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Abstract 

We develop a data-driven computational model that 

reliably classifies individual patient into one of 7 non-

overlapping lung disease clinical types within our dataset: 

healthy non-smokers, smokers diagnosed with and without 

chronic obstructive pulmonary disease (COPD), 

adenocarcinoma, squamous cell carcinoma, cystic fibrosis, 

and acute lung injury. Panels of 12 cytokine blood serum 

biomarker measurements precisely classify both known and 

unknown patients into one of these distinct clinical types. 

Our model classifies clinical types and patients directly from 

the conditional relationships of noisy, incomplete, and 

variable protein concentration measurements, including 

outliers. Biomarker concentration measurements induce 

discrete state variables through a binning algorithm that 

exposes the conditional relationships and dependencies 

among the concentration data. A unique application of an 

XOR operation on the state space extracts the patterns 

identifying the set of distinctive features for each clinical 

type. Our model builds a discrete topological structure from 

a baseline data set, and is developed using several novel 

schemes designed specifically for this analysis. The result is 

a multidimensional space representing a characteristic set of 

states within each clinical type population. 

Keywords: cytokine proteomic biomarkers; computational 

model; lung disease. 

1 Introduction 

According to the American Lung Association, an 
estimated 158,080 Americans are expected to die from lung 
cancer in 2016 [1]. The 7 lung diseases analyzed here 
account for some of the most frequent forms of lung disease, 
with COPD as the fourth leading cause of death in the United 
States [2]. Respiratory diseases are of multiple origin, and 
the selected clinical types cover a wide spectrum of 
suspected causes. More accurate and cost-effective diagnosis 
is needed so that people with lung diseases are accurately and 
cost-effectively diagnosed and then treated accordingly, 
given that Guarascio et al declare that not enough is known 
regarding ideal therapy selection [3].  

The use of protein-based biomarkers of lung disease is 
rapidly advancing, as reviewed by Jun-Chieh et al [4], but 
reliably measuring proteomic biomarker concentrations is 

difficult due to technical and biological variation, their wide 
dynamic range of concentrations and numerous post-
translational modifications [5]. Despite these variations, we 
have developed a data-driven Biomarker Computational 
Model for Lung Disease Classification (BCM-LDC) that 
reliably distinguishes among various clinically diagnosed 
lung disease types within our dataset. BCM-LDC 
hypothesizes that biomarker interactivity induces a 
distinctive set of host-response protein concentration values 
for each clinical type, and that certain concentration patterns 
revealed by these proteins remain characteristically 
invariant.  

BCM-LDC uses a data-driven, supervised-selection 
learning model; that is, constrained by the limited amount of 
training data, the model enumerates all possible 
combinations of biomarker state spaces, then selects that 
space which most accurately classifies the data into their 
known clinical types. 

In the background §2, we review the suitability of 
cytokine proteins as host-response biomarkers, the sources 
of analyzed data, and the difficulties in modeling biological 
variation given the constraints governing the model, 
including the issues of overfitting and working within a high-
dimensional parameter space. The computational model §3 
describes how protein concentrations are topologically 
modeled and analyzed. §4 presents the experimental results. 
§5 describes several validation studies, and §6 concludes the 
paper. 

2 Background 

2.1 Host-Response Biomarkers 

We investigate whether targeted protein variables act as 

disease state signals due to the existence and modulating 

strength of their relative and mutual effects upon each other. 

Our data-driven computational model, BCM-LDC, 

classifies clinical types and patients directly from the 

marginal and conditional relationships of biomarker 

concentration measurements. BCM-LDC selects the unique 

set of biomarkers – given a small number of biological and 

statistical assumptions – whose protein host-response 

topology corresponds to a patient’s clinical type. BCM-

LDC represents a space of concentration distributions built 

upon computable discrete states which classifies patients 

into clinical types, despite significant data variation.  
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Cytokine proteins are secreted by components of the 

adaptive immune system, and they act as effectors and 

modulators of lung tissue inflammatory response [6]. The 

12 baseline cytokine biomarkers used in this study {EGF, 

IFNG, IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, MCP1, TNFA, 

VEGF} (EGF: epidermal growth factor; IFNG: interferon γ; 

IL: interleukin; MCP: monocyte chemo-attractant protein; 

TNF: tumor necrosis factor; VEGF: vascular endothelial 

growth factor) were chosen because of their known 

sensitivity in host-response to various lung diseases [7], so 

that concentrations of circulating cytokines in blood serum 

may be associated with lung disease survival [8].  

2.2 Data Sources 

BCM-LDC is constructed using host-response cytokine 

biomarker concentration data from 343 patients given to us 

in standard units of pico-grams 1012 grams per milliliter 

(pg/ml). Any other data sets obtained from the literature – 

such as Healthy Serum – are standardized to these units. 

This baseline data set includes 7 clinical types from which 

the 12 protein biomarkers are measured. The number of 

patients per clinical type ranges from 24 to 56 (see Table 4). 

The Q=12 baseline biomarkers {EGF, IFNG, IL1A, IL1B, 

IL2, IL4, IL6, IL8, IL10, MCP1, TNFA, VEGF} measured 

from each patient’s blood serum are chosen because of their 

known or suspected relationship to lung disease. Two 

specimens are collected from each patient at the same time, 

and these two specimens are averaged over each biomarker 

to provide a single biomarker panel of 12 measurements per 

patient, except in cases of missing data. Each of the 343 

patients are expertly diagnosed as belonging to only one of 

7 lung-related clinical types 𝑪𝒕, 𝟏 ≤ 𝒕 ≤ 𝟕 adenocarcinoma, 

squamous cell carcinoma, never smokers, smokers with 

chronic obstructive pulmonary disease (COPD), smokers 

without COPD, acute lung injury, or cystic fibrosis [9]. We 

then sequestered a random 10% of these baseline data for 

subsequent model validation, leaving 310 patients to train to 

model. There are 659 missing biomarker measurements out 

of a possible 𝟑𝟏𝟎 ∗ 𝟏𝟐 = 𝟑𝟕𝟐𝟎  (82.3% complete) for a 

total of 3061 measured values. Only 39 of the 343 patients 

(11.4%) have all 12 biomarker measurements, but 85.4% 

have 9 or more biomarkers. A total of 17.7% biomarker 

values are missing from the baseline data set. The mode of 

the measurements per patient panel is 10. The mean is 9.84. 

No data was interpolated or averaged to fill in missing data.  

Standard protein 2-D gel electrophoresis assay 

techniques are used to consistently collect homogeneous 

blood serum specimens. The first five data sets are all from 

the same unpublished set of experiments 

[Acknowledgement A] conducted at laboratories at the 

University of Colorado Health Sciences Center (UCHSC). 

The last two data sets, cystic fibrosis and acute lung injury, 

are from different experiments although the wet-lab 

protocols and analytics are performed in the same way as 

the first five data sets [Acknowledgement B]. To minimize 

batch effects, both laboratories incorporated a standard 

sample in each electrophoresis gel which was subsequently 

subtracted during analysis, and both used the Cy2 channel 

from each gel to normalize spot intensities and for 

automated matching between gels. All patients underwent 

expert pathology review and have been histologically 

assigned to one and only one clinical type, provided with the 

original data sets. The small error bars in Figures 2 and 3 

below suggest these data were produced precisely and with 

quantitative accuracy. 

There are many more data values than targeted variables, 

the 12 biomarkers, which avoids the issue of overfitting. We 

are working directly with precise concentrations of secreted 

proteins expressed in blood serum. Even though differences 

have been uncovered in protein expression between normal 

and diseased tissues that may have specificity for different 

tumor types [10], tissue extraction is both costly and 

invasive. We justify our sampling strategy because it is non-

invasive, generates a large set of data with quantitative 

accuracy involving a small number of targeted variables, 

and works with a homogeneous composition indicative of 

the entire organism.  

During our initial experiments, we found that any 

method based upon averaging – such as logistic regression, 

cosine similarity, or the machine learning Classify function 

in Wolfram Mathematica© v11.1 – did not classify the 

baseline clinical types with a sufficient degree of accuracy. 

Therefore, our subsequent work focused on developing a 

computational model that processed the entire set of 

individual concentration values and not just population 

averages.  

3 Computational Model Details 

BCM-LDC hypothesizes that interactivity among the 
biomarkers induces a distinctive concentration distribution 
as conditioned by the relative concentrations of the other 
biomarkers. A binning algorithm discretizes the 
concentration values of every combination of paired 
biomarkers variables into fixed-sized bins that produces a 
characteristic multidimensional state space for each clinical 
type. The binning algorithm is designed to produce both 
occupied and empty discrete bin states, what we call a 
discrete topological structure (DTS). The bin state pattern 
that best distinguishes among the clinical type populations is 
computed by an XOR operation on each possible state space, 
which also extracts the set of distinctive variable bin states 
for each clinical type. The distinctive bin state space is then 
used to assign new patients into one population type given a 
patient’s set of biomarker concentration values. BCM-LDC 
is briefly presented below. 

3.1 Formulating the Computational Model 

Our goal is to develop a model that represents the 
conditional relationships of expressed host-response 
biomarkers. The first problem is to discretize the biomarker 
concentration values for every clinical type – paired 
biomarker combination CBr, producing a set of bin sizes and 
number of bins (Wr, Nr, 1 ≤ r ≤ R). A CBr is defined as the 
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aggregate concentration data from each of these pairs of 
biomarkers within each clinical type. Each clinical type has 
77 different combinations of pairs of biomarkers, including 
pairs of the same biomarker. The binning algorithm bin size 
computation maximizes the number of occupied bins Ô (O-
hat), separating concentration data values by the highest 
possible resolution, while minimizing the number of gaps or 
empty bins Õ (O-tilde) where no data values reside. Empty 
bins are considered non-permissible data states. BCM-LDC 
computes a different total number of bins (states) Nr, and bin 
size Wr, for each combination CBr. The model computes the 
probability of each concentration data point belonging to its 
bin within each CBr combination.  

3.2 Formulating the Discrete Topological 

Structure (DTS) 

The interactive relationships between each pair of 

biomarkers {B1, B2} are represented by three types of 

probability. The model computes the pair’s joint occurrence 

matrix MC-joint – the probability that biomarker B2 measured 

at concentration [c2] occurs at the same time biomarker B1 

is measured at concentration [c1]. The model also computes 

their conditional probabilities where, given concentration 

measurement [c1] for B1, how likely is the measured 

concentration [c2] for B2. Call this matrix Mβ. The model 

uses marginal probabilities to represent the influence of 

individual biomarkers – the probabilities of various 

concentration values of a subset of biomarker variables 

without reference to the values of the other variables being 

considered. Call this matrix Mα. These three types of 

computed probability taken together express the mutual 

interactivity and distribution of the biomarker concentration 

measurements to reveal concentration patterns characteristic 

of each clinical type. We equate these probability concepts 

to a discrete topological structure (DTS) matrix with 

equation 1. A data-driven DTS matrix is computed for each 

CBr. and the matrix (i.e., the specific set of paired 

biomarkers) that produces the most accurate set of patient 

classifications per clinical type is designated MC for that 

population. 

 

In equation 1, MC-joint is the population joint occurrence 
matrix, 1 is a complete matrix of ones (not the identity 

matrix), Mα is the α interaction matrix of marginal 
probabilities, and Mβ is the β interaction matrix of 
conditional probabilities for the clinical type. The DTS 
equation is implemented in terms of matrices of conditional 
and marginal probabilities involving bivariate pairs of 
biomarkers, each of which are indexed by their respective set 
of discrete bin states as computed by the binning algorithm. 
Pseudo-code for the binning algorithm is given in Algorithm 
1 below, where Dr refers to as the combined set of observed 
concentration data values within each CBr, for a specific 
clinical type and biomarker pair {Bi, Bj}. 

 

Algorithm 1: Pseudo-code for the Bin-Min-Max algorithm. 

Inputs: Dr: set of concentration data for given CBr ; 

maxNbins: max number of bins. Outputs: returns Wr, Nr 
1. foreach combination Dr = { D(Bi), D(Bj) } 
2. # Initialize number of bins (Nr), bin step 

size (binInc), bin size (Wr), number of 

empty bins (emptyBins), tmp = 0. 

3. Nr ← binInc ← √maxNbins
4

 

4. Wr ← |max(Dr) - min(Dr)| / Nr 
5. emptyBins ← Count_Empty_Bins(Dr, Nr, Wr) 
6. result ← |Wr - loge(emptyBins)| 
7. while (result < tmp and Nr < maxNbins - 

binInc) do 

8.   Nr ← Nr + binInc 
9.   Wr ← |Max(Dr) - Min(Dr)| / Nr  
10.  emptyBins ← Count_Empty_Bins(Dr, Nr, Wr) 
11.  tmp ← result 
12. If (emptyBins > 0) result ← |Wr - 

loge(emptyBins)|) else result ← 1 

13. end while  
14. Return (Wr, Nr) 
15. end foreach 

The output of the Max-Bins-Min-Empty-Bins binning 
algorithm is a bin size Wr and the number of bins Nr for each 
clinical type – paired biomarker combination CBr. Each 
value in a set of combined concentration values is assigned 
to a single bin, but multiple concentration values can be 
assigned to the same bin, as plotted in Figure 1 for 
Adenocarcinoma biomarkers {Bi = IFNG, Bj = IL1A}. The 
top 2 [c] rows in Figure 1 refer to their actual concentration 
values measured in pg/ml. These [c]values are mapped to 
specific bin states in the Bin Intervals row. Many of the [c] 
values are grouped in the first few bins. The first 6 states are 
labeled numerically, and bin 5 is the first empty bin out of 
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the 23 bins. Bins 1 through 4 illustrate the joint probabilities 
of IL1A and IFNG values occupying the same state. 
Additional details for computing each DTS matrix are given 
in the next section. 

3.3 Computing the DTS Matrix MC 

BCM-LDC computes the population joint probabilities 
for Dr for each clinical type Ct, combination CBr ∈ Ct, 
biomarker Bi ∈ CBr, bin b from 1 to Nr using equation 2, 
where Gb is the number of [c] values of Bi in bin b. The result 
Pi is the vector of probabilities for observing the biomarker 
concentrations in each bin, oftentimes zero. A bin probability 
equals the number of concentration values Gb grouped in 
each bin divided by |Dr| so that the sum of probabilities over 
the set of bins is 1. 

 
The population joint occurrence matrix MC-joint is 

computed by multiplying each bin probability Pi for 
biomarker Bi with each bin probability Pj for biomarker Bj, 
where Bi is indexed by i from 1 to the number of bins NBi for 
biomarker Bi and Bj is indexed by j from 1 to the number of 
bins NBj for biomarker Bj. Equation 3 multiplies two vectors 
(one row vector and one column transposed) together 
element-wise as an outer product to form a 2-dimensional 
matrix for that biomarker combination of Bi and Bj. The 
dimensions of MC-joint, one for each CBr, is NBi x NBj. Bins 1 
through 4 in Figure 1 illustrate joint occurrence values 
greater than zero. 

 

The population marginal distributions Mi-marg and Mj-

marg. are computed by equations 4 and 5. 

 

 
The α interaction matrix Mα – the matrix from equation 

1 with dimensions NBi x NBj – is composed as the 

transposition of Mi-marg repeated NBj times. The population 

conditional probability matrix MC-cond for a pair of 

biomarkers {Bi, Bj} – one per CBr – is computed as an 

element-by-element matrix division in equation 6.  

 
The β interaction matrix Mβ is defined in equation 7 as Pi 

divided element-wise by Pj (from equation 2). 

 

Equation 1, derived from equations 2–7, computes a 

DTS matrix MC for each CBr that represents the conditional 

probability relationship between all pairs of biomarkers 

within each population. Each CBr combination has a 

characteristic vector of occupied bin states Ô and empty bin 

states Õ out of a possible number of bins Nr as calculated 

by the binning algorithm. Each CBr combination now 

composes an object with the following properties, which 

will be used to find out the set of distinguishing biomarkers 

per clinical type: 

• clinical type population Ct, 

• biomarker pair {Bi, Bj}, 

• bin size Wr, 

• number of bins Nr, 

• bin state vector [Pi, Ô, Õ, Gb], 

• set of observed concentration values Dr, 

• matrices MC, MC-cond, MC-joint, MC-marg, Mα, Mβ. 

The main advantage of using calculated DTS values 
instead of raw concentration [c] values is the normalization 
of scale. Figure 2 plots all biomarker concentration 
measurements for clinical type Adenocarcinoma, covering a 
wide range of scales. Figure 3 plots the corresponding 
Adenocarcinoma DTS values. The binning algorithm 
calculates the DTS values to all lie within one order of 
magnitude for every clinical type, and the DTS values are 
more regularly spaced. 

 
Figure 2: All 12 biomarker Adenocarcinoma [c] values. 

 
Figure 3: All 12 biomarker Adenocarcinoma DTS values. 
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3.4 Distinguishing Biomarkers 

To reveal the distinguishing biomarkers for each clinical 
type, BCM-LDC forms a coordinate system of the bin state 
probability values and the DTS values per biomarker instead 
of comparing concentration values. The bin states are 
transformed to matrix form to expose their characteristic and 
distinguishing states. These integer matrices are constructed 
by first standardizing the bin state probability and DTS 
values. The probability values are multiplied by 100 and 
rounded to integers as percent values along the x-axis to form 
a standard 100 cells. The corresponding DTS values are 
raised as exponents to the natural logarithm and rounded to 
integers, standardizing the y-axis to 256 cells, and starting 
from the upper left corner. This forms a cellular structure 
where a whole integer in a cell indicates the presence of a 
probability–DTS value and 0 otherwise. An element-by-
element XOR operation between the cellular structures of 
any two clinical types of the same biomarker reveals which 
clinical type probability–DTS bin values are unique between 
those two clinical types. An elaboration of this logic obtains 
the complete list of distinguishing bin states of the same 
biomarker among all clinical types. The objective is the same 
– to identify those matrix cells that are occupied by one and 
only one clinical type for that biomarker, as described next. 

BCM-LDC replaces the occupied matrix integer values 
with unique 2n clinical type identifiers (e.g., 
Adenocarcinoma: 21=2), and then adds every matrix together 
per biomarker so that each matrix cell contains zero, one, or 
more than one clinical type identifier. An element-by-
element log2 operation that returns a whole integer identifies 
a single clinical type occupying that cell. This method 
depends upon the fact that a binomial coefficient (m choose 
n) (mod 2) is computable using an nXORm operation. Figure 
4 plots the integer matrix for biomarker IFNG for all clinical 
types, where Adenocarcinoma is distinguished by 3 (red) 
circled cells. The (blue) circled value of 34=2+32 indicates 
that both Adenocarcinoma and Smokers without COPD 
(25=32) exist in the same cell. 

 

Figure 4: Partial integer matrix for biomarker IFNG for all 7 clinical types. 

The 12 individual integer matrices produced for each 
clinical type can be consolidated into 3 dimensions to plot 
their distinguishing biomarkers with respect to the 
aforementioned probability cell and DTS cell states. Figure 
5 plots the distinguishing probability cell and DTS cell states 

of all the clinical types together. We observe that the range 
of probability values is low in the Probability dimension – no 
single biomarker overwhelms any of the others in terms of 
frequency. It is also clear that the DTS coordinate effectively 
separates out the clinical types. Interestingly, Never Smokers 
(blue) displays the most variation among all the clinical types 
– one is “normal” in a wide variety of states.  

4 Experimental Results 

Table I lists the common distinguishing biomarkers per 
clinical type over the 10-fold cross-validation study (see 
§5.1). 

 

Figure 5: Clinical types distinguished by Probability and DTS states. 

TABLE I.  DISTINGUISHING BIOMARKERS PER CLINICAL TYPE IN THE 

PROBABILITY – DTS DIMENSIONS. 

Clinical Type 

Classification Ct 

N Distinguishing 

Biomarkers  

Patient 

Counts 

Total 

Bins 
At  

Adenocarcinoma 6: IL1B IL4 IL6 IL8 

MCP1 VEGF 

53 444 0 

Squamous 6: IL1B IL2 IL8 IL10 

MCP1 TNFA 

44 1664 0 

Never Smokers 4: EGF IFNG TNFA 
VEGF 

55 624 3 

Smokers with 

COPD 

4: EGF MCP1 TNFA 

VEGF 

49 492 0 

Smokers without 
COPD 

2: EGF VEGF 53 386 0 

Acute Lung 

Injury 

12: EGF IFNG IL1A 

IL1B IL2 IL4 IL6 IL8 

IL10 MCP1 TNFA 
VEGF 

62 572 0 

Cystic Fibrosis 1: IL1A  27 360 0 
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5 Validation Studies 

We can now assign an unknown patient sample z to a 
known clinical type by computing the patient’s DTS matrix 
Mz and comparing it to every MCt. Comparing Mz to every 
MCt uses a fitness function (equation 8) that decides which 
clinical type is closest to the unknown sample state.  

 

Assigning a unique bin number and bin probability for 
each sample biomarker value simply involves looking up the 
corresponding bin number in the known population 
probability list for that biomarker. The probability of a 
sample’s concentration value is the expected probability of 
its assigned bin.  

5.1 10-Fold Cross-Validation 

We conducted a 10-fold cross-validation study on the 

343 baseline patients, where 10% of the samples were 

randomly extracted 10 times using SQL Server’s NewID 

function and then running BCM-LDC over each of the 

different data partitions. Those distinguishing biomarkers 

that were present in every one of the 10 runs per clinical type 

are listed in Table I, column 2. The total number of incorrect 

baseline patient assignments At over the 10 runs is given in 

the column 5. Three Never Smokers baseline patients over 

the 10 runs were incorrectly assigned, of which 2 were the 

same sample. We account for these incorrect assignments by 

the large variation present in the Never Smokers patients (see 

the last part of §3.4) and not by missing biomarker values. 

During the same 10-fold cross-validation, each of the 

10% sequestered (33) patients were correctly assigned to 

their respective clinical types with the exception of one (the 

same) Cystic Fibrosis patient assigned as Acute Lung Injury 

twice. We account for this incorrect assignment by the tiny 

sample size of the sequestered Cystic Fibrosis patients, 

which was the smallest to begin with. 

5.2 Healthy Serum Validation 

Whereas the baseline clinical types were collected by 
standard 2-D PAGE gel electrophoresis protocols, 
measurements from 144 “Healthy Serum” serum samples 
were taken from a different sampling protocol and 
experimental design (Luminex® fluorescent bead-based 
immunoassay [11]). Data was not collected for the EGF or 
IL2 biomarkers, but included the other 10 biomarkers. When 
processed along with the baseline data sets, all samples were 
correctly assigned to their Healthy Serum clinical type. 

6 Conclusions 

We have developed a computational model, BCM-

LDC, that reliably distinguishes among 7 given lung 

pathologies by assigning biomarker concentration values to 

discrete states despite significant data variation and 

technical challenges. BCM-LDC distinguishes the set of 

biomarker variables that uniquely characterize the clinical 

types under analysis. The source data – concentration values 

of host-response serum cytokines – serve as adequate 

biomarker variables. Excluding Cystic Fibrosis and 

Smokers without COPD, there is no single biomarker pair 

that distinguishes among all clinical types, though 

EGF~VEGF does for 4 types. The minimal biomarker pairs 

that distinguish among the remaining 5 clinical types are 

{EGF~TNFA or EGF~VEGF or TNFA~VEGF} and 

{IL1B~IL8 or IL1B~MCP1 or IL8~MCP1}. Whereas the 

distinguishing biomarkers extracted are data-driven, patient 

samples are classified into their single clinical type with 

reliability greater than 99%.  

The Discrete Topological Structure computational 

model distinguishes among the clinical type populations by 

discretizing concentrations values to populate only certain 

bin states. The resulting DTS model simplifies the high-

dimensional biomarker concentration space so that some 

distinguishing features of the lung disease space are 

revealed. 
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