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Abstract. We present a new system to optimize feature extraction from 2D-
topological data like images in the context of deep learning using correlation
among training samples and curriculum learning optimization (CLO). The system
treats every sample as 2D random variable, where a pixel contained in the sample
is modelled as an independent and identically distributed random variable (i.i.d)
realization. With this modelling we utilize information-theoretic and statistical
measures of random variables to rank individual training samples and relation-
ship between samples to construct syllabus. The rank of each sample is then used
when the sample is fed to the network during training. Comparative evaluation
of multiple state-of-the-art networks, including, ResNet, GoogleNet, and VGG,
on benchmark datasets demonstrate a syllabus that ranks samples using measures
such as Joint Entropy between adjacent samples, can improve learning and signif-
icantly reduce the amount of training steps required to achieve desirable training
accuracy. We present results that indicate our approach can produce robust fea-
ture maps that in turn contribute to reduction of loss by as much as factors of 9
compared to conventional, no-curriculum, training.
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1 Introduction

Humans and other organisms, as in supervised learning, can learn to acquire knowledge
and perform tasks by observing a sequence of labelled concepts. Supervision is often
accompanied with a curriculum in human teaching. Hence the order in which topics are
presented is not random when a teacher uses curriculum to teach. The ordering is such
that simple concepts are presented early, progressing through concepts with increasing
difficulty.When used in supervisedmachine learning, curriculum-based training (Fig. 1)
exposes samples to the learning system in a predetermined order. The basic idea is to
present samples that have low complexity at the start of training and gradually increase
complexity of samples fed to the network over the course of training. Hence, at core of
this approach lies ranking (weighting) training samples based on their level of presumed
difficulty.

Many techniques described in the literature consider difficulty level of a sample to
be proportional to a chosen distance metric between the output label and the actual truth
label of the sample [3, 5]. The distance metric is often provided by the loss function used
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Fig. 1. Curriculum learning

by the learning algorithm, since it already attempts to minimize the distance between the
expected and truth sample labels. In order to use this approach, one must employ two
training passes: the first to measure the difference between the true label and predicted
label value of each sample to get the presumed difficulty (or rank) of the sample. The
training set is then ordered according to rank of each sample to form a curriculum used to
train the network in the second training pass. Although one could potentially determine
a good curriculum.

In contrast to the existing class of curriculum algorithms, our proposed method com-
bines information theory tools (ITT) with curriculum learning to assess and adaptively
order training samples to form an input path for training a network (Fig. 1). We utilize
ITT-based image analysis techniques to assess each sample and its relationship with
other samples to determine the time the sample is fed to the network.

A unique feature our approach is that the syllabus is generated, enforced and evalu-
ated at training time using a node, curriculum factory, integrated into training pipeline.
The node is designed to handle both online and batch training modes. When training
using batches, a random subset (batch) of samples of size M from the training set is
processed and the weights are updated based on the cumulative error. With online train-
ing, one sample is fed to the network at every iteration and weights are updated based
on error corresponding to that sample. During batch training, the samples in a batch are
ordered to form a syllabus corresponding to that batch. The primary means of ordering
is a metric m that ranks a sample by measuring its content. The syllabus and batch are
then supplied to the network to train via curriculum learning.

Supervised training seeks to minimize a global loss function that includes distance
component as well as a regularization term. The distance component, that measures
learning progress overtime, is used to evaluate the fitness of a syllabus. A syllabus
deemed unfit is discarded and\or replaced in the early stages of training. A syllabus that
incurs significant overhead to training time is also considered unfit and blacklisted. We
report experimental results conducted using batch sizes of 8 and 16.

To summarize, this paper makes two main contributions. Currently there exists no
methods in the literature that take characteristics of training data into account to expedite
non-convex optimization via curriculum learning or other means. As the first contribu-
tion, we present a curriculum learning algorithm that reduces training loss at each iter-
ation by ordering batches to form a syllabus. When used in stochastic gradient descent
(SGD)-based training, our algorithm expedites training and reduces the overall loss by
as much as a factor of 9 without compromising generalization performance. Second,
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we present results that showcase improved generalization performance of popular CNN
models on benchmark datasets in comparison to baseline, state-of-the-art performance.

2 Related Work

Most work on curriculum learning utilize error-based correction [3] to uniformly sample
from training set as a means to speed up training. Other methods have been proposed
[4, 5] to sample, weigh and sort training samples to improve accuracy and expedite
training. Most of these methods either require modification of the objective function
with a term for sample valuation [6] or run training procedure twice to obtain accurate
representation of sample effectiveness [7]. Use optimization loss to valuate and increase
the replay probability of samples that have high expected-learning-progress. The authors
use a weighted importance sampling method to counter bias of sampling. Similarly,
[8] proposed to sample batches non-uniformly [5]. Proposed an automatic curriculum
learning method for LSTM for the NLP application. They use a non-stationary multi-
armed bandit algorithm of getting a reward signal from each training sample to define a
stochastic syllabus [9].Use influence functions from robust statistics tomeasure the effect
of parameter changes or perturbations of the training data such as pixel values which
was applied to debugging models, and training-set attack. In addition, [10] describes
a pre-processing algorithm that divides each input image into patches (image regions)
and constructs a new sample by reorganizing the patches according their statistical or
content summary. The authors present results that support training a CNN network in
this manner can aid feature extraction and produce networks that tolerate adversarial
attacks.

Unlike these approaches, our curriculum was formed by presenting the training
samples to the network in order of increasing similarity or dissimilarity, measured by the
sample’s statistical pixel (content) distribution.Ourmethod takes advantage of similarity
and image content measures to define and propose a stochastic syllabus. During batch
training, all samples within a batch are sorted in ascending order based on a standalone
or mutual measure. When a standalone measure is used, every sample in the batch is
ranked according to an index that measures some characteristics of that sample. For
instance, when entropy is used as a ranking metric, the batch is sorted based on the
entropy value of each sample. If mutual or distance measure is employed, the entire
batch is sorted based on similarity or dissimilarity to a reference sample. Our results
indicate that this approach expedites a search for local minima which helps expedite the
overall training.

3 Proposed Method

The goal of training CNNs is to try and determine optimal network weights to approx-
imate target mapping g : xi → yi [11] where xi is the input vector and yi is the
corresponding desired output taken from a training set,

T s = {(
xn, yn

) : 1 ≤ n ≤ N
}
, (1)
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(Algorithm)
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Fig. 2. Processing stages within sp-module. From left to right given batch B and hyperparameters
read once at start: I. Rank each sample. II. Generate syllabus by ordering B according to rank of
each sample which is then used to train a network. III. Evaluate syllabus using network loss.

consisting of N samples. If we consider a j th training batch B j ⊂ T s containing M
samples, a curriculum training syllabus, Syl labusB j

of B j is generated by ranking
and ordering every sample in the batch based on some measure m. The syllabus is then
applied to train the network. Note here, M = 1 corresponds to online training where
samples (not batches) are fed one by one. In our system, M = 1 is a special case where
the syllabus corresponds to ordering of the entire training set.

Curriculum factory, an original feature of our proposal, is a system that generates
ordering of samples of a selected batch during training. It comprises a syllabus proposal
submodule (sp-module) that takes a batch of randomly ordered samples as input and
returns an ordering of the samples that serves as a syllabus. Given T s we denote the
j th mini-batch containing M � N samples by B j = {s1, s2, . . . , sM}. A training
syllabus, Syl labusB j

is defined as an ordering of every sample, sk = (
xi , yi

) ∈
B j for1 ≤ i ≤ M, in ascending (asc) or descending (dec) order. Ordering is determined
by the rank, ε, of each sample as measured by a metric m taken from Table 1. Formally,
Syl labusB j

= (s′1, s′2, . . . , s′M) is a computationally found ordered set such that
εs′1 ≤ εs′1 ≤ . . . ≤ εs′M if ordering is asc and εs′1 ≥ εs′1 ≥ . . . ≥ εs′M if dec.

The sp-module is built using a three-step processing depicted in Fig. 2. In stage I, all
samples of a batch are assessed and ranked using a prespecified metric m (Table 1). In
stage II, the batch is ordered according to the rank of each sample. The ordered batch,
or syllabus, is then supplied to the network for training. In stage III, the effectiveness of
the syllabus is determined using the network’s native loss function after training with a
fixed number of batches. The number of batches used to control how often the syllabus
is evaluated is a configurable hyperparameter. Below we discuss each stage in detail.
The full recipe in an end-to-end training pipeline is presented in Table 1 (Algorithm).

3.1 Stage I: Assessing Content of Training Samples

CNNs learn patterns of features from training and use layer-wise superposition of these
features to generalize to unseen samples. To enable robust feature extraction and ease
the pattern discovery, we are interested in generating curricula based on how samples are
related to each other. We consider two types of metrics to measure these relationships;
statistical and information-theoretic measures. These measures are further categorized
into standalone and distance depending on the input(s) to the measure. If a measure



Information Theory-Based Curriculum Learning Factory to Optimize Training 413

takes two samples as input and returns a single value that relates the two samples, then
it is considered a distance measure. Otherwise, the measure is standalone and takes a
single sample as input and returns a value that describes certain characteristics of the
sample.

In order to use information-theoretic measures, we model all samples as 2D random
variables where each pixel is an independent and identically distributed random variable
(i.i.d) realization. With this model, we utilize information theoretic measures such as
Entropy to quantify information content of training samples. Below we discuss few
measures. A complete list is presented in Table 1.

Entropy. Let X be a discrete random variable with alphabet χ and a probability
distribution function p(x), x ∈ χ . The Shannon entropy [12] of χ is defined as

H(X) =
∑

x∈χ

p(x)log
1

p(x)
(2)

where 0log∞ = 0 and the base of the logarithm determines the unit, e.g. if base
2 the measure is in bits [13]. The term −log p(x) can be viewed as the amount of
information gained by observing the outcome p(x). Entropy is usually meant tomeasure
the uncertainty of a continuous random variable. However, when applied to discrete
images, this measures how much relevant information is contained within an image
when representing the image as a discrete information source that is random [14]. Here,
we construct probability distribution associated with each image by binning the pixel
values into histograms. The normalized histogram can then be used as an estimate of the
underlying probability of pixel intensities, i.e., p(i) = bs(i)/N , where bs(i) denotes
the histogram entry of intensity value i in s, and N is the total number of pixels of s.
With this representation the entropy of an image s can be computed as:

E(s) =
∑

i∈χ ,s∈T s

bs(i)log
N

bs(i)
, (3)

where T s (Eq. 1) is the training set and χ(s) represents the image as a vector of pixel
values. While individual entropy is used to measure the standalone rank of a sample,
we also used metrics that relate training samples. These include joint entropy (JE),
kl-divergence (KL), mutual information (MI), information variation (IV), conditional
entropy (CE) and their variants such as normalized mutual information (MIN). A com-
plete list of the metrics used for this study are listed in Table 2. Readers are encouraged
to refer to [14–16] for detailed treatment of these metrics and others.

Statistical metrics on the other had measure the similarity (dissimilarity) of samples
and typically use statistical measurements such as mean μ and standard deviation σ .
One such measure is the Structural Similarity Index (SSIM). SSIM is often used for
predicting image quality using a reference image. Given two samples s1 and s2 the
SSIM index [16] is given by:

SSIM(s1, s2) = (2µs1μs2 + C1)(2σ s1s2 + C2)

(µ2
s1 + µ2

s2 + C1)(σ 2
s1 + σ 2

s2 + C2)
(4)
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Table 1. (Algorithm 1) Curriculum training of a CNN network η. Here, at least two m values, a
primary measure and backup measures, from Table 2 are pre-specified. If no m is prespecified,
sp-module picks a primary and backup measures randomly from the set of measures listed in
Table 2.

where the terms µ and σ are the mean and variances of the two vectors and σ s1s2
is the covariance of s1 and s2. The constant terms C1 and C2 are used to avoid a
null denominator. We also use simple measures such as L1 norm to compare the pixel
histograms of two samples.

3.2 Stage II: Sorting Batches of Samples

A batch of training samples B = {s1, s2, . . . , sM} ⊂ T s is selected from the training
set. Each sample sk ∈ B is assigned a rank by analysing its pixel distribution using
the specified metric m. We use two types of metrics; distance and standalone. If m is a
distance metric, a reference sample sr ∈ B is used to rank a moving sample sm ∈ B.
Initially, the reference sample is chosen at random. For instance, consider the following
setup: letm be the mutual information (MI) measure, the algorithm first selects an initial
reference sample, sr = s1 and computes the MI-index or rank (ε) of every other sample,
s2, . . . , sM, in the batch against sr . If asc ordering is used, the sample with the smallest
ε value is promoted to become a reference sample. This is repeated until the last sample
is promoted and a syllabus is proposed. Note here, the syllabus, SB , is an ordering of
the samples according to their mutual information index. Given a proposed syllabus

SB =
{
s′1, s′5, s′2,, s′8 . . . , s′M

}
, the network first sees the initial reference sample, then
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the sample having the smallest ε value is fed to the network. The overall behaviour is
that adjacent samples are closer to each other than those that are not adjacent. Closeness
in this context is measured by the metric in use. The smaller the value ε the closer the
two samples are. When using a standalone metric, each sample is ranked. The entire
batch is then sorted based on the specified ordering and the rank of each sample. m is
pre-specified as a learning parameter and can be updated during training if corresponding
syllabus is deemed unfit. We experimented with several metrics to observe their impact
on training.

Table 2. List of measures used in this study

Metric Category Implementation - given samples s1, s2 ∈ T s
where bs is normalized histogram of pixel
intensities and i is an index of a pixel value in
a sample

Entropy Standalone Section 3.1

Joint Entropy (JE) Distance J E(s1, s2) = ∑

i
bs(i)log bs(i),

Mutual Information
(MI)

Distance MI(s1, s1) = E(s1) + E(s1) − J E(s1, s2)

KL-Divergence Distance Dk‖L(s1, s2) = ∑

i
s1i log

bs1(i)
bs2(i)

Information Variation
(IV)

Distance IV (s1, s2) = E(s1)+ E(s2)− 2MI(s1, s1)

Conditional Entropy
(CE)

Distance CE(s1|s2) = E(s1, s2) − E(s1), where
E(s1, s2) is the sum entropies of s1 and s2

L1 Norm (L1) Distance L1(s1, s2) = ||s1 − s2|| = ∑
i=1|s1i − s2i |

L2 Norm (L2) Distance L2(s1, s2) = ||s1 − s2||2 =√∑
i=1(s1i − s2i )2

Max Norm (MN) Distance This is like L1norm where, instead of every
entry, the maximum entries’ magnitude is
used to calculate the norm [17]

Peak-signal-to-noise
ratio (PSNR)

Standalone PSNR = 20log10(
MAX√

MSE(S1,S2)
where,

MSE(a, b) = 1
N2

∑N
i

∑N
j
(
ai j − bi j

)2

Structural Similarity
index (SSIM)

Distance Section 3.1
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3.3 Stage III: Syllabus Evaluation

We use the network’s native loss function to determine the fitness of a given syllabus.
The syllabus is evaluated after training for a fixed number of iterations. Fitness of a
syllabus for a given network η and training set T s is determined using two configurable
hyperparameters; number of iterations (can also be number of batches)π and the baseline
performance β of the network on T s averaged over π. β is the threshold by which the
syllabuses’ s fitness is determined and is chosen to be the average baseline loss of the
network over π number of iterations. Baseline performance of a network is the network’s
training performance without curriculum.

Syllabus Fitness Criteria. Once η is trained on T s for π number of iterations using a
syllabus Syl labus, the losses are aggregated and the average loss,

βη→Syl labus =
∑π

i=0 loss(i)
π

, (5)

where loss(i) is the i th iteration training loss, of the network associated with S is com-
puted. The syllabus-to-baseline loss ratio, ω = βη→Syl labus/β, is then used as the sole
criteria to determine the fitness of the syllabus. Depending on the value of ω, a fitness
signal f S, that can take on one of three forms; continue, stop or replace, is propagated
to the image analysis submodule. A syllabus is deemed fit if the ratio is less than or
equal to 1 and f S is set to continue. Otherwise f S is set to stop or replace and the syl-
labus is considered unfit and discarded. If replace is propagated, the curriculum factory
adaptively proposes a new syllabus using a prespecified backup metric. Here, we make
a naive assumption that the syllabus’s training performance is as good as the baseline if
the ratio is close to 1.

4 Experiments

4.1 Datasets

Our method is implemented with the TensorFlow library [18] and training was done
using a system equipped with four NVIDIA Tesla P100 GPUs. We present training and
classification results obtained by training state-of-the-art image classification networks
using different curriculum strategies described in Sect. 3 on CIFAR10, CIFAR100 [19]
and ILSVRC-2015 ImageNet [20] datasets. Specifically, given the moderate cost of time
associated with training a network using CIFAR10, CIFAR10 was used to perform an
in-depth study of the proposed method using several network architectures. Based on
the training trends on CIFAR10, we then perform repeatability study using CIFAR100.
Finally, a syllabus that exhibits exceptional performance on those datasets is selected
and compared with baseline performance on ImageNet.
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4.2 Training

We trained several past and current state-of-the-art CNNs using open-source Tensor-
Flow implementations. Each network is first evaluated on the corresponding datasets
to create baseline reference performance metrics for comparison. For each network we
used stochastic gradient descent optimizer with cross-entropy loss, fixed momentum of
0.9, batch size of 8, and an exponentially decaying learning rate with factor 0.94 starting
at 0.01. For the rest of training, we used recommended configurations by respective
authors. We report empirical results gathered by training each network for at least 100
thousand iterations. We ensure all learning parameters and environment are identical,
with varying networks and learning methods, to rule out other factors of influence.

4.3 Networks

GoogleNet (Inception) versions 1 [21] and 4 [22] were two of the networks evaluated in
this study. Inception V1 was placed number 1 in the 2014 ImageNet [23] competition
for classification and detection challenges. It’s a 22 layered network that comprises of
basic units referred to as inception cells. For each cell, a set of 1 × 1, 3 × 3 and 5 × 5
filters are learned to extract features at different scales from the input. The architecture
also consists of two auxiliary classifiers that prevent the middle part of the network from
dying out. The auxiliary losses are weighted and added to the Softmax loss as a way to
combat vanishing gradient problem and provide regularization [21]. Inception V4 [22]
evolved from Inception V1 and has a more uniformly simplified architecture and more
inception cells. Additional network architectures include ResNet [24], VGG [25] which
placed top in ILSVRC 2015 and ILSVRC 2014 respectively as well as several version
of the MobileNet [26] architecture which were designed for computational efficiency.

To observe the training trends, we use curriculum settings with varying measure m,
π = 10000, o = asc and β value that is unique to each network and training set. To
capture the classification results each network is trained for 500,000 iterations or until
the learning curve is stable and the loss converges. Batch sizes of 8 and 16 were used
for these experiments.

5 Results and Analysis

5.1 Training Trends

To capture the impact of the proposed approach on training, we trained all networks
on CIFAR10 dataset. We use the total loss, which is the sum of cross-entropy and
regularization losses as implemented in TensorFlow [27] framework as the primary
evaluation criteria of the impact of the proposed method.

The training loss of select metrics and that of the baseline (blue) are depicted in
Fig. 3. Clear trends can be observed from the plots. First, in all cases, curriculum-
based training performs remarkably well in reducing training loss. For instance, when
training GoogleNet using JE-based curriculum, it achieves a loss of 0.163 compared to
1.494 after training for only 100 K iterations. This is a loss reduction by a factor of 9.
Similarly, MobileNet’s loss is reduced by factor of 4. The second and most impressive
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Fig. 3. Training loss of training MobileNet (top-right), GoogleNet V1 (top-left) on CIFAR10
using all metrics listed in Table 1, and GoogleNet V4 (bottom-left) and VGG (bottom-right) on
CIFAR100 using the entropy measure. (Color figure online)

observation that highlights the effectiveness of the proposed technique is that the baseline
performance is almost always inferior to any curriculum strategy throughout training.
Only in few cases do we see a strategy produce higher loss. This is partly because
our method removes variability due random shuffling using consistent input path with
each batch as measured by the metric in use. Whilst these results are interesting, to
ensure repeatability and confirm the efficacy of the best models, we performed additional
experiments on CIFAR100. The bottom two plots of Fig. 3 show the training trends of
GoogleNet and VGG on CIFAR100 using Entropy-based curriculum syllabus.

5.2 Regularization Loss

Regularization methods are supplementary techniques that are used to reduce test error
and prevent overfitting. In neural networks and deep learning, the term is reserved solely
for a penalty term in the loss function [28]. In all the networks used for this study,
regularization is achieved by adding a regularize term R to the native loss function.
Unlike the loss function, which expresses the deviation of the network output with
labels, R is independent of the labels. Instead, it’s used to encode other properties of
the desired model to induce bias. These properties are rooted in assumptions other than
consistency of network output with labels. The most common approaches are weight
decay [29] and smoothness of the learned mapping. The regularization loss trends of
training various networks on CIFAR10 and CIFAR100 using JE and IV curriculum
strategies are depicted in Fig. 4.
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5.3 Sparsity

Fig. 4. Comparison of regularization loss of several curriculum strategies with the baseline on
CIFAR10 (top) and CIFAR100 (bottom)

Output sparsity is in deep neural networks is highly desirable to reducemodel training
and inference costs. CNNs are highly sparse with many values involved in the calcu-
lations being zero or close to zero. Features map sparsity can be exploited to expedite
training and reduce inference cost by skipping the values that are known to be zeros.
Feature maps in CNN models usually have high sparsity. This is because convolution
operation is immediately followed by an activation layer that turns all negative inputs
into zeros. In addition, max-pooling layers only select a max value in a sub-region of
the input and drop other values in the region. As shown in Fig. 5, we observe that the
average feature-map and fully connected layer output sparsity scores are reduced much
faster when training a network with the proposed method.
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Fig. 5. Sparsity score of select layers of VGG16 (top) and Inception V1 (bottom)

5.4 Classification Results

Due to the lack of directly comparable techniques for curriculum-based training, we
contrasted our techniques against the baseline generalization capabilities of a network
on a given dataset. More specifically, we first trained the network to establish its base-
line performance on the dataset. The same network is then trained using the proposed
technique. The best performing weights are then chosen for performance comparison.
The results on CIFAR10 and CIFAR100 datasets are presented below.

With most curriculum setups, the network’s generalization capability is uncompro-
mised and is within range of the baseline performance. However, depending on the
dataset, several curriculum metrics produce networks that generalize better than the
baseline. For instance, training GoogleNet (Table 3) using MI and IV based curriculum
strategies perform better on CIFAR10, while IV and JE enabled syllabus performs better
on CIFAR100 (Tables 4 and 5).
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Table 3. Comparison of GoogleNet (Inception V1) network on CIFAR10 and CIFAR100.
Reported is the test accuracy in percent of classification for network with andwithout the proposed
training approach. Best results are highlighted in bold. The baseline performance is the first entry
in the table.

Network CIFAR10 (test acc. %) CIFAR100 (test acc. %) Curriculum

GoogleNet 0.528 0.433

GoogleNet-MI 0.615 0.358 MI

GoogleNet-MIN 0.456 0.146 MIN

GoogleNet-IV 0.671 0.456 IV

GoogleNet-JE 0.586 0.489 JE

Table 4. Comparison of ResNet_V1_50 network on CIFAR10 and CIFAR100.

Network CIFAR10 (test acc. %) CIFAR100 (test acc. %) Curriculum

VGG 0.922 0.645

VGG-MI 0.945 0.512 MI

VGG-MIN 0.904 0.602 MIN

VGG-IV 0.897 0.698 IV

VGG-JE 0.943 0.631 JE

Table 5. Comparison of ResNet_16 network on CIFAR10 and CIFAR100.

Network CIFAR10 (test acc. %) CIFAR100 (test acc. %) Curriculum

ResNet 0.954 0.791

ResNet-MI 0.945 0.842 MI

ResNet-MIN 0.973 0.789 MIN

ResNet-IV 0.943 0.849 IV

ResNet-JE 0.924 0.851 JE

5.5 Conclusion

We have introduced a system for training CNNs using curriculum strategies. Our app-
roach combines content measures taken from information theory with curriculum learn-
ing and alleviates the need to determine the presumed difficulty of training samples.
Unlike previous works, we exploit information-theoretic and statistical relationship
between training samples to propose a syllabus to guide training; we have shown that this
improves training performance of CNNs. The results indicate that curriculum strategies
reduce training loss faster without necessarily increasing the generalize performance
compared to conventional training. Our intuition is that the proposed technique enables
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faster convergence by discovering optimal path that take to local minima. However, fur-
ther analysis is required to fully test and prove our hypothesis that the proposed method
combined with SGD optimization expedites a search for local minima by creating an
optimal path in input space.
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