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Abstract – This paper presents a new complexity Reduction 
method for the diamond search pattern called TZSR based on 
region labels in HEVC/H.265 video coding. The solution 
introduces a new image region structure developed from a 
simplified version of blob coloring algorithm (image labeling) to 
HEVC/H.265 video coding. Regions are either whole or part of 
image objects and normally span several coding tree blocks that 
are produced during HEVC encoding. Our method executes a 
complete Diamond Search (DS) for the first block of each region 
in order to identify the motion vector direction among eight 
different directions in DS. The motion estimation (ME) for the 
rest of the blocks in the region will perform a modified DS where 
only one direction point for various distances will be tested in 
order to reduce the code complexity. Experimental results 
demonstrate that the speedup achieved in our solution surpasses 
the time spent in our blob coloring algorithm. Furthermore, 
TZSR achieves an average speedup of 42.61% for low delay (LD) 
configuration and 52.13% for random access (RA) in the 
encoding time compared to the original ME algorithm in HEVC 
reference software (HM-16.7) with overall gains in PSNR and bit 
rate around 18.67% and 0.1 under LD and 28.37% and 0.74 
under RA respectively.   

Keywords—HEVC, motion estimation, inter prediction, 
diamond search, TZSearch, region label. 

I. INTRODUCTION  
The increasing demand in quality defined by Video coding 

standards, such as High Efficiency Video Coding (HEVC) [1], 
necessitate development of new algorithms and strategies to 
reduce their overall computational complexity. While HEVC 
provides improved compression ratios in comparison to 
previous standards with the same subjective image quality, it 
comes with an increased encoding computational complexity 
which may compromise the encoder operation in portable 
devices and in real-time systems especially for high-resolution 
videos [2]. 

One of the most time consuming processes in video coding 
is the motion estimation (ME) designed to exploit temporal 
redundancies among frames within a sequence. HEVC provides 
the square and the diamond search fast motion estimation 
algorithms in TZSearch pattern [3]. These algorithms return the 
best motion vector (MV) for the current block at a cost which is 
comparable to the full search algorithm but still remain sub-
optimal in terms of motion estimation time. Research to 
improve the motion estimation algorithm and to optimize the 
test zonal search (TZSearch) in order to reduce its computing 
complexity and thus reducing the encoding time while 
preserving the quality and bit-rate is essential. Several fast 
search methods for integer ME have recently been reported, 

such as, TZSearch based on triangle and pentagon patterns [3], 
complexity reduction methods for fast ME in HEVC [4], and 
reducing the number of operations performed in the ME using 
two-stage ME [5]. Our goal is to reduce the number of search 
points in the diamond search (DS) in order to avoid calculating 
Sum of Absolute Difference (SAD) for all 52 possible search 
points per block (for a search range set to 64 pixels) as is 
currently done in TZSearch in HEVC which is computationally 
very time consuming.   

In this paper we propose a Complexity Reduction Method 
for TZSearch in HEVC video coding based on image regions 
called TZSR. We introduce regions as a new and additional 
structure in HEVC to describe part (or all) of an object, a set of 
pixels such that no pixel belongs to the interior of more than 
one region. We create image regions for reference frames only. 
This takes place during encoding as soon as a frame is assigned 
as a reference frame in HEVC. Each reference frame points to 
its related image region. The image region is created based on a 
simple region growing method called blob coloring or region 
labeling algorithm [6]. During the motion estimation phase, 
TZSR will use region image information from reference frames 
to leverage the test zonal search for the diamond search pattern. 
During this enhanced search, a complete diamond search (DS) 
is performed only for the first block of the region in order to 
identify the best direction point. After that, blocks belonging to 
the same region start a DS in the same direction as the first 
block and try different distances. The new approach reduces the 
code complexity of the TZSearch significantly with gains in bit 
rate and PSNR in most test-cases and negligible loss in few 
cases. We tested TZSR in two different configurations in 
HEVC, low delay (LD) and random access (RA). It achieves an 
average speedup around 42.61% under LD and 52.13% under 
RA configurations in the encoding time compared to HEVC 
reference software HM-16.7 [7]. In both configurations the 
proposed method achieves an overall improvement of bit rate 
and PSNR of about 18.67% and 0.1 respectively under LD and 
28.37% and 0.74 under RA.  

The remaining of the paper is organized as follows: In 
Section II, we present an overview of the motion estimation 
process in HEVC CODEC; we describe details of our new 
method called TZSR in Section III. In Section IV, we will 
present our experiments, results, and analysis and finally, 
conclusions are presented in section V. 

II. MOTION ESTIMATION IN HEVC 
HEVC starts the encoding process by reading a group of 

pictures (GOP) from the input video. A GOP is a set of pictures 
or frames with an associated “picture order count” (POC) value 



used to identify a frame in codec. Frames are partitioned into 
blocks and during ME process, attempt is made to predict 
motion vectors for the blocks in order to reduce the amount of 
information needed for video transfer. Frames of a GOP may 
be divided into a set of slices composed of a number of blocks. 
There are three types of slices: I, P or B. In I slices, blocks 
cannot be used for ME, i.e., cannot be predicted. In P slices, 
blocks can be predicted by unidirectional prediction (allow 
reference frames in one direction, i.e., either before or after the 
current frame); finally in B slices, blocks can be predicted by 
bidirectional prediction (allow reference frames in two 
directions, i.e. before and after the current frame). In order to 
partition the frames into blocks, HEVC divides a frame into 
square blocks of the same size (64x64 pixels). Each initial 
square block serves as the root of a first block partitioning 
quadtree structure, the coding tree, referred to as coding tree 
blocks (CTBs). The CTBs can be further subdivided along the 
coding tree structure into coding blocks (CBs) that may be 
processed in ME. Figure 1 shows a quadtree structure for one 
CTB. 

 
Fig. 1. HEVC quadtree structure – CTB partitioned in CBs. 

 Motion estimation (ME) in HEVC determines a best match 
of the current block by searching the reference picture within 
64x64 pixels search windows using fast search algorithms. 
Result of this operation is a motion vector (MV). MVs 
obtained from the ME process determine the relative location 
of the best prediction block in the reference frame. The 
matching metric used is the Sum of Absolute Difference 
(SAD) that calculates the similarity between the current and 
reference blocks and it is one of the main causes of the large 
computational complexity in HEVC. The configuration of 
reference frames is defined in the GOP structure table in the 
configuration file used by HEVC encoder. The Figure 2 shows 
how a block in the current frame can be predicted from blocks 
in the reference frames from past and future.  

 
Fig. 2. Reference frame prediction. 

 In order to reduce search points for integer-pel ME, a 
three-step motion search strategy is used as illustrated in 
Figure 3.  

 
Fig. 3. Three steps ME in HEVC. 

 The three steps of the motion search (Figure 3) are 
described as follow:  

• Start postion selection: HEVC choses the best motion 
vector prediction (MVP) available in order to use it as 
the starting search point in the next step. The best MVP 
is chosen by using SAD. The MVP corresponds to a 
previous predictor MV of a neighboring prediction 
block. In that case, the MVPs to be tested are the up, 
median, left, right and upper right predictors.  

• Fist Search: In this step, HEVC performs a TZSearch 
using diamond or square patterns. These patterns are 
showed in Figures 4-a and 4-b respectively. Currently, 
diamond search is the default with search range set to 64 
pixels in integer-pel accuracy. In this configuration, 
there are 52 search points in DS, where, we have four 
search points (or four direction) for distance 1, plus 
eight search points for distances from 2 to 64 each.  
Note that the distance grows in powers of two. Figure 4-
a shows an example of DS pattern in a range of 
distances from 1 to 8. In this search, all the points in DS 
pattern are tested and the one with minimum SAD will 
be the best matched block. Additional raster search 
(Figure 3-c) is performed when the difference between 
the obtained MV and the start position is greater than 5 
(iRaster = 5).   

• Refinment Search: This step is a fine refinment of MV 
obtained from the previous step and it is performed in 
two rounds: The first round starts by performing  a 
square or diamond search pattern around the best MV 
obtained from the previous step in order to obtain a 
refinment MV. After that, a second round of diamond or 
square search is perfomed by using the refinment MV 
(from the first round) as a start position for the search. 
The best MV from the second round is used as the best 
integer-pel MV. 

 
Fig. 4. Search patterns for TZSearch in HEVC: (a) diamond search, (b) 

square search, (c) raster search with iRaster=5. 

III. PROPOSED METHOD 
Motion vectors of the current block are usually correlated 

with the motion vectors of neighboring blocks in the current 
picture or in the earlier coded pictures. This is because 
neighboring blocks are likely to correspond to the same moving 
object with similar motion and the motion of the object is not 
likely to change abruptly over very small timeframes. Based on 
that premise, we assume that blocks belongin to the same 



region have high probability to move in the same direction. 
This leads us to reducing the number of SAD calculation 
performed in the diamond search (DS) and, as demonstrated by 
our experiments, increasing the accuracy of the MV. Figure 5 
shows all possible direction points within the DS. There are 8 
directions numbered from 1 to 8; zero is the start position in 
DS.  

 
Fig. 5. Motion directions in the DS pattern for TZSearch. 

The new TZSR architecture is shown in Figure 6. The 
diagram is simplified to a great extend to make the proposed 
architecture visible within HEVC. As described earlier, HEVC 
works with a GOP at a time, where some of the frames are used 
(and marked) as reference frames and maintained in the 
Reference Picture Set (RPS). In our modified diamond search 
enhanced with image regions model, a new module Parallel 
Blob Coloring (PBC) is added to generate additional 
information for each frame by identifying regions within 
reference frames. As described in Algorithm I, it generates 
image regions for reference pictures within each GOP. The 
region frames are stored in a region frame list, associated with 
the respective reference frame, to be used in the new ME. The 
new ME will execute TZSR using a DS pattern described in 
Algorithm II. The proposed complexity reduction method for 
ME assigns a specific motion direction to each region in a 
frame after performing a complete DS for the first block of 
each region. The idea is to use the same direction for the 
subsequent blocks belonging to a region in order to reduce the 
code complexity of a complete DS/block strategy in HEVC. 
Next we present the two new algorithms “Parallel Blob 
Coloring” (PBC) and “TZSearch based on regions” (TZSR) 
introduced in HEVC.  

 
Fig. 6. Motion Estimation with TZSR in HEVC. 

A. PBC - Parallel Blob Coloring Algorithm 
Blob coloring is a region growing algorithm. The goal of 

region growing is to use image features to map individual 
pixels in an input image to sets of pixels called regions. 
Although perfect regions and boundaries are inconvertible, the 
processing to find them differ in applicability [6]. For our 
purpose, perfect regions are not necessary.  We employ a 
simplified parallel blob coloring algorithm, PBC, which scans a 
binary image to identify connected groups of pixels with the 
same binary values and assigns them to a region. It is useful 
since once they are individually labeled, the objects can be 
separately manipulated.  

The PBC algorithm introduced in HEVC is described in 
Algorithm I. The PBC is performed when a GOP is read from 
the input video and the frames marked as reference are put in 
the reference picture set. 

ALGORITHM I. PARALLEL BLOB COLORING (PBC) 

Read reference frames in a parallel loop. 
Parallel For (i = POCref_Initial to POCref_final) do 

Let ML         = matrix of reference frame (luminance-Y). 
Let v         = video resolution. 
Let pb       = 0 be the background pixel value; 
Let po       = 1 be the object pixel value. 
Convert ML into binary image (MB)  
If (v >= 1280x720) /*high resolution*/ 

AdaptiveThreshould (ML, MB, 
adaptive_threshold_gaussian_c, 77, 3) 

Else     /*low resolution*/ 
AdaptiveThreshould (ML, MB, 
adaptive_threshold_gaussian_c, 17, 3) 

End-if 
Let initial color k=1  
In a loop, scan MB from left to right and top to bottom and 
execute the following steps: 

Let xc = value of a pixel in a coordinate (x,y) in the 
scanned binary image MB. 

If  (xc ≠ pb)  
Let xu = upper neighbor of xc. 
Let xl = left neighbor of xc. 
If ((xc is the first pixel in MB) or   
(xl = po and xu = pb)) then 

 color (xc = k) 
 k = k + 1 

End-if 
If ((xu = po) and (xl = pb)) then color (xc = xu) 
If ((xl = po) and (xu = pb)) then color (xc = xl) 
If ((xl = po) and (xu = po)) then color (xc = xl) 

End-if 
End-Scan 

End-Parallel 
End 

PBC reads the reference frames within a GOP in a parallel 
loop (implemented using OpenMP). The next step is to convert 
reference frames (luminance component-Y) into a binary image 
using an OpenCV function “AdaptiveThreshould” based on 
Gaussian threshold. In this method, threshold values are 



weighted sum of neighborhood values where weights are a 
Gaussian window. The “adaptive_threshold_gaussian_c” 
function has two parameters, block size and a constant C, set 
according to the video resolution. The block size is the size of 
pixel neighborhood used to calculate a threshold value for the 
pixel and C is a constant subtracted from the mean. For videos 
in Table I with resolution greater or equal 1280x720 the block-
size is set to 77 while for lower resolutions, the block-size is set 
to 17. For all resolutions C is set to 3 which produces 
satisfactory distinction between background and objects in the 
binary image. According to our observations, the block-size 
should be greater for high resolution and smaller for low 
resolution. It affects the number of regions created for each 
reference frame. As the block size grows, the number of pixels 
belonging to a region increases and the number of total regions 
for a frame decreases, which is a good choice for high 
resolution videos in terms of MV accuracy. The binary image is 
scanned from left to right and top to bottom in order to identify 
connected regions. Pixels with value 1 are identified as object 
(po) while those with value 0 are background (pb). The 
objective is identifying connected pixels (po) by using neighbor 
pixels from up and left positions in order to form regions. Each 
region will be assigned a different color k (also called label).  

PBC is a revised version of the original Blob Coloring   
algorithm. It is designed not to maintain a table of color 
equivalences that assures each object has only one color. PBC 
scans the binary image only once; it is possible to assign more 
than one color or label for the same object, but not for the same 
pixels inside the object. This property was changed in order to 
create a region as part of an object and reduce complexity of 
PBC. The straightforward parallelism helps improve the 
resulting runtime and avoid penalizing HEVC encoding time. 
According to the experiments the average runtime for PBC 
algorithm is around 0.14s when encoding 150 frames. We 
observed that PBC is sensitive to the threshold chosen in the 
binary image conversion. It can influence the number of 
regions generated and consequently the improvements obtained 
later in the ME process. The PBC code was implemented using 
C++/openMP/OpenCV. 

B. TZSR - TZSearch based on regions 
The new TZSR, described in Algorithm II, is introduced in the 
TZSearch algorithm to leverage motion estimation in HEVC. 
TZSR identifies directions for regions generated by PBC 
described in Algorithm I, in order to use it for all blocks 
belonging to the same region.  For each picture frame, a new 
data structure “labelList” will maintain best direction (Dirbest) 
for each region, and it’s associated “picture order count” 
information for the reference (POCref) and current (POCcur) 
frames. It is important to note that the direction assigned to a 
region label depends on both current and reference frames 
since a reference frame can be used to predict several current 
frames.  

TZSR starts by finding the label of the first block in each 
region in order to find the best motion direction. The image 
region matrix (MB) generated for the reference frame by PBC 
(Algorithm I) has all region label (L) information including 
their embedded blocks. The spatial locality (xf) of a reference 

block is used to find its corresponding label in MB. As 
described in Algorithm II, if a direction (Dir) is found in the 
labelList, we perform a unidirectional diamond search for the 
specified direction (Dir) and various distances (Dis) specified 
in the distance range. In this case, the unidirectional DS stops 
when SADprevious < SADcurrent or we complete the search for 
distance (Dis) range size defined in the HEVC configuration 
file. This scenario for search to determine MV for a block 
results in least number of search points: at least two (for 
distance range of one) and at most seven (for largest distance 
range of seven). If a direction (Dir) has not been established 
for a region in the labelList (this is the initial case for each 
new region) then we need to conduct a complete DS for all 52 
search points evaluating SAD of neighbor MVs in order to 
choose the best starting point for DS. The MV with minimum 
SAD is chosen. Furthermore, for each search point, the 
previous and current SADs are tested in order to save the 
direction for the best SAD (Dirbest) for inclusion in the 
labelList along with POCref, L, and POCcur. This is the scenario 
performed for the first block of each region. The subsequent 
blocks in the region, will find a best direction value (Dirbest) in 
the corresponding labelList. 

ALGORITHM II. TZSR - TEST ZONAL SEARCH BASED ON REGIONS 

Evaluate neighbor MVs and choose the one with minimum 
SAD to be the starting point of DS.  
Let mvstart = best neighbor MV 
Let xf = block starting position in reference frame  
Let MB = matrix of region image for the reference frame 
Let POCcur = Picture Order Count of current frame 
Let POCref = POC of reference frame 
Let L = region label of  xf  correlated to the region image MB  
Find the direction Dir for region L in a list labelList where:  

Dir = labelList (POCref, L, POCcur ) 
If (Dir is found) 

For (Dist = 1; Dist <= SearchRange; Dist*=2) 
 Execute DS using direction Dir varying Distance Dist 
 If (SADprevious < SADcurrent ) 

Exit the loop 
End-for 

Else 
For (Dir = 1; Dir <= 8; Dir++) 
For (Dist = 1; Dist <= SearchRange; Dist*=2) 

 Execute DS for all directions Dir varying distance Dist 
 If  (SADprevious > SADcurrent ) 
     Dirbest = Dir 

End-for 
End-for  
labelList(POCref, L, POCcur)= Dirbest 

End-if   
End 

It is important to note that raster search and refinement 
search are not performed in the new method TZSR.  
Furthermore, when a reference frame is removed from the 
decoded picture buffer, occurrences belonging to that frame in 
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the labelList are deleted which means that the reference frame 
will no longer be used to predict any current frame. The new 
TZSR algorithm is sequential and developed in C++. 

IV. EXPERIMENTS 
In order to guide tests of new developments for HEVC, the 

Join Collaborative Team on Video Coding (JCT-VC) group 
coordinated the development of a reference software encoder 
and decoder, colloquially known as HM and published the 
common test conditions (CTC) document [7]. CTC defines a 
set of four temporal configurations to be used with the HM 
reference software for tests and comparisons by researchers. 
The four configurations differ in terms of temporal predication 
from one another and they are: all intra (AI), low delay (LD), 
low delay P (LP) and random access (RA). For our experiments 
we use HEVC reference software HM-16.7 and two temporal 
configurations: LD and RA. In the reference software, raster 
search with iRaster = 5 and star refinement diamond search are 
enable. On the other hand, our new method does not use these 
additional searches. The goal of the experiments is to 
demonstrate that our TZSR can achieve better results than the 
reference software without using raster and refinement search. 

A. Test Conditions 

The two temporal configurations LD and RA of common 
test conditions (CTC) are used in our experiments.  In LD only 
the first image in a GOP is encoded as instantaneous decoding 
refresh (IDR) pictures. These are pictures that contain only I 
slices; the remaining pictures are encoded as generalized P and 
B pictures (GPB). In the RA configuration, the first picture in a 
video sequence is encoded as an IDR while the remaining I 
pictures are encoded as non-IDR characterizing an open GOP. 
This means that frames outside the current GOP can be used as 
references. Furthermore, frames between two intra frames are 
encoded as B pictures. The video sequences used in our 
experiments described in Table I represent six HEVC common 
test sequences with different resolutions and frame rates.  For 
each test sequence, the first 150 frames are encoded. The 
hardware platform used in these experiments is composed of an 
Intel Xeon E5-2650v2 Eight-Core 2.60 GHz, and 65 GB of 
system memory. The encoder has been compiled with GCC 
4.9.0 and executed on CentOS Linux 7.2.  

TABLE I.  VIDEO CONFIGURATION 

Video 
ID 

Video Features 

Sequence resolution #frames Frame 
rate (fps) 

1 Racehorse (416 x 240) 150 30 

2 BasketBallDrill (832x480) 150 50 

3 BQMall (832x480) 150 60 

4 SlideShow (1280x720) 150 20 

5 BlueSky (1920x1080) 150 25 

6 ParkScene (1920x1080) 150 24 

B. Results and Analyses  
TZSR was evaluated by measuring the encoding 

computational complexity reduction under LD and RA 

temporal configurations. The encoder performance was 
evaluated using the gains achieved in bitrate and the peak sign-
to-noise (PSNR), a distortion metric used to evaluate the image 
quality. The evaluation parameters are based on the following 
equations: 

∆𝑇 =
𝑇!" −  𝑇!"#!

𝑇!"
 𝑥 100                         (1) 

∆𝐵𝑅 =
𝐵𝑅!" −  𝐵𝑅!"#!

𝐵𝑅!"
 𝑥 100               (2) 

∆𝑃𝑆𝑁𝑅 = 𝑃𝑆𝑁𝑅!"#! −   𝑃𝑆𝑁𝑅!"          (3) 

In Eq. (1), ∆𝑇 represents the percentage of encoding time 
reduction achieved by TZSR, where 𝑇!"  and 𝑇!"#!  are the 
encoding time of reference software and proposed method 
respectively. In Eq. (2) ∆𝐵𝑅 represents the gains in bit rate. 
Negative values indicate gains in compression while positive 
values indicate an increase in bit rate and thus a loss in 
compression. The 𝐵𝑅!" and 𝐵𝑅!"#! represent the bit rate of 
reference software and proposed method respectively. In Eq. 
(3) ∆𝑃𝑆𝑁𝑅  is the difference between the PSNR from the 
proposed solution (𝑃𝑆𝑁𝑅!"#! ) and the reference software 
(𝑃𝑆𝑁𝑅!"). Positive values indicate improvement in the image 
quality while negative values represents loss. 

Table II presents results of all test cases corresponding to 
LD configuration and Table III shows the results for RA 
configuration. 

TABLE II.  SIMULATION RESULTS FOR TZSR COMPARED WITH HM-16.7 
USING LOW_DELAY_MAIN CONFIGURATION 

Video ID 
Low_delay_main 

ΔT(%)  ΔBR(%)  
[negative indicates gain] 

Δ PSNR-YUV 
[positive indicates 
improved quality]  

1 44.84 -9.45 0.06 

2 47.21 -25.18 0.17 

3 38.78 -13.28 0.07 

4 44.41 2.32 -0.04 

5 54.99 -59.51 0.43 

6 25.43 -6.88 -0.08 

Average 42.61 -18.67 0.10 

According to Table II the new TZSR under LD 
configuration, obtains average gains in encoding time, bitrate, 
and PSNR around 42.61%, -18.67% and 0.10 respectively. 
Table III shows that TZSR under RA achieves better results 
than LD in all three evaluation parameters: average gain of 
52.13% in the encoding time, average decrease in bitrate of -
28.37%, and average improvement in PSNR of 0.74. We 
obtained the best results for Video 5 in both configurations 
compared to other test sequences in the same configuration. 
Video 5 has an encoding speedup time of 54.99% in LD and 
74.89% in RA.  Also, the bitrate and PSNR are improved by -
59.51% and 0.43 in LD and -60.48% and 1.92 under RA 
configuration. Videos 4 and 6 have a negligible loss in the 
PSNR under LD configuration -0.04 and -0.08 respectively, 



while we obtain gains in their encoding time by 44.41% and 
25.43%. On the other hand, videos 4 and 6 have a better 
performance in RA with a decrease in encoding time of 51.70% 
and 34.46% respectively, a reduction in their bitrate by -2.21% 
and -33.65%, and a negligible loss in PSNR of -0.09 for video 
4 and an improvement of 0.48 in video 6. Video 4 has an 
increase in bitrate under LD by 2.32% while under RA we 
observe a decrease bitrate of -2.21%.   

TABLE III.  SIMULATION RESULTS FOR TZSR COMPARED WITH HM-16.7 
USING RANDOM_ACCES_MAIN CONFIGURATION 

Video ID 
Random_access_main 

ΔT(%) ΔBR(%) 
[negative indicates gain] 

Δ PSNR-YUV 
[positive indicates 
improved quality] 

1 54.39 -30.84 1.04 

2 45.32 -15.91 0.28 

3 52.05 -27.12 0.79 

4 51.70 -2.21 -0.09 

5 74.89 -60.48 1.92 

6 34.46 -33.65 0.48 

Average 52.13 -28.37 0.74 

Results in Tables II and III show that we obtain better 
results under RA configuration for all evaluation parameters 
compared to the LD configuration. Under RA, TZSR shows 
gain in bitrate for every case, and under LD we observe only 
one loss in video 4. There are improvements in all PSNR in 
RA, except for video 5, while under LD the new method 
resulted in two negligible losses (video 4 and 6). Both 
configurations achieve a significant decrease in the encoding 
time. 

The complexity reduction in HEVC is achieved by the fact 
that associating a direction point to a region, represented as part 
of an object, can lead to a significant reduction in SAD 
operations and hence a significant reduction in computational 
complexity as showed in the results. We observed that 
associating a MV to a region or part of an object can further 
improve bitrate and PSNR. Another fact that contributes to 
decrease the encoding time in HEVC is that TZSR does not 
perform raster search and refinement search in order to improve 
MVs. It is important to note that as our experiments show, the 
gains in the complexity reduction outweighs the added PBC 
time.  Furthermore, PBC time can be mitigated by the number 
of reference frames arrivals and the number of cores available 
for parallel processing. This further supports investigating the 
possibility of adding hierarchical object structures to HEVC 

encoding to reduce the motion prediction complexity when 
applicable. 

V. CONCLUSION 

 This paper presents a new TZSearch based on region label 
applied to ME in HEVC called TZSR. The purpose of the new 
method is to use region labels in TZSearch in order to leverage 
ME in HEVC. The method is developed in two parts, the first 
part introduces a parallel blob coloring (PBC) algorithm for 
reference frames in order to create region labels to be used in 
ME process. The second part occurs in ME process, where our 
new TZSR is executed using DS pattern for the first search and 
achieves better results than the reference software without the 
need to perform raster search and refinement search. TZSR can 
be applied for square or other patterns although it has not been 
the focus of our work. Experiments were conducted to compare 
TZSR with the reference software HW-16.7 under LD and RA 
configurations. The results show that the proposed algorithm 
achieves significant decrease in computational complexity in 
both configurations, LD and RA, for HEVC encoder. It was 
observed that TZSR is sensitive to the quality of regions 
generated in PBC. That is, if a region has a perfect number of 
blocks of pixels to identify an entire part of an object, then the 
motion direction for the region will be more accurate. This 
directly impacts the accuracy of the MVs and improvement of 
the encoding time, bitrate, and PSNR. Based on that, further 
studies will be made in order to improve PBC. The important 
factor is to do so balancing the gains without increase in 
computational complexity in HEVC. 
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