiguous 
union and ambiguous concatenation. 

Definition 2.1. The operation L, U L, is ambigu- 
ous if L,nL,#fl. 

Definition 2.2. The operation L, 0 L, is ambiguous 
if there exist x,, yi E L,, x2, y2 E L,, x1 +YI and 
x2 zy,, such that xix1 =yIy2. 
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Property 2.3. Both union-ambiguity and concatena- 
tion-ambiguity are monotonic: Let L,, L,, M,, and 

M2 be languages that satisfy L, c M, and L, c M2. 
If L, U L, is ambiguous, then M, U M2 is ambigu- 

ous. Furthermore, if L, 0 L, is ambiguous, then 
M1 0 M2 is ambiguous. 

An algebraic formula built in terms of these 
operations on languages will be called a language 
expression. Definitions 2.1 and 2.2 describe the 
ambiguity of single language operations; they can 
also be extended to general language expressions. 

Definition 2.4. A language expression is called 
ambiguous if one or more of the operations into 
which it is decomposed is ambiguous. 

Property 2.5. It can be shown that a language 
expression of the form L, U L, U . . . U L, is am- 

biguou.siffL,~L,+~forsomel<i<j<n. 

Property 2.6. It can be shown that a language 
expression of the form L, 0 L, 0 . . . 0 L, is ambigu- 

ous iff there exist strings xi, y, E L;, i = 1,. . . , n, 
such that x,x1 . . . x, = y, y, . . . yn and xi # y, for 

somel<i<n. 

The definition of context-free languages by a 
CFG can be expressed as the solution to a system 
of algebraic equations. The unknowns in these 
equations are the languages of the various non- 
terminals in the grammar. The equations contain 
language expressions that are formed from the 
right-hand sides of the productions in the gram- 
mar. More specifically, we first group all produc- 
tions A -+ q, A -+ a*, . . . , A -+ a,, of a nontermi- 
nal A into the form A + a, Ia2 ] . . * ] LY,,. This 
“composite” production for A can then be trans- 
formed into the equation L(A) = L(aI 1 a2 1 . . . 
( a,) that “defines” the language L(A), based on 
the following simple transformations. 

l L(%I%I ... I%> 
= L(q) UL(az) u ... u L(a,). 

l L(X,X,... x,) = L(X,)o L(X,)Q ... 0 L(X,). 

l Fort~T, L(t)= {t}. 

l L(e) = {E}. 
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Therefore, to each nonterminal A in a CFG corre- 
sponds an equation L(A) = le defining L(A). 

The language expression le, the defining expres- 
sion of L(A), has the form of unions of con- 
catenations of languages. Collectively, the defini- 
tions of the nonterminal languages form a com- 
plete system of language equations that determine 
a unique minimal solution for each of these lan- 
guages. For a comprehensive treatment of this 
algebraic view of context-free languages, the reader 
is referred to [5]. 

Definition 2.7. The language L(A) of a nontermi- 
nal A in a CFG is ambiguously defined if the 
language expression in the equation defining L(A) 

is ambiguous. A CFG is algebraically ambiguous if 
the language of one or more of its nonterminals is 
ambiguously defined. 

Theorem 2.8. A CFG without useless nonterminal 
symbols is algebraically ambiguous iff it is ambigu- 
ous (in the traditional sense). 

Proof. (-) Let us assume that a grammar is 
ambiguous in the traditional sense. Consider two 
distinct parse trees, T and T’, with the same root 
label A and the same frontier x. There are two 
possibilities: 

(a) The top children nodes in the two parse 
trees are different. This means that the top level 
decompositions in the two trees use two different 
productions, A + aI and A -+ a,_, respectively. 
This implies that L(a,) U L(a,) in the equation 
defining L(A) is ambiguous, since x E L( a,) n 
L(%). 

(b) The top children nodes in the two parse 
trees are the same, meaning that the top level 
decompositions in both trees are based on the 
same production, say A -+ X, . . . X,. Each of the 
two trees is decomposed into n subtrees, T,, _ . . , T, 
and T,‘, . _. , T,‘, respectively. Let xi,. . . , x, be the 
frontiers of T,, . . . , T, and xi,. . . , x,: be the fron- 
tiers of T,‘, . _ _, T,‘, respectively. Clearly, we have 

I x1 _. . x, = x1 . . . XL = x. Two possibilities arise: 
(1) x, # x,’ for some 1 < i < n. In this case, the 

language expression y X, ) 0 . . * 0 L( X,) in 
the equation defining L(A) is ambiguous. 
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(2) x, = x: for all 1 < i < n. In this case, for 
each 1 < i =z n, 7; and 7;’ have the same 
root, Xi, and the same frontier, x,. Since 
T # T’, some q must be different from T,‘, 
and we can then apply the same approach 
to each of the tree pairs. This process will 
eventually terminate under case (a) or case 
(bl), since each subtree is shorter than its 
parent tree. 

This shows that traditional ambiguity implies al- 
gebraic ambiguity. 

(-) Let us assume that the definition of some 
L(A) has a union-ambiguity. This means that 
there are two productions A -+ (pi and A + (Y~ of 
A such that L((Y~) f? L((Y,) Zfl. It follows that for 
every x E L(a,) n L((Y~) there are two distinct 
parse trees with root A and frontier x, differing at 
the top-level decomposition because one tree uses 
production A -+ ~yi and the other A -+ (Ye. 

Now, let us assume that the definition of some 
L(A) has a concatenation-ambiguity. This means 
that there is a production A + X,X,. . X,, such 
that t( X,)0 L( X2)0 . . . 0 L( X,,) is ambiguous. 
This, in turn, implies that there are strings x,, 
Y, E L( X,), i = 1,. . . , n, such that x1x2.. . x, = 

YIYZ... y, = x and xi # y, for some 1 < i 6 n. 
Therefore, there are two distinct parse trees with 
the same root A, the same frontier x, and the 
same top-level decomposition via the production 
A + X, . . . X,, differing in the subtrees with root 
X, that have different frontiers, namely x, and y,, 
respectively. 0 

3. Undecidability of concatenation-ambiguity 

The problem of detecting ambiguity in CFGs 
can be shown to be undecidable by reducing Post’s 
correspondence problem (PCP) to it. The proof, 
reproduced below, is basically the one found in 
[8]. An instance PCP(A, B) of Post’s correspon- 
dence problem consists of two lists of strings over 
a common alphabet 2, A = wi, w2,. . . , w, and 
B = ul, u2,. . . , uk. The instance PCP(A, B) has a 
solution iff there exists a sequence i,, i,, . . . , i, of 
integerssuchthatn>l,l<ij<kforj=l,...,n, 
and 

w,,wi*_.. w, = UI,u,2... Ui . II n 

Let A = wi, w,,..., w, and B=u,, Us,..., uk 
be the lists of strings over 2 in an instance of a 
PCP(A, B). Also, let ui, u2,. . . , uk be k distinct 
symbols not in 2, and consider the following 
CFG corresponding to the PCP(A, B). 

S-, WIU, 

W+w,Wa,Iw,a;, i=l,.._, k, 

U -+= u,Va, 1 u,ui, i = 1,. . . , k. 

Clearly, the PCP(A, B) has a solution iff this 
grammar is ambiguous. See [8] for details. 

Now, since a,, u2, . . . , uk are distinct symbols 
not in 2, this grammar can be ambiguous if and 
only if the union L(W) U L(U) implied in the 
definition of S is ambiguous. In other words, the 
ability to decide whether the union of two 
context-free languages is ambiguous is all that is 
needed to solve PCP. The above proof leaves open 
the decidability question for the problem of de- 
tecting ambiguity of concatenation of context-free 
languages. As we show next, this problem is unde- 
cidable too. 

Theorem 3.1. The problem of union-ambiguity de- 

tection is reducible to the problem of concatenation- 

ambiguity detection. 

Proof. Let L and M be two languages over a 
common alphabet 2. Let us suppose that we want 
to determine whether or not L U M is ambiguous, 
i.e., whether or not L n A4 # 0. Let $ be a symbol 
not in 2, and consider the languages L’ = L 0 {$) 

U {c} and M’=Mo{$} U {c} over the alphabet 
_Z u {$}. We wiil show that L u M is ambiguous 
iff L’ 0 M’ is ambiguous. 

( - ) Let’s assume that L U M is ambiguous, 
and let x E L n M. Consider y, = x$ E L’, z1 = c 
EM’ and y2 = E E L’, z2 = x$ E M’. Clearly, 

y,z, = y2z2 = x$, and y, Z y2, z, f z2. Therefore, 
L’ 0 M’ is ambiguous. 

( - ) Let us assume that L’ 0 M’ is ambiguous, 
and consider y,, _y2 E L’, y, f yz, and z,, z2 E M’, 
z1 f z2, such that y,zi = y2z2. Since y, f y,, w.1.o.g. 
let y, be the longer of the two strings. Since 
y, #E, y, must have the form y$, where y E L. 
Since y, must be a prefix of y, and y cannot 
contain $, y2 can only be E. Therefore, we have 
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y$z, = z2. Since z2 f E, z2 must have the form z$, 
where z E M. Therefore, we have y$zr = z$. Since 
z cannot contain $, z, must be e. Therefore, we 
have y$ = z$, which implies y = z, which implies 
that L f~ M # $3, i.e., that L U M is ambiguous. 

0 

Theorem 3.2. The problem of concatenation-am- 
biguity detection for context-free languages is unde- 
cidable. 

Proof. If L and M are context-free languages, the 
languages L’ = L 0 {$} U { z } and M’ = A4 0 { $} 
u (c} used in the proof of Theorem 3.1 are both 
context-free. It follows that for context-free lan- 
guages the union-ambiguity detection is reducible 
to the concatenation-ambiguity detection. q 
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