
Expediting Training Using Information Theory-Based Patch Ordering Algorithm 

Abstract—We present a framework for automatically ordering 
image patches that enables in-depth analysis of dataset 
relationship to learnability of a classification task using 
convolutional neural network. Our preliminary experimental 
results show that an informed smart shuffling of patches at a 
sample level can expedite training by exposing important features 
at early stages of training. Using multiple network architectures 
and datasets, we show that ordering image regions using mutual 
information measure between adjacent patches, enables CNNs to 
converge in a third of the total steps required to train the same 
network without patch ordering.

Keywords—Convolutional neural network, deep learning, 
entropy, information theory, patch ordering

I. INTRODUCTION

An emerging promising theoretical characterization of 
deep learning that supports an intuition that motivated this 
work is the characterization that uses an information theoretic 
view of feature extraction [1]. The authors propose to study 
deep learning through the lens of information theory using the 
IB principle. In this characterization, deep learning is modeled 
as a representation learning. Each layer of a deep neural 
network can be seen as a set of summary statistics which 
contain some of the information present in the training set, 
while retaining as much information about the target output as 
possible [2]. One relevant insight presented in these papers is
that the goal of DL is to capture and efficiently represent the
relevant information in the input variable that describe the
output variable. This is equivalent to the IB method whose goal
is to find maximally compressed mapping of the input while
preserving as much relevant information of the output as 
possible. This characterization leads us to ask the question: Can
we utilize information theoretic techniques for images to make 
training efficient? Particularly, can we preprocess training set
and feature maps such that the relevant information is captured
in the early stages of training?

A training set for image classification tasks that employ 
supervised learning is constructed with the help of human
labeler. For instance, for a cat vs dog classification problem, the
human labeler must categorize each sample into either one of the
classes. During this process, the labeler must recognize and
classify each input using their own experience and distinguishing
capabilities. Considering this, a natural question we first must 
answer before addressing the question above is: Does human
classification performance on the training dataset affect

learnability of the task? In other words, can the networks learn
from ‘scrambled’ samples that cannot be classified by the naked
eye? This question was investigated in [3] with intriguing
outcomes. The authors present results that indicate that CNNs are 
capable of easily fitting training set containing samples that have
no correlation with labels (see Fig. 3 for illustration). These
results have us reconsider the traditional view that networks build
hierarchy of features in increasing abstraction, i.e., learn
combination pixels that make edges in the lower layers, learn
combinations of edges that make up object parts in the middle
layers, learn combinations of parts that make up an object the
next layer etc. This view is challenged by the findings in this
paper (see section V for detail). We use the information theoretic
characterization of deep learning to shed light on the questions
by developing preprocessing and learning techniques that reduce
convergence time by improving features extraction from images
using multilayered CNNs. We first rule out that human
recognizable features matching labels are not necessary for
CNNs and that they are able to fit training set containing
scrambled samples with minimal impact on generalization.
Equipped with this result we then utilize similarity and
information theoretic measures of image characteristics to
preprocess and ease feature extraction from images during
training. Our methods aim to expose important features of each 
training sample earlier in training by reorganizing image 
regions. The contributions of our approach are:
1. We provide a framework and algorithms for
preprocessing dataset to reorder image patches using
techniques that minimize mutual entropy of adjacent image 
patches of each training sample. As the results demonstrate,
organizing patches, of each training sample using measures 
such as entropy of a patch and mutual information index 
between patches enable faster convergence.
2. We present several techniques for ranking samples
that use information theoretic measures of the relationship
between adjacent patches and present results that show faster
convergence compared to standard training.

Two benchmark datasets and Inception [4], VGG [5] and 
ResNet [6] architectures, known for achieving exceptional 
results on image classification tasks, are used for evaluation. 
The networks are first trained on the corresponding datasets to 
create baseline reference performance metrics for comparison.
For each network we used Adams optimization technique with 
cross-entropy loss to gather emperical training, validation and 
test data. 

The remaining content is presented as follows. In section
2, we present the patch ordering approach and highlight the 
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design and implementation of algorithms used to preprocess 
data and feature maps based on patch ordering. In Section 3, we 
discuss the experimental setup. Then, section 4 presents
analysis of our results obtained by training Inception using 
multiple unmodified and patch-ordered datasets. Finally, we 
conclude by offering our insight as to why the outcomes are 
important for deep learning and future generation networks.

II. METHOD

During training, CNNs construct hierarchy of feature
representations and use superposition of the hierarchical 
features when generalizing to unseen input (Ian Goodfellow et 
al. 2006). However, we believe learnability of a classification
task is closely related to the amount of information contained
in the dataset that enable distinguishability of one class from
the others. To further explore this claim, we developed
techniques and conducted several experiments by
preprocessing training set using various techniques. The
techniques and the general procedure are described below.

A. Patch Ordering 
Our intuition is that some ordering at a sample level can

expedite training by exposing features that are important for
separating the classes in the early stages of training. For
illustration, consider the toy images in Fig. 1. If a person with
knowledge of the number system, was asked to classify or label
the two images, they can give several answers depending on
their experiences. At first glance, they can label a) as ‘large
number 1’ and b) as ‘large number 2’. If they were asked to
give more details, upon elaboration of the context, the labeler
can quickly scan a) and realize that it is a picture of digits 0
through 9. Similarly, b) would be classified as such, but
analyzing and classifying b) can cost more time because the
labeler must ensure every digit is present (we encourage the
readers to do the experiment). It’s the time cost that is of
interest to us in the context of learning systems. The mere
ordering of the numbers enables the labeler to classify a) faster
than b).

Given this intuition, we asked if ordering patches of
training images such that the adjacent patches are ‘closer’ to
each other by similarity measure, could expedite training and
improve generalization. Based on the mental exercise, the
procedure can intuitively be justified by the fact that toy sample
a) is easier to classify because, as our eyes scan from left to
right the features (0,1,2. . .) are captured in order. Whereas it
might take several scans of b) to determine the same outcome. 
Convolution based feature extractors use a similar concept to
capture features used to distinguish one class from the others.
The features are extracted by scanning the input image using
convolution filters. The output of convolution at each spatial
location are then stacked to construct the feature map.

Implementation of this operation in most deep learning
frameworks maintain spatial locations of features which then
can be obtained by deconvolution. In other words, there is a
one-to-one mapping between the location of a feature in a
feature map and its location on the original input (Fig.2.). Note
that the feature map not only encodes the feature (ear or head)
but it also implicitly encodes the location of the feature on the

input image (green arrow in Fig. 2.). The encoding of location
is required for detection and localization tasks but not for
classification tasks. Another question that arises from these
observations is:
Can we control feature map construction such that the
resulting feature map has characteristics that enables efficient
learning while maintaining or improving generalization?

To answer this question, we searched for DL 
characterization that aligns with this intuition and found the 
work of [1] captures this intuition by relating DL training from 
images to the Information Bottleneck principle (discussed 
below). While the authors discuss IB in the context of the 
entire training set and end-to-end training of deep networks, 
our exploration is limited to individual training samples and 
aim to expose information that can be captured and presented 
to the network earlier during training. We developed 
techniques to reconstruct training images by breaking up the
inputs into equal sized patches and reconstruct them using the
concept of ordering (Fig.3). Information-theory-based and 
traditional measures of images were used for ranking and 
ordering. These measures can generally be divided into two:
1. Standalone measures –measure some characteristic
of a patch. For example, the peak signal- to-noise ratio measure
returns a ratio between maximum useful signal to the amount
of noise present in a patch.
2. Similarity measures – these measures on the other 
hand, compare a pair of patches. The comparison measures can
be measures of similarity or dissimilarity like L1-norm and
structural similarity or information-theoretic-measures that
compare distribution of pixel values such as joint entropy. The
similarity measures discussed in the subsections below include 
Joint Entropy and Mutual Information.

Below we summarize the measures and present the sorting 
and reconstruction algorithm
1) Entropy-Based Measures for Patch Ordering 
The procedure for generating, ordering image patches and for 
reconstructing image from ordered patches is below. 

2

Fig. 3. An illustration of patch ordering. a) Input image, b) reconstruction of 
the input using structural similarity of patches and c) feature map generated 
by convolving b). Note that the encoding of spatial location of a feature is not
present in the feature map. The original image (a) is reconstructed using
structural similarity measure. This reconstruction is performed prior to 
convolution at a preprocessing stage. Similar procedure can be applied to 
feature maps deep in the learning pipeline. 
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Require:  ,
1. Obtain training batch  of size  

               For =   do:
                         For each input image   , :

a. = − ( )  r: 0, …, number 
of   patches in 
b. MeasureType is standalone

i. − − ( )
c.  

i.Select a reference patch
ii. − − ( , )

d. Sort-Pachtes in order according to MeasureType
and indicesee. Reconstruct-Sample( ) 

2. Train network on 
3. Repeat

End
Return

Table 1: Patch Ordering and Reconstruction (POR) Algorithm. The function 
Generate-Patches generates equal sized patches of the input image. Compute-
Individual-Index calculates the index of a given patch when the MeasureType
is of type standalone while Compute-Mutual-Index computes an index of 
similarity between two patches. Sort-Pachtes sorts the patches according to 
indices and Reconstruct-Sample constructs a sample using sorted patches. For 
computational efficiency is taken from (4x4, 8x8, 16x16) and all 
samples are resized to 32x32 prior to preprocessing. Since the dataset consists 
of color (RGB) images the algorithm computes the index of each channels and 
returns the average . 

a) Entropy 
Information theory provides a theoretical foundation to 

quantify information content, or the uncertainty, of a random 
variable represented as a distribution [8], [9]. This can be 
extended to image processing and computer vision [10]. One 
such measure is entropy. Intuitively, entropy measures how 
much relevant information is contained within an image when 
representing an image as a discrete information source that is 
random [9]. Formally, let X be a discrete random variable with 
alphabet and a probability mass function ( ), ∈ . The 
Shannon entropy or information content of  is defined as ( ) =  ( ) log 1( )∈                                   (1)
where 0log ∞ = 0 and the base of the logarithm determines 
the unit, e.g. if base 2 the measure is in bits etc. [11]. The term ( ) can be viewed as the amount of information gained by 
observing the outcome ( ). This measure can be extended to 
analyze images as realizations of random variables [9]. A 
simple model would assume that each pixel is an independent 
and identically distributed random variable (i.i.d) realization 
[9]. When dealing with discrete images, we express all 
entropies with sums. One can obtain the probability 
distribution associated with each image by binning the pixel 
values into histograms. The normalized histogram can be used 
as an estimate of the underlying probability of pixel intensities, 
i.e., ( ) = ( )/ , where ( ) denotes the histogram entry 
of intensity value in sample and is the total number of 

pixels of . With this model the entropy of an image can be 
computed using:( ) = ( ) log ( )∈ ( ), ∈ ,                            (2)
where  = {( , ): 1 ≤ ≤ }   is the training set 
comprising both the input values and corresponding 
desired output values . N is the total number of examples in 
the training set. ( ) represents the image as a vector of pixels.
While individual entropy is the basic index used for ordering, 
we also consider strategies that relate two image patches.
These measures include joint entropy[9], and mutual 
information[13] .
b) Joint Entropy 

By considering two random variables ( , ) as a single 
vector-valued random variable, we can define the joint entropy ( , ) of pair of variables with joint distribution ( , ) as
follows: ( , ) =  − ( , ) log ( , ) .          (3)
When we model images as random variables, the joint entropy 
is computed by gathering joint histogram between the two 
images. For two patches, , ∈  ∈ the joint entropy is 
given by: ( , ) =  ( ) log ( )                           (4)
where ( ) is the value of joint histogram between the two 
patches.
c) Mutual Information 

Mutual information (MI) is the measure of the statistical 
dependency between two or more random variables [9]. The 
mutual information of two random variables and can be 
defined in terms of the individual entropies of both and 
and the joint entropy of the two variables ( , ). Assuming 
pixels of the patches , the mutual information between 
the two patches is( , ) =  ( ) + ( ) − ( , ).       (5)
As image similarity measure, MI has been found to be 
successful in many application domains.

In addition to the entropy-based measures, we also utilized 
traditional image similarity metrics including Kullback-
Leibler(KL) divergence [14], L1 and L2 norms [16], Structural 
Similarity Index (SSIM) [15] and Peak-signal-to-noise ratio
(PSNR) [15].

III. RESULTS AND ANALYSIS 

For evaluation we used CATSvsDOGS [16], and 
CIFAR100 [17] datasets. The techniques described above
were employed to learn and classify these datasets. To gather 
enough data that enable characterization of each preprocessing 
technique, we set up a consistent training environment with 
fixed network architectures, training procedure, as well as 
hyper parameters configuration. We performed two sets of 
experiments to determine the impacts of algorithm POR (Table 
1) on training. The first experiment was designed to determine 
correlation between the preprocessing techniques and network 
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training performance while the second was conducted to 
characterize the impact of granularity of patches on training.
Below we present the analysis of results obtained using each 
approach. The results are summarized in Figs. 4 and 5.

A. Patch Ordering 
Figure 4 shows results obtained when training Inception 

network to classify CIFAR100 (Top) and Cats vs Dogs 
(Bottom) datasets using slow learning rate and Adams 
optimization [18]. Plots on the right side depict test 
performance of the network at different iterations. In both 
setups, the mutual information technique speeds up learning 
rate more than all others while some techniques degrade the 
learning rate compared to regular training. 
However, all techniques converge to the same performance as 
the regular training when trained for 10000 iterations. Given 
these results we answer the questions posed in the earlier 
sections. The question of whether ordering patches of the input 
based on some measure to help training can partially be 
answered by the empirical evidence that indicate reconstructing 
the input using the MI measure enables faster convergence. 
Dataset reordered using the MI measure achieves similar 
accuracy as the unmodified dataset in ¼ of the total iterations.  
In support of this we hypothesize that informed ordering 
techniques enable robust feature extraction and make learning
efficient. To conclusively prove this hypothesis, one must 
consider variety of experimental setup. For instance, to rule out 
other factors for the observed results, we must perform similar 
experiments using different datasets, learning techniques, hyper
parameter configuration and network architectures.
Given that most of these techniques remove human 
recognizable features by reordering (Figure 3) and the 
experimental results that not all ordering techniques 
compromise training or testing accuracy, we make the 
following claim: Training and generalization performance of 
classification networks based on the deep convolutional neural 

network architecture is uncorrelated with human ability to 
separate the training set into the various classes.

B. Patch ordering impact on Training 
In this section we provide analysis of the impact of the 

patch-ordering preprocessing technique on training 
convolutional neural networks.
Let us consider the mutual information (MI) metric, which 
outperforms all other metrics. As mentioned in previous 
sections the MI index is used as a measure of statistical 
dependency between patches for patch ordering. Given two 
patches (also applies to images) , the mutual information 
formula (Eqn. 5) computes an index that describes how well 
you can predict given the pixel values in . This measures 
the amount of information that image contains about .
When this index is used to order patches of an input, the result 
consists of patches ordered in descending order according to 
their MI index. For instance, consider a 32 by 32 wide image 
with sixteen 8 by 8 patches (see representation, I, below). If we 
take patch (0,0) to be the reference patch, Algorithm 1 in the 
first iteration computes MI index of every other patch with the 
reference patch and moves the one with the highest index to 
position (0,1) and updates the reference patch. At the end, the 
algorithm generates an image such that the patch at (0,0) has 
more similarity to patch at (0,1) which has more similarity to 
patch at (0,2) etc. In other words, adjacent patches explain each 
other well more than patches that are further away from each 
other. How does this impact training?

To answer this question let us consider the convolution 
operator [19] and the gradient decent optimization [20] training 
technique. This algorithm employs Adam optimization and the 
SoftMax cross-entropy loss, to update network parameters. 
We trained the networks using online training [21] mechanism, 
where error calculations and weight updates occur after every 
sample.  Our hypothesis is that samples preprocessed using the 

Figure 4: Accuracy in validation classification as a function of training iterations of CIFAR100 (top) and CATSvsDOGS 
(bottom) datasets using Inception network architecture. We show training (left and testing (right) results of all the 

similarity and statistical measure-based patch ordering techniques: patch ordering using mutual information (MI, yellow) 
between adjacent samples outperforms all other techniques. During training all parameters except for the training dataset 

are fixed.
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MI measure enable rapid progress lowering the cost in the
initial stages of the training.

In other words, when the input is rearranged such that 
adjacent samples have similar pixel value distribution, the 
convolution filters extract features that produce smaller error. 
To illustrate this let us assume the following values for the first 
few patches of an image (color coded in the matrix below). For 
simplicity let us assume the image is binary and all the pixel 

values are either 0 or 1. 
Also consider the following 3x3 
convolution filter whose values 
are initialized randomly: =1 50 1 .If one performs 

convolution of the original image with the above kernel , the 
resulting feature map consists of the following values. 

To maintain resolution of the 
original image we use 0-
padding before applying 
convolution. Applying a 3x3 
max pooling operation with 

stride 3 to the convolved sample generates a down-sampled 
feature-map of the training sample, = 6 71 1  ,which is 
used as an input to compute probability score of each class in a 

classifier. In this illustration we 
consider a binary classifier with 
two possible outcomes. 

Given the weight matrix = 0.01 −0.05 0.1 0.050.7 0.2 0.05 0.16 and a bias vector =  0.2−0.4 ,
the effective SoftMax cross-entropy loss for the correct class 
can be computed using the normalized probabilities assigned  to 
the correct label given the image parameterized by 
(Eqn. 12). ( | : ) =  ∑                                      (12)
The probabilities of each class using ( , ) =  ( + )
objective function after normalization are  0.010.99 . Assuming 
the probability of the correct class is 0.01 the cross-entropy loss 
becomes 4.60. Note here patches are ordered left to right and 
adjacent patches have MI indices that are larger than those that 
are not adjacent. After ranking each 3x3 patch using the MI 
measure and preprocessing the sample using Algorithm 1, the 
resulting sample ′ has ordering grey, green, pink and blue. In 
this example MI of the green with the grey patch is 0.557 while 
the blue has MI index equal to 0.224 against the same reference 
patch.
Once ′ is convolved using the same kernel , the resulting 
downscaled feature map, = 6 56 7 , produces 0.130.87  
probabilities for each class.  Taking the negative logarithm of 
the correct class results in a prediction loss equal to 2.01.
This is the underlying effect we would like all measure to have 
when reordering the training dataset. However, it is not 
guaranteed. For instance, if we use l2-norm measure to sort the 

patches, the resulting loss becomes 4.71, which is higher 
compared to the unmodified original sample. As a result, the 
training is slowed down since larger loss means more iterations 
are required for the iterative optimization to converge.

C. Patch Size Impact on Training 
To characterize the effect of patch size, we performed 

controlled experiments where only the patch size is the varying 
parameter. The results and unmodified and preprocessed 
samples are depicted in Fig. 5.
As can clearly be seen in the plot, the network makes rapid 
progress lowering the cost when trained on a 4x4 patch ordered 
datasets. Based on the empirical evidence and observations, we 
believe patch-ordering impact is more effective when mutual 
information index is combined with small patch size. To clarify 
consider dividing the above sample into nine 2x2 patches
(matrix ′′).

If the patches are reordered using 
MI measure( ′′′) against a reference 
patch p(0,0), and convolve the  
reordered sample, , using the same 
filter = 1 50 1 , the resulting  
normalized prediction probabilities 
are 0.140.86 , which results in a loss of 
1.96 after the first iteration. 
This is one explanation for the 

observed results, however, we cannot draw a conclusion 
regarding proportionality of patch size to training 
performance. If the pink and red patches of the above sample, 
which have same MI index, were to swap places, the resulting 
loss would have been 4.71 which is greater than the loss 
generated using 3x3 patch size. In this scenario training is 
slowed down which explains the behavior of training VGG on 
the different patch sizes.

IV. SUMMARY AND DISCUSSION 

We proposed several automated patch ordering techniques 
to assess their impact on training and characterize the 
relationship between dataset characteristics and training and 
generalization performances. We used traditional image 
similarity measures as well as information theory-based content 
measures of images to reconstruct training samples. The 
empirical evidence and our analysis using multiple datasets and 
Inception network architecture, suggest that training a 
convolutional neural network by supplying inputs that have 
some ordering, at patch level, according to some measure, are 
effective in allowing a gradient step to be taken in a direction 
that minimizes cost at every iteration. Specifically, our 
experiments show that supplying training sample such that the 
mutual information between adjacent patches is minimum, 
reduces the loss faster than all other techniques when 
optimizing a non-convex loss function. In addition, using these 
systematic approaches, we have shown that image 

= ⎣⎢⎢
⎢⎢⎡

⎦⎥⎥
⎥⎥⎤

′ = ⎣⎢⎢
⎢⎢⎡

⎦⎥⎥
⎥⎥⎤
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characteristics and human recognizable features contained 
within training samples are uncorrelated with network 
performance. In other words, the view that CNNs learn 
combination of features in increasing abstraction does not 
explain their ability to fit images that have no recognizable 
features for the human eyes. Such a view also discounts the 
ability of the networks to fit random noise during training. 
Instead further investigation using theoretical characterizations
such as the IB method are necessary to formally characterize
learnability of a given training set using CNN.
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