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Abstract

We consider a set of users wishing to receive a service in an asynchronous distributed
system. Users in the system declare their wishes and then wait to gain admittance to be
served. For such systems, it is essential to decide the temporal order among these wishes.
The mutual exclusion problem and its generalizations, such as the 4-exclusion problem and the
group mutual exclusion problem, cope with the process to determine the temporal order among
objects occurred. It is not hard to design suitable algorithms for solving these problems in the
multi-writer/reader shared memory model. However, in general, it is difficult to implement such
algorithms in the single-writer/multi-reader shared memory model. This paper is a survey of
the progress of algorithms for these problems in the asynchronous shared memory model.

1. Introduction

A distributed system is a collection of individual computing devices called processes or
processors together with communication channels [6] [26]. Processes can communicate with other
processes through communication channels in a network or through shared memory (variables)
as a communication model The communication model discussed in this paper is the latter type, ie.,
the asynchronous shared memory model. The shared memory is an abstraction of asynchronous
interprocess communication, where the senders and the receivers correspond to the writers and
the readers, respectively. Each process in a distributed system is generally performed by its
own program, but it is occasionally requested to collaborate with other processes.

Interactions between a process and its corresponding user are by input actions from the user
to the process and by output actions from the process to the user. Each process is considered to
be a state machine. All communication among the processes is via the shared memory (variables).
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This model is known as an 1/O automaton [2, 26]. In the multi-writer/reader shared memory
model, the same shared variable may be read or written by different processes. In one step,
a process can either read or write a single shared variable. Thus, the two actions involving
process i and variable x are
(1) (read action) Process i reads variable x and the value read is used to modify the state of
process i.
(2) (write action) Process { writes a value determined by the current state of process i to
variable x.

The behavior of operation executions should be required to be consistent for all processes and
interprocess communication. We therefore need a unified theory of shared memory consistency
(13, 23, 24, 25, 31, 39]. Lamport [23] defined three categories, safe, regular, and atomic, for shared
variables according to possible assumptions about what can happen in the concurrent case of
read operations and write operations. A shared variable is safe if every read operation, that
does not overlap with any write operation, returns the last value written to the shared variable.
On the other hand, every read operation that overlaps with one or more write operations may
return any value from the domain of the shared variable. A shared variable is said to be regular
if every read operation returns either the last value written to the shared variable before
the start of the read operation or a value written by one of the overlapping write operations.
A shared variable is said to be atomic if it is regular with the additional property that read
operations and write operations behave as if they occur in some total order. In this survey
paper, we assume that all shared variables are afomic. That is, we assume that there is a
possible linearization of the temporal order of read operations and write operations such that the
linearization is consistent with the actual behavior of the system, although these operations may
be physically overlapped.

Even if different processes try to write on the same variable at nearly the same time, one
process’s writing precedes the other process’s writing. That is, the contents of the shared
variable written by the earlier one is changed to the value written by the later one even if these
two events occur very closely.

The mutual exclusion is one of the most fundamental problems for distributed computing, and
historically it was first seriously studied by Dijkstra [8] as an important problem for a distributed
operating system. It is the problem of how to allocate a single indivisible, non-sharable resource
among 7 users. A user with access to the resource is modeled as being in a critical region (ie.
admitted state to use the resource). When a user is not involved in any way with the resource,
it is said to be in the remainder region. In order to gain admittance to its critical region, a user
executes a trying protocol. The duration from the state of executing the trying protocol to
the entrance of the critical region is called the trying region. After the end of the use of the
resource by a user, it executes an exit protocol. The duration of executing the exit protocol is
called the exit region. Each user follows a cycle, moving from its remainder region to its trying
region, then to its critical region, then to the exit region, and finally back to its remainder region.
This cycle can be repeated.

The mutual exclusion problem is to design a fair and efficient algorithm to decide the temporal
order among users wishing to use a shared resource [5, 6, 22, 23, 26, 29, 30]. The system to solve
the mutual exclusion problem should satisfy the following conditions:
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(1) There is no reachable system state in which more than one user is in the critical region.

(2) If at least one user is in the trying region and no user is in the critical region, then at
some later time point some user enters the critical region.

(3) If a user is in the exit region, then at some later time point some user enters the
remainder region.

Conditions (1), (2), and (3) above are called mutual exclusion, progress for the trying region, and
progress for the exit region, respectively. If a mutual exclusion algorithm satisfies the following
two conditions, too, it is said to be lockout-free:

(4) If all users always return the resource, then any user that reaches the trying region
eventually enters the critical region.
(5) Any user that reaches the exit region eventually enters the remainder region.

An early algorithm for the mutual exclusion problem by Dijkstra [8] guarantees mutual
exclusion and progress for both the trying region and the exit region, but it does not guarantees
lockout-freedom. That is, the Dijkstra’s algorithm may allow one user to be repeatedly granted
for access to its critical region while other users trying to gain access never succeed in doing so.

A number of generalizations of the mutual exclusion problem have been proposed. These
include the k-exclusion problem [3, 11, 27, 28), the group mutual exclusion problem [12, 19, 21, 35,
36), and the group k-exclusion problem [20, 33, 37, 38].

2. Mutual Exclusion in the Multi-Writer Shared Memory Model

The following procedure, n-processME, is well known lockout-free mutual exclusion algorithm,
called the n-process algorithm in the multi-writer/reader shared memory model. The algorithm
was first introduced by Peterson [29]. In order to analyze its time efficiency we describe it as a
program in the I/O automata model as given in [26];

procedure n-processME
shared variables
foreveryk € |l,...n-1}
turn (k) € {1, ... n |, initially arbitrary, writable and readable by all processes;
foreveryi € 1{1,... 1}
flag () €10, ... n - 1}, initially 0, writable by i and readable by all j + i ;
process #:
input-actions {inputs to process i from user Ui }: try, exit; ;
output actions joutputs from process ¢ to user Ui }: crt; rem,; ;
** Remainder region **
try; :
for 2 =1 to n» - 1 do begin
fag )=k, turn(h) =1 .
waitfor [Vj + i:flag() <klor[turn (k) + i{] end :
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crit;;
** Critical region **
exit; :

flag ()= 0;

rem; ;

In n-processME, turn variables (turn (k), k = 1, .. n - 1) are multi-writer variables, while flag
variables (flag (%), k = 1. .. n) are single-writer shared variables. An exponential time bound, 2"'¢
+ O(2"nd) for the trying region of the n-process algorithm is given in [26), where » is the number
of processes, 4 is an upper bound on the time between successive two steps, and ¢ is an upper
bound on the time that any user spends in the critical region. As shown in Theorem 2. 2, a finer
analysis can give a polynomial time bound for the trying region of n-processME.

Theorem 2. 1 [26, 29]: n-processME solves the mutual exclusion problem, and it is lockout-free.

Theorem 2. 2 [16}: In 7n-processME, the time from when a particular process enters its trying
region until it enters its critical region is at most O(x’ +n'd).

The following two algorithms by Igarashi and Nishitani [16), n-processFMEI and n-process
FMEZ, are modifications of n-processME. By any of these modifications we can significantly
speed up the original z-process algorithm,

procedure n-processFME]
shared variables: the same as the shared variables of n-processME
process 7 :
input/output actions: the same as the input/output actions of #-processME
** Remainder region **
lry; .
for #=1to n - 1 do begin
Slag ()= Fk; turn (By=1;
waitfor [Vj # {: flag () is not in {k k£ + 1} or [turn (k) + i}
end;
crit; ;
** Critical region **
exit;
Slag (= 0;
rem; ;

procedure n-processFME2

shared variables: the same as the shared variables of n-processME

process ¢ :
input/output actions: the same as the input/output actions of #-processME
** Remainder region **
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try;
for k=1 to » - 1 do begin
flag =k ; turn (B) =1,
waitfor [V j *+ ¢: flag () < kRl or [turn (k) + 7]
end;
crit;;

** Critical region

exit; :
for k== n - 1 downto 1 do turn (k)= i ;
flag (= 0;

rem; ;

Theorem 2. 3 [16): n-processFME1 solves the mutual exclusion problem, and it is lockout-free.

Theorem 2. 4 [16]: In n-processFME]I, the time from when a particular process has just
entered its trying region until it enters its critical region is at most (2z - 3)c + O{n’d ).

Theorem 2. 5 [16]: #-processFMEZ solves the mutual exclusion problem and it is lockout-free.

Theorem 2. 6 [16]: In n-processFMEZ2, the time from when a particular process has just
entered its trying region until it enters its critical region is at most (# - 1)c + O@’d ).

The k-exclusion problem is a natural generalization of the mutual exclusion. In k-exclusion, up
to k processes are allowed to be concurrently inside the critical region, where corresponding
users can use the resource. This generalization was defined by Fischer et al. in the shared
memory model [11]. We can easily design algorithms for the k-exclusion problem if we are
allowed to use multi-writer/reader shared variables as shown in [27, 28].

3. Tournament Algorithms in the Multi-Writer Shared Memory Model

The tournament algorithm for the mutual exclusion problem was originated by Peterson and
Fischer [30]. Since the original one was not clearly described in the shared memory model, we
quote here the algorithm from [26]. For simplicity, we assume that the number of processes, »
is a power of 2. The algorithms in this chapter are described on the complete binary tree, called
the tournament tree, with »z leaves. The leaves of the complete binary tree are labeled as 0, 1, ...,
n - 1 in binary representation. For each 0 < i < » - 1, process { is associated with the leaf with
label 7. Each internal node in depth % of the complete binary tree, 0 = & =< log # - 1, is labeled
as the high-order % bits of the binary representation of any of its descendants. Note that the root
of the tournament tree is labeled as A. the null length string.

The following notations will be used to describe the original tournament algorithm and the
modified tournament algorithm on the »#-leaves tournament tree.

« comp(i, k) is the ancestor of { in depth % (i.e., the high order % bits of the binary
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representation of 7 ). Note that comp(i, log n) is the leaf associated with 7.

- role(i, k) is the (& + l)st high-order bit of 7, (ie. role(i, k) indicates whether the leaf 7 is a
descendant of the left or right child of the node for comp(s, ).

* opponents(z, k) is the opponents of process ¢ in the depth k competition of process ¢ (i.e., the
set of processes with the high-order & bits as i and the opposite (& + 1)st bit.)

* opposite(s, k) is the son of comp(i, k) that is not an ancestor of 7,

procedure n-tournamentME
shared variables
for every binary string x of length at most log # - 1:
turn(x) € {0, 1), initially arbitrary, writable and readable by those processes ¢
for which x is a prefix of the binary representation of ; :
foreveryi, 0=<isn-1
flagli) €0, 1, ..., log » }, initially log #, writable by 7 and readable byallj #i;
process ¢ :
input actions finputs to process ¢ from user U, | : try;, exit; ;
output actions foutputs from process ¢ to user U, |: crit; , rem; ;
* Remainder region **
try; .
for £ = log # - 1 downto 0 do begin
Slagli) = k;
turn(comp(t, k) == role(;, k);
waitfor [Vi€opponents(i, k) : flagj) > k) or [turnicomp(i, k) + role(i, k)]
end;
crit;;
** Critical region **
exit; :
Slogli) =log n;

rem;

Theorem 3. 1 (26] : In n-tournamentME, the time from when a particular process enters its
trying region until it enters its critical region is at most (n - I)c + O(%d).

Igarashi et al. [15) modified n-tournamentME to speed up the running of the original algorithm.
For the modified n-tournament algorithm, procedure n-tournamentFME, each node of the
n-leaves tournament tree, not only each leaf but also each internal node, is associated with a flag
variable.

procedure n-tournamentFME
shared variables
for every binary string x of length at most logn-1:
turn(x): the same as turn(x) in n-tournamentME :
for every binary string x of length at most log 7n:
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Sflaglx) € |0, 1}, initially 0, writable by those processes 7 for which x is a prefix of the
binary representation of ¢, and readable by those processes for which ¢ is a descendant
of the parent of x, but the i's bit, at the position corresponding to the last bit of x, is
opposite from x ;
process i :
input/output actions: the same as the input/output actions of »n-tournamentME
** Remainder region **
try; :
for 2 = log n - 1 downto 0 do begin
Aag(comp(s, k + 1)) = 1;
turn(comp(i, k) .= rolels, k),
waitfor [Aaglopposite(i, k) = 0] or [turn(comp(s, k) + role(i, k)]
end;
crit; ;
** Critical region **
exit; :
fork=0tologn-1do
Saglcompli, k + 1)) = 0;

rem;;

Theorem 3. 2 [15] : In n-tournament FME, the time from when a particular process enters its
trying region until it enters its critical region is at most (# - )¢ + O(nd).

4. Mutual Exclusion in the Single-Writer Shared Memory Model

In the single-writer/multi-reader shared memory model, each variable can be written by only
one process, but may be read by any process. Algorithms described in the previous chapters
use multi-writer shared variables. Because multi-writer shared variables are often difficult to
implement, it is worth to study algorithms that use only single-writer shared variables. The first
algorithm in this chapter was invented by Burns [7], and called Burns’ algorithm (BurnsME).

procedure BurnsME
shared variables:
foreveryil =i S nm
fag(y) € {0, 1}, initially 0, writable by ¢ and readable by all j # ¢ ;
process { :
input/output actions: the same as n-processME
** Remainder region **
try;
L: Sag(t) = 0;
forj, 1=7j=<i/-1do
if flag(f) =1 then goto L;
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Aagl)) = 1;
forj1=<j7;=<i-1do
if flag() =1 then goto L;
M: forj i+1=j<ndo
if flag) =1 then goto M:;
crit;;
** critical region *
exit;
fag(d) = 0;

rem;;
Theorem 4. 1 [26) : BurnsME satisfies mutual exclusion, and guarantees the progress condition.

As stated in Theorem 4. 1, BurnsME solves the mutual exclusion in the single-writer/multi-
reader shared memory model. However, it does not guarantee lockout-freedom. In the worst
case, some process never obtains the admittance to enter its critical region even if it always
wishes to do so. This is a serious deficiency of BurnsME.

The Bakery algorithm for the mutual exclusion problem guarantees lockout-freedom and
a good time bound. It is accredited to Lamport [23), and works like a queue of customers in
a bakery, where customers draw tickets. The following procedure n-Bakery is the Bakery
algorithm quoted from [6, 26]. The relation among pairs of integers is used in the algorithm,
The relation (@, 5) < (a’, 5’) means that @ < a’,ora=a' and b < b'. The entry section of the
Bakery algorithm begins with a part called the doorway, where processes in the trying region
obtain their tickets. Then processes with their tickets proceed to execute the major part of the
algorithm. If process ¢ completes execution of the doorway, before process j begins the doorway,
process ¢ enters the critical region before 7 does so. In this sense, the Bakery algorithm satisfies
the first-in first-served property.

procedure n-Bakery
shared variables
foreveryi € 1{1,..., n})
choosing(d) € {0, 1}, initially 0, writable by i and readable byallj+1:;
ticket{s) € N, initially 0, writable by 7 and readable byallj#:;
process {
input actions {inputs to process i from user Uil try;, exit;
output actions foutputs from process ¢ to user U, } : crit; , rem; ;
** Remainder region **
try; :
choosing(i) = 1;
ticket(d) =1 + max;,; {ticket;} ;
choosing(i) = O;
for each j # ¢ do begin
waitfor choosing(s) = 0;
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waitfor ticket(s) = 0 or (ticket(i), i ) < (ticket(s), ;) end;
crit; ;
* Critical region **
exit; :
ticket(s) .= 0;

rem; .

Theorem 4. 2 [23]: The Bakery algorithm satisfies mutual exclusion, and guarantees lockout-
freedom.

Theorem 4. 3 [26]: The running time for the trying region by z-Bakery is bounded by (z - 1)c
+ Olr’d)

An unattractive property of the Bakery algorithm is that it uses unbounded size of shared
variables.

5. Mutual Exclusion Algorithms Based on Bounded Tickets

Takamura and Igarashi [32, 34} proposed a simple algorithm based on bounded tickets for the
mutual exclusion problem in the asynchronous single-writer/multi-reader shared memory model.
They initially modify the Bakery algorithm so that it requires only bounded size single-writer/
multi-reader shared variables. This provisional version guarantees mutual exclusion under the
condition that at least one user, who is trying to use the resource or using the resource, can
be observed at any point in time after a user first tries to use the resource. In order to remove
this condition they use an additional process in their algorithm, z#-bmexc. It guarantees lockout-
freedom, mutual exclusion, and the first-in first-out property. The existence of an additional
process may be unattractive feature, but the shared memory size for their algorithm is smaller
than that of the algorithm given by Abraham [1] and that of the algorithm by Jayanti et al [18).

In the following procedure, a ticket held by a process is a pair of a ticket number and the
process identifier. Function scanticket () scans all shared variables ticket(s) (1 < j < #) and returns
the set of tickets observed by a process in its trying region. Function rmaex(S) returns the largest
ticket number in set S if S is not the empty, and otherwise it returns - 1. Function prev(S)
returns the identifier of the largest process that is smaller than process 7 in the order of pairs of
ticket numbers and process identifiers if process  is not the smallest one in S, and otherwise it
returns an arbitrary identifier except for ¢ itself.

procedure n-bmexcl
shared variables
foreveryi € {1,2,....n+ 1}
choosing(i) € |0, 1}, initially 0, writable by ¢ and readable by all j #;
ticketll) € {-1,0, ... 4n -2}, initially - 1 for | £ { < n and 0 for { = » + 1, writable by ¢
and readable by all j #: ;
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processi (forl <i<n)
input/output actions: the same as the input/output actions of #-Bakery
try;:
choosing(t) == 1;
ticket(s) := (1 + rmax(scanticket ())) mod 4n - 1;
choosingli) :== 0;
index =11,2,..., n+1};
while index + ¢ do
for each j Eindex do
if choosing() = 0 then index = index - |j};
J = prev; (scanticket ());
waitfor ticket(s) = - 1 or (ticket(s), i ) < (ticket (4), 7 );

crit; ;
** Critical region **
exit; .

ticket (i) == - 1;
rem; ;

processn + 1
input/output actions: none
repeat
choosing (n + 1) = 1;
ticket (n + 1) := (1 + rmax (scanticket () - |ticket (n + 1)})) mod 47 - 1
choosing (n + 1) = Q;
index =1{1.2,...,n,n+1};
while index + ¢ do
for each j € index do
if choosing (j) = 0 then index := index - {f};
J = brev,,, (scanticket();
waitfor ticket (j) = - 1 or (ticket(n + 1), n + 1) < (ticket(s),  );
waitfor [scanticket ()| = 2;
forever;

Theorem 5. 1 [32, 34] : For any execution by procedure z-bmexcl, mutual exclusion and
lockout-freedom are satisfied, and the time from when any user requests to use the resource
until it is allowed to be bounded by (% - 1)c + O(nd). The total size of shared memory needed by
it is (7 + 1)(3 + log ») bits.

6. The Group Mutual Exclusion Problem

Group mutual exclusion is an interesting generalization of the mutual exclusion problem. This
problem was introduced by Joung [20], and some algorithms for the problem have been proposed
[12, 19, 20, 21]. Group mutual exclusion is required in a situation where a resource can be shared
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by processes of the same group, but not by processes of different groups. As stated in [19], in
some applications such as computer supported cooperative work (e.g., a video-conference system
with an electronic white board), it is necessary to impose mutual exclusion on different groups of
users in accessing a resource, while allowing users of the same group to share the resource. A
combination of k-exclusion and group mutual exclusion was also studied [33, 38). The algorithms
given [19, 33, 37, 38] use multi-writer/reader shared variables that may be concurrently written
in the asynchronous shared memory model. The algorithms given in [12, 21] use #° and » multi-
writer/reader shared variables, respectively that are never concurrently written.

Group mutual exclusion can be described as the congenial talking philosophers’ problem.
We assume that there are » philosophers. They spend their time thinking alone. When a
philosopher is tired of thinking, he/she attempts to attend a forum. We assume that there is
only one meeting room. A philosopher wishing to attend a forum can do so if the meeting room
is empty, or if some philosophers interested in the same forum as the philosopher in question
are already in the meeting room. The congenial talking philosophers’ problem is to design as an
algorithm such that a philosopher wishing to attend a forum will eventually succeed in doing
so. Philosophers interested in the same forum as the current forum in the meeting room should
be encouraged to attend it. This type of performance is measured as concurrent frequency. It
is undesirable that the maximum waiting time for a philosopher wishing to enter a forum is too
long.

Takamura and Igarashi [35, 36] proposed two algorithms based on ticket orders for the group
mutual exclusion problem in the asynchronous shared memory model. These algorithms are
some modifications of the Bakery algorithm. They satisfy lockout freedom and a high degree of
concurrency performance. Each of these algorithms uses single-writer shared variables together
with only two multi-writer shared variables that are never concurrently written. One of their
algorithms has another desirable property, called smooth admission. By this property, during the
period that the resource is occupied by the leader called the chair, a process wishing to join the
same group as the leader’s group can be granted use of the resource in constant time. The full
description of these algorithms is given in [32, 35, 36).

The concurrency performance of the algorithms by Takamura and Igarashi [35, 36] is also
superior to the algorithms in [12, 21), since their algorithms have properties of unbounded
concurrent frequency, overtaking admission, and a property of smooth admission. However, they
are not wait-free in the exit region. A wait-free operation means that it finishes its execution
within a bounded number of its own steps, irrespective of the presence of other operation
execution and their relative speeds [25, 39]. An execution by each of their algorithms takes c +
O(nd) time in the exit region. This is obviously a disadvantage of them. Another disadvantage of
their algorithms is that the ticket domain is unbounded, as in the Bakery algorithm. At present
we do not know whether we can simply modify their algorithms by using a similar technique
given in [1, 17, 30] so that the ticket domain is bounded.

7. Bounded Concurrent Timestamps

It is only required that every process keeps track of which process wrote last in order to
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determine the temporal orders among objects written in shared variables. It is easy to realize
this function in the multi-writer/reader shared memory model. Specifically, the xzr» function,
used in the algorithms in Chapters 2 and 3, allows each process in the trying region to decide if
it is the last one to enter there. However, the realization of multi-writer/reader shared variables
requires significant overhead. If we are allowed to use unbounded timestamps, the actions of
multi-writer/reader shared variables can be easily simulated by single-writer shared variables.
Israeli and Li raised the question of the general and universal notion of a bounded concurrent
timestamp system, and eventually solved it by tracking the order of events in a concurrent
system [17]. Israeli and Li constructed a bit-optimal bounded timestamp system for sequential
operation executions. As stated in [39], their sequential timestamp system was published in
[17], but the preliminary timestamp system given in the conference proceedings has not been
published in journal form yet. The first generally accepted solution to the concurrent case of the
bounded timestamp system is due to Dolev and Shavi [9]. Some other constructions of bounded
concurrent time stamps can be found, for example, in [10, 14).

The bounded concurrent timestamp system is a useful tool when we design algorithms
for determining the temporal order of objects written in single-writer shared variables. For
example, Afek et al. [2, 3] gave a first-in and first-enable solution to the %-exclusion problem
using bounded concurrent time-stamps. However, bounded concurrent time-stamp schemes
usually contain complicated constructions. In general, a formal proof of the correctness of such
a construction is very hard to be clearly described. In fact, early versions of some conference
papers about bounded concurrent timestamps did not promptly appear as journal papers due to
the doubt of their correctness.

The multi-writer/reader shared variables, called turns, used in [15, 16, 27 - 30] serve to decide
the temporal order among waiting processes. There, every process wishing to use a resource
can write its identifier to an appropriate multi-writer/reader variable, and by checking the value
of this variable any process can easily decide which process is the last writer, or implicitly,
which process was the last to enter the trying region. The turn variable/function is useful
to solve problems such as the mutual exclusion problem and the k-exclusion problem, in the
asynchronous shared memory model where a determination of a temporal order of events is
required. Altman et al. [4] proposed an algorithm, called procedure n-turn, for the turn function
in the single-writer shared memory model. The algorithm does not use time-stamps, and it
satisfies lockout avoidance, even in the presence of up to # - 2 process failures of stopping
type. By using procedure 7-turn, the algorithms given in [15, 27 - 30} can also be implemented,
without using timestamps, in the single-writer/multi-reader shared memory model. However, the
formal proof of its correctness seems to be complicated. The informal proof given in (4] should
be improved although we are convinced the procedure #-turn is a correct algorithm.

8. Concluding Remarks

We have described a number of previous works on algorithms for determining the temporal
orders among objects written in shared variables. Each construction of these algorithms
contains intere_sting ideas, but they are not optimal. We may be requested to design more
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efficient algorithms concerning temporal relations in the asynchronous distributed systems. It is
particularly interesting to find efficient and clear techniques for simulating multi-writer shared
variables by single-writer shared variables. These would be worthy of further investigation.
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