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Inhibitory Grids and the Assignment Problem 
William J. Wolfe, Member, ZEEE, James M. MacMillan, George Brady, Robert Mathews, Jay Alan Rothman, 

Donald Mathis, Michael Donald Orosz, Charlie Anderson, and Gila Alaghband 

Abstract-This paper analyzes a family of symmetric neu- 
ral networks that solve a simple version of the Assignment 
Problem (AP). We analyze the suboptimal performance of these 
networks and compare the results to optimal answers obtained 
by linear programming techniques. We use the Interactive Acti- 
vation model to define the network dynamics-a model that is 
closely related to the Hopfield-Tank model. A systematic analysis 
of hypercube corner stability and eigenspaces of the connection 
strength matrix leads to network parameters that provide feasible 
solutions 100% of the time and to a novel projection algorithm 
that significantly improves performance. Two formulations of 
the problem are discussed: i) nearest corner: encode the assign- 
ment numbers as initial activations, and ii) lowest energy corner: 
encode the assignment numbers as external inputs. 

I. INTRODUCTION 
solution to the Assignment Problem (AP), for the pur- A poses of this paper, consists of choosing one entry from 

each row and column of a two-dimensional array of numbers in 
such a way as to attain the largest sum. For example, consider 
the following 10 x 10 array of numbers (randomly generated 
between 0 and l ) ,  shown at the bottom of the page. 

The array defines an AP for which the optimal answer is 
indicated by the underlined values. This solution corresponds 
to the permutation matrix on the bottom of the next page. 

It is well known that the optimal selection can be found 
using standard linear programming techniques. The purpose 
of this paper is to compare these optimal selections with 
the selections found by a class of neural networks that use 
inhibitory rows and columns. 

Several authors have shown how to apply neural networks 
to a variety of optimization problems ([l]-[SI). Much of the 
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research focuses on analog circuits (and simulations) for the 
Traveling Salesman problem (TSP), while some researchers 
([6], [9]-[ll]) have analyzed other nonlinear programming 
problems in a similar manner. We are interested in the AP, 
for which related results are provided in [l], [15], and [ l l ] .  
These results are incomplete and leave many unanswered 
questions concerning the convergence of such networks. It 
is our contention that some of the difficulties encountered 
in implementing neural networks to solve nonlinear problems 
such as the TSP, are also present-to a lesser degree- in 
linear problems such as the AF'. This paper focuses on the 
synthesis of a class of neural networks that generate good 
solutions to the AP, providing insight into why the solutions 
are suboptimal. 

We are not particularly interested in deriving a new way 
to solve the AP, since efficient linear programming methods 
exist. The only advantage to the neural approach is in pro- 
viding a parallel representation-compatible with the use of 
parallel processors-which may be more effective for very 
large arrays, but we provide no conjecture as to how large an 
AP must be before suboptimal methods are beneficial. 

We use the Interactive Activation model of dynamics [12], 
an apparently significant departure from the more common 
sigmoidal nonlinearity (i.e., Hopfield-Tank model), but sur- 
prisingly similar in overall performance. With Interactive Ac- 
tivation we can develop a relatively clear analytical foundation, 
similar to the analysis found in [13]-[16] for related networks, 
by emphasizing the eigenspaces of the connection strength 
matrix. In particular, the eigenspace analysis in [13] is very 
similar to that found here, a fact that we will expound upon 
in a later section. Furthermore, our approach can be viewed 
as an extension of our previous results for k-winner networks 
[17]. Finally, we demonstrate our general results with specific 
simulations of 10 x 10 arrays of randomly generated AP's. 
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f = - 

11. DEFINITIONS 

Consider a symmetric network consisting of n units with 
bounded continuous activation values and the following 
parameters: 

niin 5 a,  ( t )  5 max. z = I ,  . . . > n; 
w,, = a1,,(the connection strength between units i # 3 ) ;  

w,, = s(se1f-connection); 

ext, (the external input to unit 2 )  

Let A denote the symmetric n x n connection strength matrix. 
The n activation values form an n-dimensional column vector 
(or state vector), a, restricted to lie within the n-cube defined 
by the minimum activation (min) and the maximum activation 
(max). When applied to a square array of units we take 
n = k 2  and refer to those corner states that correspond 
to permutation matrices as feasible states. An example of 
a feasible state for k = 3, written as a k2-dimensional 
column vector and equivalently as a IC x IC array, with the 
corresponding permutation matrix, helps clarify the notation: 

- niin - 

max 

mill 

max 

min 

min 

niin 

min 

max 

min 

= [:: 

by concatenating the rows of the array. In all computations 
we treat k x k arrays of activations as column vectors, and 
never as matrices, but we find it convenient to display them 
as matrices in order to describe particular patterns, such as the 
feasible states. The IC x IC array of numbers that define an AP 
will be used as the initial activations of the array of units, but 
we will also discuss the use of external inputs in a similar 
fashion. Henceforth, the k x k array of activation values is 
treated as an element of Rk2 that traverses the interior of the 
n-cube as it converges to a feasible state. 

Activation values are updated synchronously using the 
following variant of Interactive Activation [ 121: 

Aui(t)  = Net;(t)[max -u;(t)], if Neti(t) 2 0; 

A a i ( t )  = Neti(t)[ai(t) - min], if Net;(t) < 0; 

Net,(t) = CJaJ(t)?",, + ext,, 
77 > 0 is the step size. 

~ 

The induced dynamics consists of two competing parts: 
1) Gradient descent with respect to an energy function, 

implemented by the Net, calculations. The energy of 
the network is defined to be: E = -l/2aTAa - aText. 
(& = the vector of external inputs). Since d E / d a ,  = 
-Net,, A a t ( t )  = Nct,(t) would be gradient descent 
with respect to this energy function. But the activation 
vector would not necessarily be restricted to the n-cube. 

2) A corner-seeking part, implemented by [max -aZ(t)] 
and [a,@) - min]. These factors keep the activation 
vector within the n-cube and pushes toward certain 
corners. 

Theorem 1: Interactive Activation dynamics is equivalent 
to: 

max min min min ] corresponds to the+ 

min max 
ai ( t  + 1) = a i ( t )  + vNeti(t)lbi(t)l. 

permutation matrix 
where 

b i ( t )  = C i ( t )  - Q(t)  

and 

c i ( t )  = max, 

c; ( t )  = min, 

if Ncti(t) 2 0 

if Neti(t) < 0 
Note that there are k !  feasible states. We interpret k x k 
arrays of activation values as IC2-dimensional column vectors 

0 0 1 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 1 0 0 0  
0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0  
0 1 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0  
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Proof: Net;(t) 2 0 + c; ( t )  = max + b ; ( t )  = max - 
a i ( t )  2 0 j Aa;( t )  = Neti(t)[max-ai(t)]. Similarly for 
Net;(t) < 0. Q.E.D. 

This theorem provides geometric insight: Net chooses a 
corner of the n-cube (c) by virtue of the sign of each 
component. b = c - a runs from the tip of a to the chosen 
corner. The nonlinear dynamics attempts to move a toward 
the chosen corner but the motion is corrupted by multiplying 
the magnitude of each component by the corresponding com- 
ponent of &. Thus, a’s that are relatively far from their 
final, asymptotically stable, corner state are being updated 
using corners that may have very little relevance to the final 
state. This is balanced to some extent by the fact that Net 
is pointing (locally) toward lower energy. Unfortunately, the 
local direction of Net is used to select corners that, by virtue 
of their remoteness, may direct the motion away from a more 
predictable flow. This is especially likely when a is near one 
side of the n-cube and the negative gradient points toward 
the interior selecting a corner that is on the other side of the 
n-cube. 

Therefore we must be careful while analyzing the gradient 
descent process in isolation, but the eigenspaces of A will 
nevertheless help us select network parameters that provide 
near optimal performance, with guaranteed feasible answers, 
but we cannot guarantee optimal results. 

111. k X k GRID OF UNITS 

To formalize our approach to the AP we begin with k x k 
grid of units with the following assumptions: 

All units in a common row or column are connected by a 
connection strength of -1, (i.e., mutually inhibitory rows 
and columns). These connection strengths will remain 
the same throughout the paper. 
All other connection strengths are equal to a, except for 
the self-connections which are all set to s. 
The maximum activation is set to max = + l ;  but the 
minimum activation is treated as a variable min 5 0. 
We will actually let max be a positive variable for most 
of our theorems but all simulations reported at the end 
of this paper were done with max = +l. 

Thus, the variable parameters are min, a and s. Initially, 
we keep s = 0 and & = 0. As the analysis proceeds we 
introduce a network that has a carefully chosen s. The external 
inputs will come into play in two different ways: i) we will 
discuss briefly the use of the same external input to all units 
to achieve stability of certain corner states; ad ii) we will also 
discuss the use of external inputs that are proportional to the 
numbers that define the AP (this lowers the energy of feasible 
corner states that correspond to better solutions to the AP, as 
will be described as follows). Finally, we note that the step 
size, 77, is also a variable. 

Theorem 2: When & = 0, all the feasible states have the 
same vector length and the same energy. 

Proof: Let - f be any feasible state. By direct calculation: 

and 

E(f) = -1/2(.1+ .2) 

where 

and 

+ (IC - 2)(min(max))(a) 

Q.E.D. 
Theorem 3: Assume that the initial activation values define 

a particular AP. The network solves the AP, optimally iff the 
network converges to the nearest feasible corner state. 

Proof: Let a denote the k2-dimensional vector of initial 
activations, and f any feasible state. It suffices to show that 
the optimal - f maximizes a T f :  

The first sum is over those values of a that correspond to the 
positions of the max’s in f ,  and the second sum is over the rest 
of the values of a. Let ai be the sum of all the activations 
+ X u ;  = C’ui + c”uz and: 

This is as linear increasing function of z ’ a i .  Q.E.D. 
Corollary: If the numbers that define the AP are used as the 

external inputs, then the feasible state with the lowest energy 
corresponds to the optimal solution. 

Proof: The energy of a feasible state is given by E = 
-l/2f’Af - fT&. From Theorem 2 we know that the first 
term is the same for all feasible states. By Theorem 3 we 
know that the second term has its largest magnitude when f 
is nearest to &. Q.E.D. 

If we encode the AP as the initial activations of the network, 
with external inputs set to zero, then convergence to the nearest 
feasible state constitutes optimal performance. If we encode 
the numbers as the external inputs to the network, with initial 
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activations set to zero, then convergence to the lowest energy 
feasible state constitutes optimal performance. If we encode 
the problem in both ways then the network would converge 
to the nearest and lowest energy feasible state. Later in this 
paper we provide statistical results for the initial activation 
formulation (externals set to zero). We will also discuss, 
however, the results of running networks using lowest energy 
formulations. 

A brief sketch of what follows: we choose min so that cer- 
tain corner states are orthogonal, then choose cy so those corner 
states are eigenvectors with eigenvalues of the appropriate sign 
and magnitude, and then choose s so that the feasible states 
are the only asymptotically stable states. 

IV. CHOOSING min = - 1 / ( k  - 1) 

Let F denote the set of feasible states. Let E, denote the 
set of corner states that correspond to arrays with all max's in 
one column. such as this example for k = 3 indicates: 

e =  

max 
min 

min 

max 
min 
min 

max 
min 
min 

max min min 
max min min 
max min min 

Also let E, denote the set of corner states that correspond to 
arrays with all max's in row, such as this example for k = 3 
indicates: 

e =  

max 
max 
max 
min 
min 

min 
min 

min 
min 

max max max 
min min min 
min min min 

Note that #Ec = #E,  = k .  
Lemma 1 is a direct consequence of discrete Fourier anal- 

ysis [19]. 
Lemma 1: Let mm and Sinm denote the k-dimensional 

vectors whose components are discrete samples (i = 

0, . . . , k - 1) of the Fourier harmonics: 

cos( 27rmOlk) 

cos(2"/k) 

cos(2"IC - 1 ) / k )  

1 sin( 2mnO/k)  

sin( 2 7 "  / k )  

For m = 1, . . .  k / 2  if IC is even, or m = 1, . . .  ( k  - 1)/2, 
if IC is odd, there are ( I C  - 1) such vectors and they form an 
orthonormal basis for the ( k  - 1)-dimensional subspace of Rk 
spanned by the k-dimensional vectors z with the property that 

Lemma 2: Let VJ denote the k-dimensional vectors that 
c i x ,  = 0. 

have a single max, in the j th  position, and the rest min's: 

[ lrlin 1 

When min = -(max)/(k - 1) these vectors span the same 
( k  - 1)-dimensional subspace as the Fourier harmonics defined 
in Lemma 1. 

Proof: First of all notice that the choice of min ensures 
that c z u :  = 0 for any j and thus the  J'S are in the 
subspace spanned by the Fourier harmonics. Furthermore, we 
also know that any k-dimensional vector g with the property 
that c z x z  = 0 can be expressed as a linear combination of 
the 2-7's via: g = [ l / (max - min)] [cJz31/J]. Q.E.D. 

Theorem 4: When min = -(max)/(IC - 1) the sets E, and 
E, each span a ( I C  - 1) dimensional subspace of RkZ,  call 
them E, and &,, and furthermore, these subspaces are mutually 
orthogonal. 

Proof: We prove that E, and E, are mutually orthogonal 
sets, and therefore the spanned subspaces &, and &, are as 
well. The inner product of any vector from E, with any 
vector from E, is given by: (max)' + 2( k - l)(max)(min) + 
(IC - 1)2(min)2 which is equal to zero when min = 
-(max)/(k - 1). 
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1- 
1 

1- 

Now we demonstrate the dimensionality of &, by defining 
a set of ( k  - 1) orthonormal spanning vectors by using mm 
and am as the repeated rows of a matrix representation: 

1 1 . . .  1 
1 1 ' . .  1 

. . .  [ 1 1 . . .  1 

= l / k  
- cos (27" /k )  c o s ( 2 7 " / k )  . . . cos(27"k - l ) / k )  
cos(27rmO/k) cos(2"/k) . . . cos(27rm(k - l ) / k )  

0 

0 

0 

.cos(2"/k) cos(2"/k) ' .  . cos(27rm(k - l ) / k )  

and 

'sin(27rmOlk) 
sin(27rmO/k) 

sin (27rmllk) . . . sin(27rm(k - l ) / k )  
sin (27rmIlk) . . .  sin(27rm(k - I ) / k )  

0 

0 

0 

.sin(27rmO/k) sin ( 2 T " / k )  . . . sin(2rm(k - l ) / k )  

These vectors each have length I C / &  with the exception that 
when k is even and m = k/2, cosk/' has length k ,  while 
- sin"' is all zeros. Denote the normalized versions of these 
vectors as mm,col and am,co1. Using Lemmas 1 and 2 we 
see that these k2-dimensional vectors span the same subspace 
as the vectors from E,. Notice that the vectors in E, have the 
property that the sum of any row is zero. Finally we can use 
the same cosines and sines as columns to prove the analogous 
result for E,, noting that the vectors in &, have the property 
that the sum of any column is zero. Q.E.D. 

Theorem 5: When min = -(max)/(k - 1) the vectors of 
F span a ( k  - l)'-dimensional subspace of Rkz ,  call it F, 
that is orthogonal to &, and &, 

Proof: First we show that any vector in F is perpen- 
dicular to any vector in E, or E,. The inner product of any 
vector from F with any vector from E, or E, is given by: 

+ 2(k - l)(max)(min) + ( k  - l)'(min)' which is 
equal to zero when min = -(max)/(k - 1). (Note that this 
is the same expression as in Theorem 4). 

The fact that F spans a ( k  - l)'-dimensional subspace 
(F) turns out to be equivalent to the Birkhoff-von Neumann 
theorem [ 181 for doubly stochastic matrices (i.e., nonnegative 
matrices whose sums of rows and columns is 1) To see the 
connection let G be the space of all vectors whose sums 
of rows and columns is zero. Any vector in 4 can be 
translated and scaled into a doubly stochastic matrix which, 
by the Birkhoff-von Neumann theorem, can be expressed as 
a linear combination of permutation matrices. Furthermore, 
any permutation matrix can be expressed as a translation 
and scaling of a feasible state. Thus any vector in G can be 
expressed as a linear combination of feasible states. Therefore 
F = G and the dimension of 6 is ( k  - 1)' because a ( k  - 1)' 
block of any matrix representation of a vector in 6 can be filled 
in arbitrarily and the remaining 2k - 1 entries must be used to 
make the rows and columns sum to zero. Notice that the sum 
of any column or any row of a vector in F is zero. Q.E.D. 

323 

Let V be the one-dimensional space spanned by: 

- d = l / k  

Theorem 6: When min = -(max)/(k - I), RIC2 is the 
direct sum: 

Proof: Since the sum of any row or column of any vector 
in .F is zero, F is orthogonal to D. Similarly, since the sum of 
any row of a vector in &, is zero and any column of a vector 
in & is zero they are also orthogonal to V. Q.E.D. 

v. PROJECTING ONTO THE FEASIBLE SUBSPACE 

We now have the following othonormal basis for the sub- 
space &c @ &, @ V: 

eOSm,col Sinm,col COSm,row Sinm,row {- > -  ,- 1- , d }  

(m  = 1, . . '  , [k/2]). 

(Here [k /2]  stands for the "largest integer less than or equal 
to k/2"). From Theorem 6 we know that any vector a E RIC2 
can be expressed as: 

Where a, is the orthogonal projection of a onto 3. The 
coefficients (7's) are obtained via inner products: 

If we rearrange the sums implied by these inner products and 
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let: and a min unit, recalling that min = -(max)/(k - 1):  

Netmax = 2(k - l)(min)(-1) + ( k  - l ) ( a ) (max)  colsum; = the sum of the ith column of a 

rowsum; = the sum of the ith row of a 

then 

Thus the coefficients are discrete Fourier transforms (without 
the m = 0 term) of the row and column sums, viewed 
as k-dimensional vectors. Also notice that y = aTd = 
( l / I ; ) (Eju i )  = (k)(avg), where avg = ( l / k ) 2 ( x i u ; )  and 
hence rd  is just the vector with avg for every component. 
Finally, by subtracting the associated terms from g we attain 
the projection a,. 

As an example, consider the 10 x 10 array of random 
numbers displayed at the beginning of this paper. Applying 
this projection gives the array shown at the bottom of the 
page. 

The sum of any row or column of this matrix is zero, as 
expected. Furthermore it is important to notice that the values 
may no longer lie within the n-cube defined by min and max, a 
fact that will cause us to “clip” some activations when applying 
this projection. 

VI. EIGENSPACES OF THE CONNECTION 
STRENGTH MATRIX ( A )  

We now show that 3, &,, &, and V are the degenerate 

Theorem 7: 3 is an eigenspace of A with eigenvalue XF = 

Proof: Let f be any feasible state. With = 0, Af = 
and we need only compute the net input to a max unit 

eigenspaces of the connection strength matrix A. 

( a  + s + 2). 

+ ( I ;  - I ) ( k  - 2)(min)(a) + s(min) 

= (max)(a + s + 2). 

Netmin = 2(k - 2)(min)(-1) + 2(max)(-1) 

+ ( k  - 2)(max)(a) 

= (-(niax)/(I; - 1)) (a  + s + 2) 

= (min)(a + s + 2). 

Since the feasible states span 3 we now see that 3 
is a ( k  - 1)2-dimensional degenerate eigenspace of A with 
eigenvalue XF = Q + s + 2. Q.E.D. 

Theorem 8: &c and &, are eigenspaces of A with the same 
eigenvalue XE = - ( k  - l ) ( a )  + s - ( k  - 2). 

Proof: We need only do the following two computations, 
applicable to any vector in E, or E,, again using min = 
-(max)/(k - I): 

Netmax = ( k  - l)(min)(-1) + (I; - l)(max)(-1) 

+ (IC - 1I2(min)(a) + s(max) 

= (max)(-(k - 1)(cy) + s - ( k  - 2)). 

Netmi, = (2k - 3)(min)(-1) + (max)(-1) 

+ ( k  - l ) (max)(a)  

+ ( ( k  - I ) ( k  - 2))(min)(a) + s(min). 

= (min)(-(k - l ) ( a )  + s - ( k  - 2)). 

Since E, and E, span E, and &, we see that they are 
Q.E.D. 

Theorem 9: V is a one-dimensional eigenspace of A with 
( k  - 1)-dimensional degenerate eigenspaces of A. 

eigenvalue = ( k  - 1 ) ’ ~  + s - 2(1c - 1). 

+0.21 
f0.30 
-0.11 
-0.14 
f O . l l  
+0.46 
-0.43 
-0.03 
-0.20 
-0.16 

f0.21 
$0.38 
f0.14 
-0.10 
+0.19 
-0.29 
-0.04 
-0.36 
$0.27 
-0.39 

f0.32 
+O.OG 
-0.18 
+0.19 
-0.17 
-0.24 
-0.51 
+0.09 
f0.20 
+0.23 

$0.21 
-0.24 
-0.24 
-0.34 
$0.07 
-0.35 
-0.12 
+0.42 
+0.17 
+0.43 

-0.34 
-0.44 
$0.04 
f0.49 
-0.35 
+0.23 
+0.52 
+0.01 
$0.21 
-0.36 

-0.22 
+0.29 
f0.37 

$0.35 
+0.25 
f0.30 

-0.14 

-0.57 
-0.27 
-0.37 

-0.12 
-0.27 
-0.27 
-0.20 
f0.25 
+0.47 
+0.03 
+0.06 
f0.13 
-0.38 

-0.19 
+0.16 
f0.51 
-0.04 
+0.00 
-0.21 
-0.16 
-0.02 
-0.43 
+0.38 

f0.35 
-0.23 
-0.09 
-0.12 
-0.19 
-0.06 
+0.35 
+0.27 
-0.28 
f0.01 

-0.42 
-0.01 
-0.16 
$0.40 
-0.25 
-0.24 
f0.05 
+0.13 
$0.20 
+0.31 
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Proof: Let be the diagonal vector defined earlier. The 
net input to any unit is independent of the choice of min and 
given by 

Similarly we know that 

Netmin = (2k - 3)(min)(-1) + (max)(-1) 

Net = 2 ( k  - l ) ( l /k)(-1)  + ( k  - l )2 ( l /k ) ( a ) s ( l / k ) .  + ( k  - l)(max)(a) + ( ( k  - l ) ( k  - 2 ) ) ( m i n ) ( ~ ) .  

= ( l / k ) ( (k  - 1 ) * N  + s - 2(k - 1)) .  

Q.E.D. 
With regard to the eigenspaces developed in [13] we see 

there that they are analyzing the analogous problem en route 
to representing the TSP. To correlate our results with theirs 
we need to display their notation: 

X I  = -Ck2 - 2 A ( k  - 1) 

X2 = 2A 

A3 = -A(k - 1). 

This “A, B, C, D” notation refers to parameters in Hopfield’s 
original formulation of the TSP [2]. These eigenvalues corre- 
spond to our D, 3, and & spaces, in that order. In fact, when 
A = 1 and C = 0 we see that XI, A2 and X3 are exactly 
equal to A D ,  XF and XE for the case when cy = 0. Since 
they use min = 0 and max = $1, it appears that the need 
for the C factor is offset in our formulation by the use of 
niin = -(max)/(k - I ) ,  a fact that also allows us to derive 
the eigenspaces in a cleaner fashion. Furthermore, we have 
generalized to the case where a is nonzero. 

VII. STABILITY ANALYSIS 

To achieve Netmin < 0, we solve this inequality for min to 
get 

( k  - a)(@) - 2 
min > 

2 ( k  - 2 )  - ( ( k  - - ( k  - 2 ) ) ( 4  . 

Q.E.D. 
Although these conditions provide stable feasible states, 

they do not preclude other corner states from also being stable. 
In particular we have observed that the following three types of 
corner states must be made unstable to ensure that the feasible 
states are the only stable corners of the system. 

Type I: The state consisting of all min’s: 

min min . . .  
min min . . .  

rnin min . . .  min 
. . .  

This state is stable iff min > 0. We have already restricted 
min 5 0 in our original parameter definitions so this state will 
be unstable if we add the slightly stricter condition: min < 0 

Type 2: Corner states with k + 1 max’s (the rest min’s) and 
having the property that if we chose any max in the matrix 
representation of the state there would be at most one other 
max in the same row and column. Here is an example for 
k = 4: 

A corner state is stable if the net input to any max unit is 
positive and the net input to any min unit is negative. This 
is a direct consequence of the Interactive Activation update 
equations. 

Theorem IO: For .s = 0, Q& = 0, and a in the range: 
-1 5 cy 5 l / ( k  - 2 ) ,  the feasible states are stable i f  

max min min 
min max min “1 
min min max min 
min min max min 

A similar analysis of the net input to particular max’s and 
( k  - 2 ) ( N )  - 2 < min 

2 ( k  - 2 )  - ( ( k  - - ( k  - 2 ) ) ( ( r )  

min’s leads to the following condition on min for the stability 
of these states: 

N ( k  - l ) ( c y )  - 2 
2 ( k  - 2 )  - ( I C  - l ) ( k  - 2 ) ( N )  

< < min 2 - ( k  - 2 ) ( @ )  . 

Proof: From Theorem 7 we know that the net input to a 
max unit in a feasible state is given by: 

( k  - l ) ( a )  - 1 
( 2 k  - 3) - ( k  - l ) ( k  - 2)(a)  . < 

Netmax = 2 ( k  - l ) (min)(- l )  + ( k  - l ) (a)(max) This overlaps with Theorem 10, but allows choices of a 
and min that make these states unstable while retaining the 
stability of the feasible states (see Fig. 1). 

TYPe3: Corner states with k max’s but exactly one corn- 
plete row or column of min’s, such as this example for k = 4: 

+ ( k  - l ) ( k  - 2)(min)(a).  

For stability we need Netmax > 0. We solve the inequality 
for min, using the fact that the restriction on 
the inequality to reverse orientation after division by the 
coefficient of min, to get 

max min min min 
min max min min] 
min min max min 
min min max min 

cy 
min < 

2 - ( k  - 2 ) ( N )  
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Nk-2) - 1 + ext + s 
fZ(a) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(2k-3) - ( (k-tf - (k-2) )a 

Fig. 1. A sketch of the (cu,min) parameter space for s = 0 and = 0. The shaded region provides values that guarantee that the feasible states are 
the only stable corner states of the network. Each boundary curve is derived from a stability analysis of a type of potentially stable corner state, shown 
in the sketch as a 4 x 4. (Note that the sketch is not drawn to scale). 

Analyzing the net inputs to max’s and min’s leads to 

( k  - l ) ( a )  - 1 
(2k - 3) - ( k  - l ) (k  - 2)(a)  

< min 

( k  - 2)(a) - 1 < 
(2k - 3) - ( ( k  - 1)* - ( k  - 2))(a) . 

This stability region also overlaps with Theorem 10, but again 
can be avoided while maintaining the stability of the feasible 
states. 

Fig. 1 summarizes these results. The boundary curves are 
sketched as though s = 0 and & = 0, but the functions 
that define these curves are expressed in terms of variable s 
and &. Notice the operating point for the k-winner networks 
derived in [17]. That is, if a = -1 and min = - l / ( k  - l ) ,  
the network would converge to the largest k initial values, 
ignoring the one per row, one per column constraint. Values 
of a and min chosen from the shaded region provide networks 
for which the feasible states are the only stable corner states 
of the system. 

VIII. THREE NETWORKS 

We are now in a position to select specific network pa- 
rameters and compare the results to optimal AP answers. 
We will define three specific networks, all with max = +l ,  

and give a justification for the parameter selections. In these 
simulations we encode the numbers that define the AP as the 
initial activations of the network, with & = 0. We want 
networks that always provide feasible answers. 

A. Parameters for Network “A ’’ 

The basic strategy in choosing the parameters for this first 
network is to make it as simple as possible. Thus we would 
like to have a = 0 simply because that drastically reduces 
the number of nonzero connections and by scanning Fig. 1 we 
see that there is a range of min’s available when a = 0: 0 > 
min > -1/(2k - 3). We prefer min = --1/(k - 1) since the 
feasible states would then be eigenvectors of A, but that choice 
is not available within the shaded region. So, we compromise 
and choose min = -1/(2(k - 1)). Thus the parameters for 
Network “A’  are: s = 0, a = 0, and min = -1/(2(k - 1)). 

B. Parameters for Network “B ’’ 

Still trying to keep it simple, we keep s = 0. From Fig. 1 
we see that the largest we can make a is + l / ( k  - l ) ,  
corresponding to min = 0. This choice of a has an additional 
property: when a = +l / (k  - 1) the eigenvalues of the 
nonfeasible subspaces, €,, ET, and D, are negative and 
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assignment problems with random 

I 
v1 - .E 20  
c 

P 

1 0  

I " " " " '  I " " " " '  I " " " " '  I 

I 7;O S i 0  9;O 10.0 
optimal value 

min 

a 

S 

11 

K = 10 

Network "A" Network "B" Network "C" 

I - l / ( Z ( K - l ) )  1 0 . 0  I - l / ( K - l )  

+ l / ( K - l )  + l / ( K - 1 )  

- l - l / ( K - l )  

0 . 1  0 . 1  0 . 1  

Greedy results for 200 trials of 10x10 assignment 
problems with random numbers between 0 and 1, 
expressed as % of the optimal. 

I 31- 
2 
3 20 
L 

P 

1 0  

80% 90% I % of optimal 

Network "A" results for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1, expressed as % of the optimal. 

7 4  . .  

3 4  I iterations: i 

9 
.E 2 0  
L 

0 

10 

80% 90% 
% of optimal 

Fig. 2. A comparison of Networks, " A ,  "B", and " C  with greedy (G) results. 

equal: 

x E  = - ( k -  l ) a + s -  ( k -  2 )  = - l + s -  ( k -  2 )  

= -(k- l ) + s .  

x g  = - ( k  - 1)2a + s - 2 ( k  - 1) 

= ( k  - 1) + s - 2 ( k  - 1) 

= - ( k - l ) + s .  

It is our intuition that this condition will cause the network 
dynamics to flow more uniformly out of the nonfeasible 
subspace as it converges to a corner in the feasible subspace. 
This conjecture is born out to some extent by the improved per- 
formance of Network "B" over Network "A" but it is difficult 
to separate the effects of the other parameter differences. 

C. Parameters for Network "C" 

We now forgo simplicity to achieve a theoretically satisfying 
selection of parameters. We prefer to have both min = 
- l / ( k  - 1) and a = + l / ( k  - 1). Recall that Fig. 1 was 
constructed under the assumption the s = 0. We now choose 
s so that the feasible states are the only asymptotically stable 
states of the system when cy = + l / ( k  - 1) and min = 
- l / ( k  - 1). This involves shifting the boundary curves in 
Fig. 1 by making s more negative, until the operating point 
( + l / ( k  - l), - l / ( k  - 1)) is in the feasible region. When 
s = -1 the desired point is on the lower boundary curve 
and when s = - 2  - l / ( k  - 1) it is on the upper boundary 
curve. A reasonable choice is s = -1 - l / ( k  - 1). Thus the 
parameters for Network "C" are min = - l / ( k  - l), cy = 
+ l / ( k  - l),  and s = -1 - l / ( k  - 1). 

Before closing this section it is worthwhile to point out 
that similar analysis of the parameter space in Fig. 1 leads 
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Network “B” results for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1, expressed as % of the optimal. 

9 1  

80 % 1’00% I % of ontimal 

Network “C” results for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1, expressed as % of the optimal. 

1J 9 119 

80% 90% 100% 
% of optimal 

80% 90% 100% 
% of optimal 

?h of trials 
greater than 1 
Of OptimPl 

. . . . .  
80% 85% 90% 95% 99% 

x % of oplimal 

(g ) 

Fig. 2. (Continued). 

to regions where other types of corner state are exclusively 
stable. In particular, empirical evidence indicates that keeping 
min = 0 while gradually increasing a, leads to networks for 
which there are exactly two winners in every row and column, 
three winners, etc. This may be useful for extending this work 
to more general task scheduling and transportation problems. 

IX. STASTISTICAL RESULTS 

Experiment #I : 
The first data set is shown in Fig. 2. The three networks 

described in the previous section, Networks “A’, “B”, and 
“C”, were used simultaneously on 200 different initializations 
of random numbers between 0 and 1. For each trial a 10 by 
10 array of random numbers between 0 and 1 was generated 
and used as the same initial activations for all three networks. 
Before running the networks however, the optimal solution 
was calculated using linear programming, allowing us to 
represent our results as percents of the optimal solution. For 
comparison purposes the results of applying the “greedy” 
algorithm to the same data are also shown. The “greedy” 
algorithm is a simple heuristic that selects the largest element 
in the array, deletes the corresponding row and column from 
further consideration, then selects the largest of the remaining 
elements, and so on. All three networks always provide fea- 
sible answers, confirming the validity of Fig. 1. Furthermore, 

the networks appear statistically better than the greedy results 
and the networks progress in improved performance from “A” 
to “C,” as predicted by the eigenspace analysis. 

Experiment #2: 

The second data set also consists of 200 trials using only 
Network “C”. But this time the activation vector is orthogo- 
nally projected onto the feasible space after each neural update. 
Since the projection can take the activation vector outside of 
the n-cube it was necessary to “clip” some activation values 
to min or max. This system performed better than the original 
Network “C”: 76% of the trials were within 99% of the 
optimal answer (see Fig. 3). This confirms the conjecture that 
projecting onto the feasible space helps the network converge 
closer to the optimal. (Technical note: The initial random 
vectors for these 200 trials, were normalized to unit length 
at the start; omitting this normalization appears to have no 
effect on the overall statistics but makes it a little bit more 
difficult to pick a reliable step size). 

Experiment #3: The third data set again consists of 200 trials 
but this time we orthogonally project Network “A” onto the 
feasible subspace on every neural iteration. The addition of 
the projection to this network actually creates stable points 
that are inside the hypercube but directly associated with the 
original feasible states. That is, the network converges to 
states that have the correct value of min but do not reach 

Authorized licensed use limited to: Auraria Library (UC Denver Metro State CCD). Downloaded on February 26,2021 at 18:45:42 UTC from IEEE Xplore.  Restrictions apply. 



WOLFE et al.: INHIBITORY GRIDS AND ASSIGNMENT PROBLEM 329 

Network “C” results for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1, expressed as % of the optimal. 

135  

80% 90% 
% of optimal 

Network “C”, with projection onto feasible 
subspace, results for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1, expressed as % of the optimal. 

152  

80% 90 I 100% 
% of optimal 

% of trials 
greater than 
of optimal 

* 95% 99 % 

x 46 of optimal 

(c) 

Fig. 3. Another 200 trials, comparing the results of running Network ” C  
as in the previous figure, with running Network “ C  by projecting onto the 
feasible subspace on every iteration. 

the full maximum value of +1 (they reached 0.65 for this 
k = 10 case). Fig. 4 shows the results of Network “A” with 

Network “A” with projection onto feasible 
subspace, reshlts for 200 trials of 10x10 
assignment problems with random numbers 
between 0 and 1. expressed as % of the optimaf. 

m 

2 20- 
c- 

at 

10- 

170  

80 % 90 % iooa 
% of optimal 

(a) 

x % of optimal 

( b) 

Fig. 4. 200 trials running Network “ A  by projecting onto the feasible 
subspace after each neural update. The lower part of the figure compares 
the analogous results for Network “ C  with Network “A”. 

projection and a comparison with the results of Network “C” 
with projection. 

It is not reasonable to apply the projection to Network “B” 
because min = 0 forces all such projections to land outside 
of the n-cube. We tried several variations in addition to those 
described above and are confident that the data presented are 
“representative.” 

= 0. However, we did 
explore variations using the same external input to all units. 
For example, by analyzing the curves in Fig. 1, we see 
that they shift downward for a negative external input. In 
particular we tried the following network parameters: i) = 
-1, min = - l / ( k  - l), (1: = 0, s = 0; and ii) ext = -1 - 
1/(2(k - I)), min = - I / (k  - I), Q = l / ( k  - I), s = 0. 
These networks performed similar to Networks “A’ and “B.” 

In additional experiments we added an external input to 
each unit that was proportional to the initial activation of that 
unit. As mentioned earlier, this should improve performance 
since better solutions now have lower energy. By analyzing the 
curves in Fig. 1 again, we see that a positive external input 

All of the experiments used 
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will shift these curves upward, and if the inputs are too large 
the exclusive stability of feasible states comes into question. 
For Network “A’ we see that a proportionality constant of 
pext = +l/(Z(k - 1)) puts the network right on the boundary 
of the feasible region, so we chose a safer setting: pzxt  = 
+1/(2k - 1). This network performed slightly better than the 
original Network “A.” For Network “B” we tried p:xt = +l /2 ,  
but in this case we had to reduce Q: to 1/(2(k - 1)) because 
the parameters of Network “B” are already on the boundary 
of the feasible region. Again, this network performed only 
slightly better than the original Network “B.” For Network 
“C” we used pgxt = +O.l/(k - 1) and again the new network 
was only a slight improvement over the old. 

Although adding external inputs proportional to the initial 
activations did not provide a significant improvement, it was 
noted that in all cases the addition of the orthogonal projection 
dramatically improved performance. 

X. CONCLUSIONS 
We have demonstrated how to choose the parameters of 

this type of network using eigenspaces and stability analysis. 
We confirmed most of our conjectures with statistical results. 
Unfortunately we do not arrive at 100% optimal performance. 
This must be attributed to a complex dynamic and geometric 
aspect of the interaction of the n-cube geometry and the update 
equations. In particular we originally desired convergence to 
the nearest feasible state, a requirement that can be analyzed 
by investigating the “boundaries” between basins of attraction 
for each feasible state. It appears that if these boundaries 
were invariant manifolds then the network would always pick 
the optimal choice, but this is not the case. The inherent 
nonlinearity of the update equations seems to be the underlying 
cause of the suboptimal results. The results can be improved 
slightly by using external inputs that are proportional to the 
initial activations, causing the optimal feasible state to be the 
lowest energy feasible state as well as the nearest. But if the 
external inputs are too large, nonfeasible states can become 
stable. In all cases, however, the introduction of the orthogonal 
projection onto the feasible subspace dramatically improved 
performance. 

We have performed some simulations of the more traditional 
approach to this problem using the Hopfield-Tank model, and 
are confident that since our analysis is based on the underlying 
gradient descent, a common feature of both models, there will 
be similar statistics for that model. 
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