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Abstract. Applications that involve supervised training require paired
images. Researchers of single image super-resolution (SISR) create such
images by artificially generating blurry input images from the corre-
sponding ground truth. Similarly we can create paired images with the
canny edge. We propose Generator From Edges (GFE) [Fig. 1]. Our aim
is to determine the best architecture for GFE, along with reviews of per-
ceptual loss [1,2]. To this end, we conducted three experiments. First,
we explored the effects of the adversarial loss often used in SISR. In
particular, we uncovered that it is not an essential component to form a
perceptual loss. Eliminating adversarial loss will lead to a more effective
architecture from the perspective of hardware resource. It also means
that considerations for the problems pertaining to generative adversarial
network (GAN) [3], such as mode collapse, are not necessary. Second,
we reexamined VGG loss and found that the mid-layers yield the best
results. By extracting the full potential of VGG loss, the overall per-
formance of perceptual loss improves significantly. Third, based on the
findings of the first two experiments, we reevaluated the dense network
to construct GFE. Using GFE as an intermediate process, reconstructing
a facial image from a pencil sketch can become an easy task.

1 Introduction

While there have been quite a few methods and proposals for single image super-
resolution (SISR), few applications exist for reconstructing an original face from
the corresponding edge image. The techniques used in our Generator From Edges
(GFE) are variations of those used in SISR. In SISR, there are roughly two
categories. The first is by way of the perceptual loss that includes adversarial loss,
which requires a generative adversarial network. The second omits adversarial
loss. GFE belongs to the second category.

We focus on three perceptual losses that have large impact on the overall
performance; adversarial loss, MSE loss, and VGG loss. Removing adversarial
loss results in a simpler architecture, enabling us to eliminate the discriminator
used in GAN. Figure 2a depicts the differences between SRGAN [2], one of the
most influential works for SISR, and our proposed GFE.

In general, the larger the neural network model is, the better the outcome we
expect. This is true in the accuracy of classification as well as in the synthesis of
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Fig. 1. From Left: Input, Ground Truth, Output; With CelebA-HQ [5], we used 28,998
for training and 1,000 for testing. These are sample outcomes from the testing set.

Fig. 2. (a): SRGAN diagram, (b): GFE, the proposed architecture – many of the
elements go away
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images. But as the size of the input image and the complexity of the synthesis
grow, we come across problems with “instabilities specific to large-scale GANs”
[4] and the rate of contribution by the discriminator diminishes. In addition,
the discriminator requires a large memory footprint. In order to use a large
network for training with the limited amount of memory for hardware such as
GPU, the question arises as to how much the discriminator contributes to the
outcome of the synthesis. We observed very little, if any, positive effect using
the adversarial loss for GFE. If we do away with the discriminator, we can free
up its otherwise occupied GPU memory, making it possible to construct a larger
generator. Moreover, using only two loss functions (image loss and VGG loss
– Sect. 3) permits easier settings for hyper-parameters. We attempt to measure
the effect of the discriminator and perform image synthesis without it.

This is all achieved without sacrificing the fidelity of the outputs. In the
sections that follow, we present our contributions by describing details for the
three experiments conducted in this study. We define Generator From Edges
to be a generator (in the same sense as the one used in GAN, but without
discriminator) for an application that restores images from their corresponding
canny edge. All the experiments train with pairs of images; a ground truth and
the corresponding single-channel (grayscale) edge image. The edge images are
created by running the OpenCV Canny function from CelebA (Experiment 1)
and CelebA-HQ [5] datasets (Experiments 2 and 3).

– Experiment 1: Effect of Adversarial Loss. Using CelebA dataset, we
measured the effectiveness of adversarial loss for both SISR and the synthe-
sis from canny images. The larger the images and more complex the task
becomes, the less adversarial loss contributes to the outcome (Sect. 4).

– Experiment 2: VGG loss. VGG loss is another element of perceptual loss.
The absence of adversarial loss leaves our perceptual loss more reliant on the
VGG loss [2,6]. We used CelebA-HQ dataset with the image size 224 × 224.
Using middle layers is more effective than using the last layers (Sect. 5).

– Experiment 3: Dense Network. In pursuit of the best quality, we inves-
tigate and propose the network architecture for GFE. The specific focus is
on the effectiveness of dense connections in the network. Each residual block
should have exactly one batch normalization layer, and skip connections are
ineffective (Sect. 6).

2 Related Works

Reconstruction from edge images is a derivative of the SISR problem, thus it is
imperative to consider SISR first. Since the inception of GAN [3], the technique
to use a discriminator was adopted by SRGAN [2], whose influences and follow-
up research [6–9] are the inspiration for our work. For human facial synthesis,
whereas we generate a photo from edges (sketch), other research generates a
sketch from an input photo [10–12]. Huang et al. [13] made a frontal view syn-
thesis from profile images. Li et al. [14] as well as Jo and Park [15] generated
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facial images with a partial reconstruction from sketches. In terms of applica-
tion, our work is related to Lu et al. [16] and Yu et al. [17]. The former uses
Contextual GAN, where input photos and images are trained in semi-supervised
fashion. The latter uses a Conditional CycleGAN to address the heterogeneous
nature of photos and sketches. StarGAN [18] offers an impressive multi-domain
image-to-image translation on human faces. Liu et al. [19] uses SR for human
faces. In the general domains to generate images from sketches other than human
faces, substantial advancements have been made [20–25]. More recently, Mask
based image synthesis on human faces [26,27] is gaining attention. Also, Qian
et al. [28] propose Additive Focal Variational Auto-encoder (AF-VAE) for facial
manipulation.

Going back a few years, a wide applicability of image-to-image translation
in the supervised setting was proposed by Isola et al. [29] with GAN. Our work
follows this line of research; but instead of adversarial loss, we use VGG loss.

Chen et al. [30] demonstrated a similar applicability to [29] but with a Cas-
caded Refinement Network, which starts with a low resolution module and dou-
bles its size for consecutive modules. For SISR, VDSR [31] and SRResNet [2]
were notable architectures prior to SRGAN. Lim et al. [32] used a multi-scale
model (EDSR) that enables flexible input image size, which also reduces the
number of parameters. Tong et al. [33] applied dense skip connections in a very
deep network to boost the SR reconstruction. Mei et al. [34] used a multi-frame
network to generate more than one output and fused them into a single output.
Ma, et al. [35] replaced simple skip connections with the connection nodes and
proposed a multi-level aggregated network (MLAN). The research presented in
these papers successfully synthesized images without using a GAN, which led
us to ask ourselves: If we can create images without GAN, then how much does
a GAN contribute to the outcome? If we drop it from our system altogether,
what would be gained? We examine these topics in the context of the synthe-
sis/reconstruction of an image of a human face.

3 Perceptual Loss Functions

Perceptual loss functions were first defined by Johnson, et al. [1] and adopted
by Ledig, et al. [2]. They are per-pixel loss functions used in feed-forward image
transformations. In SRGAN [2] and its variants, three loss functions are used.
Empirically, none of the loss functions among the three can generate a convincing
image alone. In our study, we use at least two losses in various combinations to
determine if and how they contribute to the overall outcome.

– Image Loss (I): also referred to as per-pixel loss [1], or MSE loss [2]. This
is a pixel-wise L2 loss between the output of the generator and the ground
truth. We call it image loss in order to distinguish it from the mean squared
error used in VGG loss. The resources required to calculate the image loss
are the least expensive among the three. We used L2 in this paper, but it is
also possible to use L1.
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LI(G) =
W∑

x=1

H∑

y=1

(Itargetx,y − G(IInput)x,y)2 (1)

– VGG loss (V): Using a pre-trained VGG Network [36] (available in [37]) plays
a crucial role for training the generator. The network has been trained with
ImageNet and already knows what real-world images look like, delivering the
results for object classification/identification as well as synthesis. Given φ is
a VGG network, the loss function is defined to be

LV (G) =
W∑

x=1

H∑

y=1

[φi,j(Itarget)x,y − φi,j(G(IInput))x,y]2 (2)

where φi,j refers to the feature maps obtained from the j-th Convolu-
tion/ReLU pair before the i-th maxpooling layer within the VGG-19 network,
the same notation used in [2,6].

– Adversarial Loss (A): which is calculated with the discriminator, is what
makes the system a GAN. In other words, in the absence of this loss, there is
no need for a discriminator, and the resulting framework is no longer desig-
nated as a generative adversarial network. The resources required for comput-
ing the adversarial loss and how impactful it is in our image reconstruction
deserves attention.

LA(G) =
N∑

n=1

− log D(G(IInput)) (3)

The total loss, L, is calculated as

L = λ0I + λ1V + λ2A (4)

where I, V,A represent image loss (LI), VGG loss (LV ), and adversarial loss
(LA), respectively. In the actual calculation, we set λ0 = 1, so that only two
parameters λ1 and λ2 are considered to determine the portion of each loss influ-
encing the computation. In Sects. 4 and 5, we examine these losses more closely.

4 Experiment 1. – Impact of Adversarial Loss

In the realm of supervised training, there are quite a few papers that report
successful reconstruction of images without adversarial loss [30–35]. Prior to
the architecture of GFE described in Sect. 6, this section analyzes the value of
adversarial loss with the degree of its effect on both super-resolution (SR) and
canny edge (Canny). In this experiment, we used smaller image sizes as well as
a shallower network than those used in the experiments 2 and 3.
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4.1 Architecture

The generator consists of 16 layers of residual blocks, each with 64 feature maps.
This is the structure used in [2]. We used it for both SISR and image recon-
struction from edges (Canny) for the experiment. The discriminator has eight
convolutional layers with an increasing number of feature maps; 64-64-128-128-
256-256-512-512, followed by two dense layers and a sigmoid activation function.
In search of a suitable implementation we turn off VGG loss, if any, and run
only in adversarial loss to see how the network converges. We selected a few
implementations published in Github [38,39] among those that converge with
adversarial loss only, and plugged them into our implementation so that fair
comparisons can be made. The sizes of input and output images are the same;
we experimented on 3 sizes – 96× 96, 128× 128, and 176× 176 for both SR and
Canny.

4.2 Methods

Since the image loss has the minimum overhead to calculate, we leave it in all
three scenarios listed below. In all three cases, we set λ0 = 1 in Eq. (4). We ran
20 epochs and took the best Fréchet Inception Distance (FID) [40,41]. FID uses
a pre-trained Inception network and calculates the Fréchet distance between two
multivariate Gaussian distributions with mean μ and covariance Σ,

FID(x, g) = ||μx − μg||2+ Tr(Σx + Σg − 2(ΣxΣg)1/2)

where x, g are the activations of the pool 3 layer of the Inception-v3 net for real
samples and generated samples, respectively.

– Image loss + VGG loss [I + V] (λ1 > 0 and λ2 = 0)
– Image loss + Adversarial loss [I + A] (λ1 = 0 and λ2 > 0)
– Image loss + VGG loss + Adv. loss [I + V + A] (λ1 > 0 and λ2 > 0)

Fig. 3. FID scores (lower is better) – combinations of losses for SR and Canny
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4.3 Discussion

As commonly seen, the more complex the task is, the more difficult it is for the
generative adversarial network to converge. For SISR, Fig. 3a clearly shows its
contribution by adversarial loss to the image quality, especially in lower reso-
lutions. However, for synthesis from canny images, a task more complex than
SR, adversarial loss does not show any positive effect to the outcome. In fact,
we could not successfully generate convincing images at all if VGG loss is not
included (the case [I + A] in Fig. 3b). SISR is easier for image reconstruction,
where adversarial loss can be incorporated into a part of the perceptual loss
more naturally, than the reconstruction from canny edges.

We recorded the loss values as the training continued at each epoch. Figure 4
shows sample loss values over the course of training for the size of 128 × 128 of
Figs. 3a and 3b. While image loss and VGG loss show a typical, oscillating yet
steady decrease in values, adversarial loss converges rather quickly to a constant
value after several hundred iterations. This raises a few interesting theoretical
points: First, if we knew the constant value in advance, we could use it in lieu of
the adversarial loss and save computer resources. Second, if we could come up
with a method to decrease the adversarial loss throughout the training, we could
take full advantage of the power of the generative adversarial network. For now,
however, these are left for future research, and we conclude that adversarial loss
does not contribute to the synthesis of images from canny edge, and that the
resource is better used for a larger generator. Consequently at this point, GAN
is not used in our study. Unless otherwise noted, the remainder of this paper
uses only image loss and VGG loss.

Fig. 4. Loss values by epochs from Fig. 3a [128 × 128] (a) I+V (b) I+A (c) I+V+A,
and Loss values from Fig. 3b [128 × 128] (d) I+V (e) I+A (f) I+V+A
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5 Experiment 2. – Optimizing VGG Loss

VGG-19 consists of 16 Convolution layers, each followed by ReLU activation.
Between the last (16th) ReLU layer and the output softmax layer, there are three
fully connected layers, which are not used for perceptual loss. For perceptual loss,
both aforementioned papers used the last pair (16th layer, φ5,4); while Ledig et
al. [2] used the activation layer, Wang et al. [6] claims it is more effective to use
the convolutional layer before the activation, which we confirm to be true. In this
experiment, we further analyze using VGG loss computed from various layers
and recommend an optimized VGG loss for our image reconstruction application.

5.1 Architecture and Dataset

We used VGG-19 along with image loss as part of the perceptual loss in the
generator (GFE). As we established in Sect. 4.3, adversarial loss is not used and
we can eliminate the discriminator. The architecture of the generator is the same
as the one used in Sect. 4, but with the CelebA-HQ dataset—it consists of 30,000
high-resolution images with the size 1024× 1024 (We resize them to 224× 224).
Removing 2 outliers (imgHQ00070 and imgHQ02815), and setting aside 1,000
images for validation/testing, we have 28,998 images for training.

5.2 Result

Fig. 5. VGG loss – layer by layer analysis

Contrary to common usage of how
VGG loss is applied, our study shows
using middle layers is more effec-
tive than using later layers, either
the convolutional layer or the activa-
tion layer. Discarding the later lay-
ers also saves the memory space in
the hardware. Fig. 5 shows that the
convolutional layers of φ4,2 and φ4,3,
(10th and 11th convolutional layers,
respectively) show the best FID scores
(lower is better – Yellow bars are con-
volutional, Blue is ReLU, and Black is Pool Layer).

5.3 Multiple Layers of VGG Loss

More than one layer can be used as part of perceptual loss. Without the assis-
tance of adversarial loss, we have λ2 = 0, and assuming λ0 = 1, Eq. (4) becomes

L = I + λ11V + λ12V + · · · + λ1nV (5)
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Fig. 6. VGG loss – using mul-
tiple layers

where n is the number of VGG layers to be used
for perceptual loss. Starting with Conv φ4,3, we
selected the best 4 layers and added new layers
one by one (see Fig. 5 for reference to layers).

Figure 6 shows a sample of FID scores for n =
{1, 2, 3, 4} in our experiments with 16 block layers
of generator ([A] Conv4-1; [B] Conv4-2; [C] Conv4-
3; [D] ReLu4-3). Using two layers (n = 2) is better
than using a single layer (n = 1), and n = 3 is
better than n = 2. But for n > 3, the effect of adding extra layers diminishes.
Most of our experiments in Sect. 6 use 2 layers of Conv φ4,2 and Conv φ4,3.

6 Experiment 3. – Generator from Edges

We form GFE based on the results obtained from Sects. 4 and 5. Increasing
the size of the network is effective up to a certain point due to the vanishing
gradient problem, and residual blocks along with skip connections are notable
solutions for large networks [42]. In SISR, making the residual block denser (more
connections within the block), as well as having more skip connections between
blocks is reported to improve performance. For GFE, however, dense networks
are not an effective solution when making the network larger.

In this section, we describe the experiments in pursuit of the best architecture
for GFE with the network in a monolithic structure, which has a constant number
of feature maps (64) throughout the generator, adapted by SRGAN [2] and other
models for image generation.

6.1 Architecture

By using a fixed number of feature maps at every block layer, we can focus on the
study of structures in the residual block and skip connections for a large network.
The number of feature maps at each layer is 64, and the kernel sizes are all 3×3.
Starting with 16, we increase the number of block layers at increments of 8.
Without the discriminator, we have more memory available for the construction
of GFE. All experiments were conducted in a single GPU with 11GB of memory,
and it is worth noting that the image size we generate (224 × 224) is mainly
determined by the capacity of the GPU memory for training. The same dataset
as Sect. 5 (Experiment 2) is used. Also, we used L2 (MSE) loss for perceptual
loss calculation throughout our study. Despite certain claims that L1 loss gives
a better result, in our experiments FID scores are consistently better using L2.

6.2 Sketch to Photo

Figure 7 shows some potential practical applications with GFE. We took some
pencil sketches from CUHK [43] as well as from the internet. Note that since
we trained with the canny transformation, we first have to convert the sketch
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image to canny, and then make an inference with the trained network. Not just
as a simple coloring exercise, in the output images we can see the depth of
textures of human face that commonly appear in every person, which shows a
great potential for an image translation from a pencil sketch to a photo.

Fig. 7. From Left: (Top) GT, Sketch, Canny, Output (Bottom) Sketch, Canny, Output

6.3 Residual Block

The base unit of the construction, often called the residual block, is illustrated
in Fig. 8a. The input is followed by a convolutional layer, followed by a Para-
metricReLU and another convolutional layer. Then a batch normalization (BN)
is added before the output that is combined with the input as a single dense
connection. This is very similar to SRGAN [2]; the difference being the omission
of the first BN layer. This omission is crucial for reducing the memory footprint.

The batch normalization layers consume the same amount of memory as
the preceding convolutional layers, and removing a BN layer from the unit block
saves us approximately 20% of the memory space in our model. If we had removed
both BN layers, we would have saved 40% of the memory usage [32], but our
experiments show that leaving in one BN layer yields better results than none
at all. Comparing a single BN layer with two BN layers, we found no noticeable
differences.

Several studies in SISR propose dense residual blocks [6,33], but a generator
with such dense residual units requires considerably more GPU memory, forcing
us to train the network with smaller batch sizes (mini-batches). For GFE, dense
residual blocks are inadequate; a large network with 32 or more block layers
negatively impact the outcome.

Thus, we use one connection within the block, between the input and the
BN layer. Even with just one connection at each block, when a generator is
constructed by having residual blocks stacked multiple times, the entire network
is connected in such a way that the gradient vanishing problem is dramatically
reduced.
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Fig. 8. Residual block (base unit) and skip connection type 1

6.4 Skip Connections and Large Networks

Let the number of basic blocks (residual blocks in the middle, and blocks for
Conv + PReLU at the beginning and end of the network) be n [Fig. 8b]. We
define the skip connection type as follows:

– Type 0: No skip connection
– Type 1: Connect with layer 1 and layer n − 1
– Type 2: Connect with layer 1 and layer n/2, as well as n/2 and n − 1
– Type 3: Connect with layer 1 and layer n − 1, as well as layer n/2 and n − 1
– Type 4: Connect with Type 1 and Type 2 combined

Fig. 9. Lower the better. (Numbers in
parentheses indicate batch size)

Figure 8b shows skip connection Type
1. By going deeper in the generator, the
output of synthesized images becomes
better, and we found that forming 48
block layers (with each block consisting
of 4 sub-layers [Fig. 8a]) achieves the
best result. We tested with the above
5 skip connections to see which type is
best using the residual block defined in
Sect. 6.3. None of the connection types
has a positive effect for our application
[Fig. 9], thus, we conclude that no skip connection is necessary for our monolithic
architecture of GFE.

6.5 The Limit of Depth in the Generator

Larger networks are not necessarily better than smaller ones. We started out
our experiment with 16 layers of residual blocks, with a batch size of 9 (nine
images are processed in the GPU at once in a single iteration). As we increased
layers, we had to decrease the batch size due to the limitation of GPU memory.
Initially the image quality improved but soon it saturated in improvement.

We observed some degradation for a network whose block size is greater than
48, where the mini-batch size needs to be 1 (one) to fit in our GPU [Fig. 9]. At
this point we suspect that batch normalization is no longer in effect, and in fact



Generator from Edges: Reconstruction of Facial Images 441

the training is somewhat unstable (consecutive epochs have FID values in a wide
swing). Although we attempted to tweak hyper parameters such as learning rate,
we were unable to improve image quality.

7 Conclusion and Discussion

We demonstrated the Generator From Edges (GFE) for image translation on
human faces, from edges to photo, without a generative adversarial network. This
was led by the analysis of architectural features that unnecessarily consume GPU
memory, such as a discriminator and extra batch normalization layers. We also
reviewed a dense network and observed that skip connections are not effective if
the basic unit is densely connected.

Although the trained network can restore facial images even when the edges
are not drawn precisely in the input [44], the nature of supervised training
commands deterministic outputs. For a practical application in mind, however,
removing the GAN loses stochasticity in the inference mechanism, in which when
an incomplete image is fed to the network, the outcome would also be less than
ideal. This could be addressed with an unsupervised training in such a way
that incomplete input leads to more convincing output. At the same time, as
mentioned in Sect. 2, we are seeing rapid advancements in research—such as
mask-guided (with GAN) or geometry-guided (with VAE) settings—to fill in
the gap where nondeterministic outcomes are desired.
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