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Abstract- Association rule mining (ARM) is an important task 

in data mining. This task is computationally intensive and 

requires large memory usage. Many existing methods for ARM 

perform efficiently on either sparse or dense data but not both. 

We address this issue by presenting a new approach for ARM 

that runs fast for both sparse and dense databases by detecting 

the characteristic of data subsets in database and applying a 

combination of two mining strategies: one is for the sparse data 

subsets and the other is for the dense ones. Two algorithms, FEM 

and DFEM, based on our approach are introduced in this paper. 

FEM applies a fixed threshold as the condition for switching 

between the two mining strategies while DFEM adopts this 

threshold dynamically at runtime to best fit the characteristics of 

the database during the mining process, especially when 

minimum support threshold is low. Additionally, we present 

optimization techniques for the proposed algorithms to speed up 

the mining process, reduce the memory usage and optimize the 

UO cost. We also analyze in-depth the performance of FEM and 

DFEM and compare them with several existing algorithms. The 

experimental results show that FEM and DFEM achieve a 

significant improvement in execution time and consume less 

memory than many popular ARM algorithms including the well

known Apriori, FP-growth and Eclat on both sparse and dense 

databases. 

Index Terms- data mInIng, frequent pattern mInIng, 

association rule mining, frequent itemset, transactional database 

I. INTRODUCTION 

Association rule mining (ARM) aims at discovering rules 
specifying the frequency co-occurrence of groups of item sets, 
subsequences, or substructures in a database. For example, an 
association rule of retail data may be of the form "70% of 
customers who buy milk and butter also buy bread with 
confidence 90%". ARM is one of fundamental tasks in data 
mining. Since its first introduction for sales analysis [1], ARM 
has been broadly applied in many fields such as market 
analysis, biomedical and computational biology research, web 
mining, decision support, telecommunications alarm diagnosis 
and prediction, and network intrusion detection [2]. Google 
uses this mining task for their query recommendation system 
[4]. 

Several studies have shown that ARM methods have 
typically worked well for certain types of databases. Most 
methods performed efficiently on either sparse or dense 
databases but poorly on the other [1, 5, 6, 7, 8, 9, 10, 11]. Table 

I presents the execution time of three well-known algorithms 
Apriori [1], Eclat [5] and FP-growth [6] on sparse and dense 
databases which shows Eclat perform best on dense data while 
FP-growth run fastest on the sparse ones (the best execution 
times among the three algorithms are underlined). Therefore, it 
is difficult to select a suitable algorithm for a specific 
application. Moreover, data mining components in database 
management systems and statistical software usually require 
mining methods that stably perform on various data types. 

TABLE! . EXECUTION TIME (SEC.) ON SPARSE AND DENSE DATABASES 

Databases Type Minsup Apriori Eclat FP-growth 

Chess Dense 20% 1924 TI 89 

Connect Dense 30% 522 366 403 

Retail Sparse 0.003% 18 59 l.Q 
Kosarak Sparse 0.08% 4332 385 144 

Contributions: Most databases consist of both dense and 
sparse data portions that can only be detected during the 
mining process. Applying single mining strategy for ARM will 
omit this feature and result in unstable performance on 
different data types. In this paper, we present a novel high 
performance approach for ARM that can self-adapt to data 
characteristics. The main contributions of our study include: 

1) The recognition of various characteristics of databases 
and the fact that this characteristics may change during 
the mining process is an original idea. The new approach 
presented in this paper detects the data characteristics at 
various stages of the mining process, and selects one of 
the two mining algorithms suitable for each subset of the 
data remaining to be mined on the fly. Two algorithms 
FEM and DFEM derived from the proposed approach are 
discussed. 

2) Effective optimization techniques are introduced for the 
implementation of our mining approach to further speed 
up the mining process, reduce the memory usage and the 
110 cost. 

3) The efficiency of our approach is demonstrated in both 
execution time and memory usage via the benchmark of 
our algorithms (FEM and DFEM) with six other ARM 
algorithms including Apriori [1], Eclat [5], FP-growth [6], 
FP-growth* [7], FP-array [12], AIM2 [10]. We also 
analyze the reasons for the performance merit of our 
approach. 
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II. BACKGROUND 

A. Problem Statement 

The association rule mining problem can be stated as 
follows: Let 1 = {iI, i2, . . .  , in} be the set of n distinct items in the 
transactional database D. Each transaction T in D contains a set 
of items called itemset and a k-itemset is an itemset with k 
items. The count of an itemset x is the number of occurrences 
of x in D and the support of x is the percentage of transactions 
containing x. Given a database D, the ARM problem is to find 
all strong association rules with the form: X -7 Y I X, Y c I, 
and X n Y = 0 whose support and confidence satisfy two user
specified inputs a minimum support threshold (minsup) and a 
minimum confidence threshold (minconj). The confidence of a 
rule is defined as the percentage of transactions in D that 
contain X also contain Y and is computed as confidence(X -7 
Y) = support(XuY)/support(X). The ARM task involves two 
separate steps: (1) mining all frequent patterns (or frequent 
item sets) from the original database and (2) generating rules 
from these frequent patterns. An itemset a is a frequent pattern 
if a's support is no fewer than minsup. 

TABLE II. SAMPLE DATASET WITH MINSUP = 20% 

Transaction ID (TID) Items Sorted Frequent Items 

l b,d,a a,b,d 
2 c,b,d b,c,d 
3 c,d,a,e a,c,d,e 
4 d,a,e a,d,e 
5 c,b,a a,b,c 
6 c,b,a a,b,c 
7 f 
8 b,d,a a,b,d 
9 c,b,a,e a,b,c,e 

For example, given the database In Table II and 
minsup=20%, the frequent 1-itemsets include a, b, c, d and e 
while f is infrequent because the support of f is only 11 %. 
Similarly, ab, ac, ad, ae, bc, bd, cd, ce, de are frequent 2-
itemsets and abc, abd, ace, ade are the frequent 3-itemset. If 
minconf = 80%, some of all association rules include b�a, 
c �a, d �a, e �a, and c �b because their confidences are larger 
or equal to 80%. In this paper, we use the terms pattern and 
itemset; database and dataset interchangeably. 

B. Association Rule Mining Approaches 

Most current approaches [1, 5, 6, 7, 8, 9, 10, 11] for finding 
association rules utilize the property that a k-itemset is frequent 
only if its sub-itemsets are frequent to significantly reduce the 
search space of frequent itemsets. First, the database D is 
scanned to specify all frequent items (or l-itemsets) in D based 
on the minsup value. After this step, only data of frequent items 
(e.g. the third column in Table II) are used to determine the 
frequent itemsets as well as to generate the association rules. 
This considerably reduces the memory usage and computation 
by avoiding a large amount of infrequent data from loading 
into memory. In next steps, the frequent (k+ l)-itemsets, 
initially with k=l, are discovered using frequent k-itemsets X 
of the previous step. For this purpose, the datasets Dx which 
are subsets of D and contain frequent items Y co-occurring 
with X (X n Y = 0) are retrieved and used to determine the 
frequency of (k+l)-itemsets. Depending on the mining 
methods being applied, Dx can be presented in memory in 
many different data structures such as TID-list [5], Bitmap 

Vectors [3], FP-tree [6], FP-array [12], etc. or even be obtained 
by re-scanning the original database D from disks as in the 
Apriori method [1]. The characteristics of these data structures 
and the behaviors of their mining methods are very different 
which result in their different performance for a given 
database. For example, algorithms like Apriori [1], FP-growth 
[6], H-mine [8], nonordfp [9] and those making use of FP-array 
data structure [12] exploit horizontal format of data and 
perform efficiently on sparse databases (e.g. web document 
data or retail data) while Eclat [5], Mafia [3], AIM2 [10] 
present data in vertical format and run faster on the dense ones 
(e.g. biological sequence data). These mining methods 
perform unstably on different data types as demonstrated in 
Table I. Furthermore, the characteristics of data subsets Dx 
used to mine (k+ l)-itemsets can change from very sparse to 
very dense as the mining task proceeds. Hence, applying a 
suitable mining strategy for each Dx is essential to improve the 
performance of ARM. 

III. A NEW DYNAMIC APPROACH FOR 
ASSOCIA nON RULE MINING 

We focus on solving the first stage of ARM, i.e., 
discovering all frequent patterns in a database because this task 
is computationally intensive and constitutes the majority of 
work complexity while the second stage of generating 
association rules is trivial in comparison. 

A. Data Structures 

ARM is a memory intensive task whose data presentation and 
manipulation have a huge impact on mining performance. In 
our mining approach, we apply two main data structures 
including FP-tree and Bit Vector for the mining task. 

FP-tree is a prefix tree that compacts all sets of ordered 
frequent items from database into memory. This tree consists 
of a header table storing the frequent items with their count, a 
root node and a set of prefix sub-trees. Each node of the tree 
includes an item name, a count indicating the number of 
transactions that contain all items in the path from the root 
node to the current node, and a link to its parent node. Each 
linked list starting from the header table links all nodes of the 
same frequent item. If two itemsets share a common prefix, 
the shared part can be merged as long as the count properly 
reflects the frequency of each item set in the database. Fig. 1 
illustrates an FP-tree constructed from the dataset in Table II 
where a pair <x:y> indicates item name and its count. 

Header 

table 

a:7 , 

b:6 , 

c:5 -

d:5 -

e:3 , 

Figure l .  FP-tree constructed from the database in Table II 



Bit Vector is used to store data in memory using the vertical 
format. This data structure includes item name, count and 
vector of binary bits associated with an item or an itemset. The 
ith bit of this vector indicates if the ph transaction in the 
database contains that item or item set (1: exist, 0: does not 
exist). For example, the dataset in Table II can be presented in 
five bit vectors as in Fig. 2. The bit vector of the item f is 
removed because this item is infrequent. This structure does 
not only save memory but also enables low-cost bitwise 
operations for computations. 

Bit Vectors 
TID Frequeut Items a b c d e 

1 a,b,d 1 1 0 1 0 
2 b,c,d 0 I I I 0 
3 a,c,d,e I 0 I I I 
4 a,d,e I 0 0 I I 
5 a,b,c 1 1 1 0 0 
6 a,b,c I I I 0 0 
7 0 0 0 0 0 
8 a,b,d 1 1 0 1 0 
9 a,b,c,e 1 1 1 0 1 

Figure 2. Bit Vectors constructed from the dataset in in Table II 

B. The Proposed Approach for Association RuLe Mining 

Studying many real databases and their characteristics, we 
observed that most consist of a group of items occurring much 
more frequently than the others. During the mining process, the 
items in this group create data subsets whose characteristic is 
dense while the less frequent items create subsets which are 
sparse. Our approach is combining two mining strategies: (1) 
the first one which is applied for sparse data subsets presents 
data as FP-tree and uses the divide and conquer approach to 
generate frequent patterns; (2) the second strategy which is 
used to mine the dense data portions stores data into Bit 
Vectors and performs ANDing bitwise operation on pairs of 
vectors to specify the frequent patterns. It has been shown that 
the first mining strategy works better on sparse data [6, 7, 9] 
and the second one is more suitable for dense one [5, 10, 11]. 
The proposed approach detects the characteristic of each data 
subset (not whole database) and applies a suitable one for this 
data dynamically. Based on this approach, we develop two new 
algorithms FEM and DFEM which are presented in Section IV 
and V. In general, our mining method includes three main 
subtasks as shown Fig. 3: 

FP -Tree construction 

Figure 3. Mining model of the proposed approach. 

FP-tree construction: Database is scanned for the first 
time to find the frequent items and create the header table. A 
second database scan is conducted to get frequent items of each 
transaction. Then, these items are sorted and inserted in the FP-

tree in frequency descending order. During the top-down 
traversal of the tree construction, if a node presenting an item 
exists, its count will be incremented by one. Otherwise, a new 
node is added to the FP-tree. 

MineFPTree generates frequent patterns by concatenating 
the suffix pattern of the previous step with each item a of the 
input FP-tree. Then, it constructs a child FP-tree called 
conditional FP-tree for every item a using a dataset called 
conditional pattern base, i.e., Ox as discussed in Section II. This 
dataset is extracted from the input FP-tree and consists of sets 
of frequent items co-occurring with the suffix pattern. The new 
tree is then used as the input of this recursive mining task. This 
mining approach explores data in the horizontal format and 
does not require generating a large number of candidate 
patterns. Hence, it performs well on sparse databases. 
However, unlike the related works [6, 7, 9] that perform 
mining on FP-tree only, MineFPTree can switch to the second 
mining strategy when it detects the current data subset is dense. 
In this case, the data subset is converted into bit vectors and 
MineBitVector is invoked. A weight vector w whose elements 
indicate the frequency of sets in the conditional pattern base is 
added as the input of MineBitVector. 

MineBitVector generates frequent patterns by 
concatenating the suffix pattern with each item of the input bit 
vector. It then joins pairs of bit vectors using logical AND 
operation and computes their support using the weight vector 
to specify new frequent patterns. The resulting bit vectors are 
used as the input of MineBitVector to find longer frequent 
patterns. The mining process continues in a recursive manner 
until all frequent patterns are found. For dense data, this mining 
strategy is better than MineFPtree because the number of 
frequent patterns, which is usually found in dense data, make is 
suitable for the candidate generation and test approach of 
MineBitVector. 

Fig. 4 illustrates an example. The conditional pattern base 
of item d, extracted from the FP-tree in Fig. 1, consists of the 4 
sets {a:2,b:2}, {a:l, c:I}, {a:I} and {b:l, c:I} in which (a , b) 
occurs twice (Fig. 4-a). This base is equivalent to the dataset 
represented in Fig. 4-b. If MineFPTree is selected, the 
conditional FP-tree of item d is constructed as in Fig. 4-c. 
Otherwise, the bit vectors a, b, c and the weight vector w (Fig. 
4-d and 4-e) are created instead to be used by MineBitVector. 

{a:2,b:2} 
{a: I, c:I} 
{a: I} 
{b:l, c: I} 

(c) Condittonal pattern base of item d 

Header 

table 

a:4 � 

b:3 � 

c:2 -

TID Items Frequency 

1 a,b 2 

2 a,c 1 

3 a 1 

4 b,c 1 

(b) Dataset eqUtvalent to the 
conditional base of item d 

a b c 

��� 
(c) Conditional FP-tree of item d (d) Bit Vectors (e) Weight vector 

Figure 4. Illustration of FP-tree and Bit Vector construction 



C. Switching Between Two Mining Strategies 

Effective determination of how and when to switch 
between the two mining strategies is key in our approach to 
perform efficiently on different types of databases. During the 
mining process of MineFPTree, thousands or even millions of 
child FP-trees are constructed from the parent tree. A FP-tree is 
organized in such a way that the nodes of the most frequent 
items are closer to the top. The newly generated trees are much 
smaller than their parents because the less frequent items 
whose nodes are at bottom of the parent trees are removed. The 
size of a conditional pattern base which is used to construct a 
new FP-tree also reduces to a level where it contains mostly the 
most frequent items. In these cases, the conditional pattern base 
has the characteristic of a dense dataset. Therefore, only small 
conditional pattern bases are considered for transforming into 
bit vectors and weight vector. The size of a conditional pattern 
base is specified by the number of sets in that base which is 
similar to the number of transactions in a dataset. If this size is 
less than or equal to a threshold K, bit vectors and a weight 
vector are constructed and the mining switches to 
MineBitVector. 

IV. THE FEM ALGORITHM 

FEM uses the method described in Section ill and includes 
three sub algorithms: FEM (Fig.5), MineFPTree (Fig. 6) and 
MineBitVector (Fig. 7). FEM first constructs the FP-tree from 
the database and then calls MineFPTree to start searching for 
frequent patterns and dynamically switch to MineBitVector if 
appropriate. 

FEM algorithm 

Input: Transactional database D and minsup 

Output: Complete set of frequent patterns 

1: Scan D once to find all frequent items 
2: Scan D a second time to construct the FP-tree T 

3: K = 128 

4: Call MineFPTree(T,.0,minsup) 

Figure 5. FEM algorithm 

In FEM, a fixed value of threshold K is used to decide 
whether to apply MineFPTree or MineBitVector during the 
mining process. Our experimental results show that selecting a 
good value of K for FEM is data-specific and depends on the 
user-specified minimum support threshold (minsup). For FEM 
to perform well on many databases, we suggest to choose a 
value of K in the range of 0-256 based on our extensive 
experimental results on many real databases. In Fig.5, we select 
K=128 as a default value but K can be adjusted to obtain better 
performance for a specific database application. With K=128, 
the maximum size of a TID bit vector is 128 bits (16 bytes.) 
This is smaller than or equal to the size of just one node of FP
tree which needs at least 16 bytes for item name (4 bytes), 
count (4 bytes), a link to parent node (4 bytes) and a link to the 
next node of its linked list (4 bytes). The total memory size of 
all TID bit vectors is therefore not greater than the number of 
items in the conditional pattern base multiplied by 16 bytes. 
This data structure requires much less memory space than an 
equivalent conditional FP-tree does. Furthermore, the bitwise 
operations on TID bit vectors will perform faster than creating 
and manipulating FP-trees [13]. 

MineFPTree algorithm 

Input: Conditional FP-Tree T, SUffix, minsup 
Output: Set of frequent patterns 

1: If T contains a single path P 
2: Then For each combination x of the items in T 

3: Output fJ= x usuffix 

4: Else For each item ain the header table of T 

5: Output fJ = au suffix 

6: Construct ds conditional pattern base C 

7: size = the number of nodes in the linked list of a 

8: If size > K 

9: Then { Construct ds conditional FP-tree T' 

10: Call MineFPTree (T',jJ,minsup)} 
11: Else { Transform C into TID bit vectors V 
12: and weight vector w 

13: Call MineBitVector (V,w,jJ,minsup) } 
14: 

Figure 6. MineFPTree algorithm 

MineBitVector algorithm 

Input: Bit vectors V, weight vector w, SUffix, minsup 

Output: Set of frequent patterns 
1: Sort V in support-descending order of their items 

2: For each vector Vi in V 

3: Output fJ = item of Vi u SUffix 
4: For each vector Vj in V with j < i 
5: {Uj = viAND Vj 
6: SUpj = support of Uj computed using w 

7: If SUpj � minsup Then add Uj into U 
8: 
9: If all Uj in U are identical to Vi 

10: Then For each combination x of the items in U 

11: Output fJ' = x u fJ 

12: Else If U is not empty 

13: Then Call MineBitVector(U,w,jJ,minsup) 
14: 

Figure 7. MineBitVector algorithm 

V. THE DFEM ALGORITHM 

DFEM is a major improvement of FEM. Unlike FEM, it 
automatically finds the dynamic value of K at runtime which 
helps DFEM adapt better to the data characteristic [14]. 

A. Computing Dynamic Value of K 

FEM perform well for many databases using a value of 
K=128. However, in some cases, the best performance is not 
reached with this fixed selection. The second column in Table 
ill shows the runtime of FEM for Kosarak dataset with 
different values of K and minsup=0.07%. As can be seen, for 
K=224, the runtime of FEM is 871 seconds, significantly 
faster than its runtime of 1206 seconds for K=128. This 
execution time difference becomes significantly larger when 
the minimum support threshold (minsup) is set to lower levels 
as required by many applications such as query 



recommendation for web search engine [4]. In this case, it is 
important to find the best possible value of K dynamically as 
the program runs on a specific database with the required 
minsups to gain near-optimal performance. 

TABLE III. MEASUREMENTS OF FEM FOR KOSARAK (MINSUP=0.07%) 

Thres. Ki 
Runtime # patterns by the 

Ratio Ri 
(second) MineFPTree task ( Pi ) 

Ko=O 3341 2776266097 NIA 
KI =32 2939 1316339679 2.1 
K2=64 2146 206479285 6.4 
K3=96 1664 26795140 7.7 
K4 = 128 1206 2413815 11.1 
K5 = 160 1005 407051 5.9 
K6 = 192 934 86575 4.7 
K7 = 224 871 63876 1.4 
Ks = 256 870 58304 1.1 

In Table III, when K increases, the number of frequent 
patterns found solely by the MineFPTree task reduces because 
more mining workload is shifted to the MineBitVector task. 
Let {Ko, Kj ... .KII} be the set of all values of K where Ki= K.j 
+32; Pi is the number of frequent patterns generated by the 
MineFPTree task when K is applied; and Ri is the ratio 
indicating the difference between P; and P;.j. R; is computed 
as: 

R; = P;.jIP; , i = 1 ... n (1) 
Our intensive empirical study indicates that good mining 

performance is achieved with Ki that satisfies: R; <2 301 Rj � 
2, "r7j > i). In other words, FEM will perform best (near 
optimal) at the smallest K where increasing K does not result 
in a sharp drop in the number of frequent patterns found by the 
MineFPTree task. In the example in Table III, the K; that 
satisfies this condition is 224 and its runtime is 871 seconds. 
While this result is promising, the challenge is that this K; can 
only be specified when the mining process completes and all 
Pi and Ri have been computed. We have developed a practical 
method to predict a value of K that is close to or equal to the 
best K;. The predicted value is based on all P;'s estimated 
dynamically at runtime as described in UpdateK algorithm in 
Fig. 8. This algorithm requires less computational need in 
comparison to the one we presented in [14]. 

UpdateK algorithm 

Input: NewPatterns and Size 
Output: updated value of threshold K 

1: newK= 0 
2: prO} = prO} + NewPatterns 
3: For i = 1 to N - 1 step 1 

4: { If Size > i*Step 

5: { P{i} = P{i} + NewPatterns 

6: If P[i-l}>=2* P{i} Then newK=(i+1)*Step 
7: } Else Exit Loop 

8: 

9: i = K/Step - 1 
10: If (i>0 AND P[i-l) < 2* P{i} ) Then K = 0 
12: If newK > K Then K = newK 

Figure. 8 UpdateK algorithm 

B. Algorithmic Description 

DFEM uses UpdateK algorithm (Fig. 8) to dynamically 
select the value of K at runtime and using it to adapt its mining 
behaviors to the characteristics of processed data better than 
FEM. DFEM consists of four sub algorithms: DFEM (Fig. 9), 
UpdateK (Fig. 8), MineFPTree* (Fig. 10) and MineBitVector 
(Fig. 6). MineBitVector of DFEM is similar to the one of FEM, 
shown in Fig. 6. 

DFEM algorithm builds the FP-tree, initializes the 
variables used by UpdateK and invokes the MineFPTree*. The 
variables in Lines 3-6 must be declared in a scope that 
UpdateK can access and update. 

DFEM algorithm 

Input: Transactional database 0 and minsup 
Output: Complete set of frequent patterns 

1: Scan 0 once to find all frequent items 

2: Scan 0 a second time to construct the FP-tree T 
3: N=9 

4: Step = 32 

5: K= 0 
6: Create P[N] and set all elements to zero 
7: items = the number of frequent items in 0 
8: Call UpdateK(items, N*Step) 

9: Call MineFPTree* (T,0,minsup) 
Figure. 9 DFEM algorithm 

MineFPTree* algorithm: This algorithm is similar to 
MineFPTree with the exception of the extra steps needed to 
regularly update K (Line 4-5 and Line 11-13). 

MineFPTree* algorithm 

Input: Conditional FP-Tree T, suffix, minsup 

Output: Set of frequent patterns 

1: If FP-tree T contains a single path P 
2: { For each combination x of the items in P 

3: {Output,8=x u suffix} 

4: n = the number of outputs,8 
5: Call UpdateK (n,l) 
7: Else 

8: { For each item ain the header table of FP-tree T 

9: {Output,8= au suffix 

10: Construct as conditional pattern base C 
11: n = the number of items in C 

12: size = the number of nodes in the linked list of a 
13: Call UpdateK (n,size) 
14: If size> K Then 

15: {Construct ds conditional FP-tree T' 

16: Call MineFPTree*(T',,B,minsup) } 

17: Else 

18: {Transform C into TID bit vectors V 
19: 

20: 
21:} } 

and weight vector w 

Call MineBitVector(V,w,,B,minsup) } 

Figure. 10 MineFPTree* algorithm 



VI. OPTIMIZA TION TECHNIQUES 

In addition to the mining strategies and their data 
structures, the architecture of the machine on which a frequent 
pattern mining program runs also has a significant impact on 
mining time of an ARM task. In this section, we present 
implementation techniques for our mining approach to 
optimize the use of cache, memory and 110 and reduce the 
mining time. 

FP-tree construction: In the second database scan, FEM 
and DFEM pre-load the frequency descending sorted sets of 
frequent items into a lexicographically sorted list. One copy of 
similar transactions is kept with its count. For very large 
databases, the transaction list size is set at runtime to fit the 
available memory. We organize this list in a binary tree and 
maintain its order while the list grows in size. When its size 
limit is reached, the sets of frequent items and their counts are 
extracted from the list one by one to build the FP-tree. 
Therefore, the construction time of FP-tree is significantly 
reduced because similar itemsets are added into FP-tree only 
once. Moreover, the lexicographical order of the transaction 
list makes the FP-tree nodes most visited together to be 
allocated close together in memory optimizing the use of 
cache and speeding up the mining stage. 

FP-tree mining task: We improve the technique proposed 
in [7] to implement an additional array associated with each 
FP-tree to pre-compute the count of new patterns. It helps to 
reduce the traversal cost of parent FP-trees when constructing 
the child FP-trees. The improvement of performance results 
from maximizing the locality of consistent memory access 
pattern. However, for the trees with a large number of frequent 
items, the array size will be very large which consequently 
consume a large amount of memory and increases the runtime. 
Therefore, we only enable this technique in FEM and DFEM 
whenever the array size does not go beyond a predefined limit; 
current default value is 64KB. 

Memory management: For better memory utilization, 
large chunks of memory are allocated to store data of all FP
trees and bit vectors which is similar to the technique used in 
[7]. When all frequent patterns from a FP-tree or bit vectors 
and their child FP-trees or bit vectors have been found, the 
storage for these data structures are discarded. The chunk size 
is variable. This technique minimizes the overhead of 
allocating and freeing small pieces of data and prevents data 
scattered in memory. 

Output processing: The most frequent output values are 
preprocessed and stored in an indexed table as proposed in 
[10]. In addition, the similar part of two frequent item sets 
outputted consecutively is processed only once. This technique 
considerably reduces the computational time on output 
reporting, especially when the output size is large. 

I/O optimization: Data are read into a buffer before being 
parsed into transactions. Similarly, the outputs are buffered 
and only written when the buffer is full. This technique 
reduces much of the 110 overhead. 

VII. EXPERIMENTS AND EV ALUA TION 

We evaluate the efficiency of our approach by 
benchmarking the two algorithms FEM and DFEM with six 
other state-of-the-art ARM on both sparse and dense real 
datasets. 

A. Experimental Setup 

Datasets: Eight real datasets with various characteristics 
and domains were selected from the Frequent Item set Mining 
Implementations Repository [15]. They include four dense, 
three sparse and one moderate datasets (Table IV). 

TABLE IV. DATASETS AND THEIR PROPERTIES 

Datasets Type # Items Avg.length # Trans. 

Chess Dense 76 37 3 196 

Connect Dense 129 43 67557 

Mushroom Dense 119 23 8 124 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 to.3 88 126 

Kosarak Sparse 4 127 1 8. 1 990002 

Webdocs Sparse 52676657 177.2 1623346 

Software: We benchmarked FEM, DFEM and six state-of
the-art ARM algorithms: Apriori [1], Elcat [5], FP-growth [6], 
FP-growth* [7], FP-array [12], AIM2 [10]. FEM and DFEM 
are implemented using our proposed method and the 
optimization techniques introduced in this paper. Source codes 
of compared methods can be found at [15][16]. 

Hardware: Eight algorithms were tested on an Altus 1702 
machine with dual AMD Opteron 2427 processor, 2.2GHz, 
24GB memory and 160 GB hard drive. Its running operating 
system is CentOS 5.3, a Linux-based distribution. 

B. Time Comparison 

The execution time of eight algorithms on eight datasets 
with various minsup are presented in Fig. 11. The experimental 
results show that FEM and DFEM run stably and outperform 
the others in almost all cases, while the other algorithms 
behave differently for different datasets. Apriori runs slowest 
on eight datasets but it does better than FP-growth* and FP
array for two dense datasets, Chess and Mushroom. For Retail 
the sparse dataset, Apriori has longer execution time compared 
to FEM, DFEM and FP-growth but run faster than the others. 
Eclat performs better than the others except AIM2, FEM and 
DFEM on the dense datasets. However, for the sparse datasets 
such as Retail and Kosarak, Eclat runs slower than most of the 
others. Compared to Eclat, three algorithms FP-growth, FP
growth* and FP-array run faster for the dense datasets but 
slower for the sparse ones. AIM2, a variant of Eclat, performs 
well for some dense and sparse datasets but worse for the other 
ones. 

Based on the execution time in this experiment, we found 
that FEM and DFEM run faster than Apriori - the most popular 
used ARM method- from 3.4 to 5555.6 times. In comparison to 
Eclat and AIM2 whose mining approach use vertical data 
format, our algorithms run faster from 1.02 to 45.3 times. Our 
algorithms performed 1.2 to 23.4 times better than FP-growth, 
FP-growth* and FP-array which are among the best methods 
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Figure. 11 Execution time of FEM, DFEM and other algorithms 

for ARM. This experiment demonstrates the efficiency 
performance of FEM and DFEM for both sparse and dense 
data. 

C. Memory Usage Comparison 

In order to evaluate the memory usage efficiency of FEM 
and DFEM, we measured their peak memory usage in 
comparison to the other six algorithms for the eight datasets by 
using the memusage command of Linux. Table V shows the 
memory usage (megabytes) of all algorithms for the test cases 
with low minimum supports so that the result can reflect the 
large difference in memory usage among the algorithms. As in 
Table V, FEM and DFEM consume much less memory than 
Apriori in every case. Their memory requirements are closer to 
the average memory usage of Eclat and FP-growth in most 
cases. For the Accidents and Connect dataset, our algorithms 
use less memory than both Eclat and FP-growth. For the Chess 
dataset, FEM and DFEM need more memory because our 
implementation includes some additional buffers to enhance 
the performance. However, these buffers have fixed size and 
do not require much memory. Compared to FP-growth*, FEM 
and DFEM require more memory for the dense datasets but 

less memory for the sparse ones. In contrast, compared with 
FP-array, the memory usage of FEM and DFEM is smaller for 
the dense datasets but larger for the sparse ones. The memory 
usage of AIM2 is smallest in most cases. However, the 
memory usage of AIM2 for Webdocs, where memory 
optimization is critical due to its large memory requirements, 
AIM2 uses a significantly lager memory than the others do. 

To sum up, the two experiments show that FEM and 
DFEM not only significantly improve the mining performance 
and outperform other existing "efficient" algorithms for both 
sparse and dense datasets they also compare well in memory 
requirements. Their memory consumption is much less than 
Apriori and FP-growth and is on average on par with the other 
algorithms. These results demonstrate the efficiency and 
efficacy of our algorithms. DFEM performs better than FEM, 
especially when minsup is low. Therefore, for mining 
application that requires low minsup, DFEM is a better choice. 

D. Peiformance Impact of Our Two Mining Strategies 

To study the performance merit of our mining approach, we 
measured the mining time of DFEM in three separated cases: 
(1) using MineFPTree* only, (2) using MineBitVector only and 

TABLEV. PEAK MEMORY USAGE (MEGABYTES) OF FEM, DFEM AND OTHER ALGORITHMS 

Datasets Minsup FEM DFEM Apriori Eclat FP-Growth FP-Growth* FP-array AIM2 

Chess 20% 4 4 1139 2 3 3 33 I 
Connect 30% 11 11 3 1  13 16 2 43 3 

Mushroom 0.5% 4 4 20 3 5 2 33 I 
Pumsb 50% 15 15 921 15 15 6 46 10 

Accidents 3% 181 181 368 232 305 198 154 40 

Retail 0.003% 30 30 1203 25 33 350 59 32 

Kosarak 0.07% 141 141 16406 138 154 160 133 130 

Webdocs 4% 4707 4707 24576 3996 5 103 558 1 4256 7544 



(3) using both MineFPTree* and MineBitVector, i.e., our 
approach. The results for DFEM on both dense and sparse data 
(Fig. 12) show that it outperforms the other methods where 
single mining strategy was used. This is explained by the 
contribution of dynamic combination of the two strategies, 
MineFPTree and MineBitVector to the mining task where each 
handles data portions it can perform best. 
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Figure 12. Execution time of using single mining strategy vs. using both 

In order to understand the level that each mining strategy of 
our approach contributes to the overall performance, we 
measured MineFPTree* and MineBitVector in DFEM 
separately; Figure 13 shows the time distributions of the two 
strategies. The results show that our approach automatically 
distributes the mining workload to its two mining strategies 
based on data characteristics. MineBitVector which is more 
suitable for dense data has been utilized mostly for the dense 
datasets like Chess, Connect, Mushroom and Pumsb. The time 
percentage of this strategy reduces when the data are sparse. 
For the sparse portions of the datasets, MineFPTree* is a better 
choice because its mining approach does not require generating 
the very large number of infrequent candidate patterns. Hence, 
this strategy is used more for sparse datasets like Retail, 
Kosarak and Webdocs. 
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Figure 13. Time distribution of two mining strategies in DFEM 

VIII. CONCLUSION 

We have presented a new approach for assocIatIOn rule 
mining that works efficiently on both sparse and dense 
databases. Two algorithms FEM and DFEM derived from this 
approach are introduced and benchmarked with six well-known 
ARM algorithms. The experimental results on eight real 
datasets have shown that FEM and DFEM significantly 

improve mining time and consume much less memory than the 
compared methods. 
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