
queries in a number of formats and standards. It is considered nowadays to be the standard triple store server

to be used in many Semantic Web applications and is characterized by its ease of setup and well written API.

The server has been configured accordingly to be more scalable. Fuseki also allows reasoning by using rules.

For the purposes of the present work reasoning may be performed to obtain relations between stored

arguments. The main task is to obtain arguments that are related to specific entities, e.g. Chemopreventive

Agents.

Figure 2. Grammar rules diagram

7. PROTOTYPE APPLICATION

In the context of this work, we have created an easy to use web interface (Figure 3) that allows users to

upload a document as PDF and perform automatic extraction on the fly (apart from having a series of

publications to be inserted in the pipeline). This application is provided in the form of a widget and can be

located in the GRANATUM platform (http://www.granatum.org/bscw). The platform is open, but a

registration is needed. The extraction results are presented in facets: we categorized the argument sentences

in terms of associated entities that have been identified (chemoprevention agents, molecules etc). We also

allow a user to perform search of terms in the RDF triplestore. If the retrieved terms in the argument sentence

contain a term for which we stored a Linked Data URL we allow the user to click on that term to start browse

the Linked Data Space. A functionality of retrieving similar arguments to the current ones being displayed (in

terms of having links to similar Linked Data entities URI’s), allows the user to check bibliography in a way

that can assess what the current status on specific drugs is.

8. EXPERIMENTAL RESULTS

In order to evaluate the performance of the architecture we have taken time measurements regarding core

functions of the solution. The functions that were evaluated were a) the pipeline responsible for argument and

entities extractions and b) the triple store query engine.

In order to measure the time performed for argument and entities extraction, the GATE pipeline was run

in batch mode directly from the GATE Developer Environment on a corpus of papers taken from PubMed's

Open Access Subset in XML format. A total of 400 publications were selected. The publications were mainly

published in journals related to cancer research. The machine hosting the pipeline featured an INTEL i7-

2670QM processor and a total of 6GB of RAM. The total time for processing the corpus was 602.3 seconds.

The time measured does not take into account the extra time needed to query the PubMed Database for

extracting this extra information.

ISBN: 978-989-8533-20-3 © 2013 IADIS

32

Figure 3. On-the-fly named entity extraction results

For the query engine sample queries were performed against a set of arguments already extracted in the

context of the GRANATUM project. The number of arguments were a total of 13,853 and the database

resided in the same local network with the machine requesting the data. In the first scenario, the total number

of arguments was selected along with their associated entities. The query depicted in Table 2 was executed in

9.3 seconds.

Table 2. Query for selection of all arguments and their referred entities

SELECT DISTINCT * WHERE {

 ?arg onto:argumentSentence ?o .

 ?arg onto:appearsIn ?s .

 ?arg onto:refersTo ?mol .

}

For the second scenario we performed the above search query with the extra condition that the text of the

argument contained the text "ER β" corresponding to ER-beta proteins (Table 3). The query was completed

in 8.7 seconds.

Table 3. Extraction of arguments that contain text references to ER-beta proteins

SELECT DISTINCT * WHERE {

 ?arg onto:argumentSentence ?o .

 ?arg onto:appearsIn ?s .

 ?arg onto:refersTo ?mol .

 FILTER(regex(<http://www.w3.org/2001/XMLSchema#string>(?o),"ER β","is")).

}

9. CONCLUSION

In this paper we discussed the importance of automatically extracting information about biomedical entities

from scientific publications. We have presented the approaches that were followed up until now in the area of

text mining. We introduced the importance of Semantic Web and Linked Open Data, as presented an

application that can automatically extract entities from the publications and connect them to Linked Data

instances. The system was based on GATE text mining tool as well as open source tools for handling the

triples produced. Finally, we have presented a prototype we application that allows a user to interface with

the structured data and browse the data.

The work that has been done can receive some extensions that will elevate the knowledge that was

gathered. First of all, efforts can be made to provide a ranking to the results page. At the moment results are

IADIS International Conference Applied Computing 2013

33

returned in an unordered fashion. By providing a ranking mechanism (while taking into consideration other

factors such as owl:sameAs links between instance data, how many authors provide the same arguments etc)

we can ensure that the most prominent results to be returned to the end user. Also, a social aspect of the

system can be provided allowing a user to connect and share to other social network platforms and provide a

way for people to discuss these results and give feedback.

ACKNOWLEDGEMENT

This work has been co-funded by the GRANATUM project, a European Commission research program

under Contract Number FP7-270139.

REFERENCES

[1]. A. Passant et al., 2009. SWAN/SIOC: Aligning scientific discourse representation and social semantics, Proceedings

of the Workshop on Semantic Web Applications in Scientific Discourse (SWASD 2009), 8th International Semantic
Web Conference (ISWC-2009), Washington D.C., USA

[2]. Belleau F. et al., 2008. Bio2RDF: towards a mashup to build bioinformatics knowledge systems. Journal of
biomedical informatics, pp. 706-716

[3]. Bizer,C. et al., 2009. Linked data-the story so far, International Journal on Semantic Web and Information Systems
(IJSWIS),5(3), pp. 1-22

[4]. Cunningham H. et al., 2002. GATE: an Architecture for Development of Robust HLT Applications, ACL '02
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 168-175

[5]. Cunningham H. et al., 2013. Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open Source

Text Analytics. PLoS computational biology 9.2

[6]. Doms, A. and Schroeder M., 2005. GoPubMed: exploring PubMed with the gene ontology. Nucleic acids research

[7]. Granatum Consortium, 2009. D1.3 – GRANATUM Biomedical Semantic Model

[8].Handschuh, S. et al., 2002. S-CREAM-semi-automatic creation of metadata. Knowledge Engineering and Knowledge

Management: Ontologies and the Semantic Web, pp. 165-184

[9]. Jena Fuseki, 2013. https://jena.apache.org/documentation/serving_data

[10]. Klyne G. et al., 2004. Resource description framework (RDF): Concepts and abstract syntax. W3C recommendation

[11]. Popov, B. et al, 2003. KIM–semantic annotation platform. The Semantic Web-ISWC

[12]. Rebholz-Schuhmann,D. et al., 2007. EBIMed—text crunching to gather facts for proteins from Medline
Bioinformatics, 23(2), e237-e244

[13]. Tempich C. et al., 2005. An argumentation ontology for distributed, loosely-controlled and evolving engineering

processes of ontologies (DILIGENT). The Semantic Web: Research and Applications. Springer Berlin Heidelberg,

pp. 241-256

[14]. Vargas-Vera et al., 2002. MnM: Ontology driven semi-automatic and automatic support for semantic markup.
Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, pp. 213-221.

[15]. WordNet, 2013, http://wordnet.princeton.edu

ISBN: 978-989-8533-20-3 © 2013 IADIS

34

CLOUDPDE: A WEB SOLVER OF DIFFERENTIAL

EQUATIONS BY FINITE DIFFERENCE DISCRETIZATION

Fabio Takeshi Matsunaga, José Luiz Vilas Boas, Neyva Maria Lopes Romeiro

and Jacques Duílio Brancher
Departamento de Computação, Universidade Estadual de Londrina (UEL) – Rod. Celso Garcia Cid, Cx. Postal 10011,

Londrina-PR Brazil

ABSTRACT

The Internet and Web technologies have been widely applied on many scientific fields, such as mathematic, physic,

chemistry and engineering. These scientific applications are migrating to cloud and web services, which are becoming a

new paradigm of computational applications. The aim of this work is to develop a cloud service named CloudPDE that

uses the concept of cloud computing to solve problems involving partial differential equations, such as heat and wave

equations, with 1 and 2 dimensions by finite difference discretization method to solve large problems. The system

consists of a front-end and back-end client-server communication, a database of results and user/request information

storage and a graphical user interface for outputs visualization. The CloudPDE service can be executed on devices

independent on their performance, since the high-order matrixes computations and high-cost calculations required for

accurate simulations are made on a remote server.

KEYWORDS

Back-end, Front-end, Linear Algebra, Scientific Applications, Web Service

1. INTRODUCTION

Cloud computing and Web Services aim to provide services which applications, platforms or infra-structures

are located on remote servers and data-centers, deliver and manage services over the internet, also allowing

users to access remote files and applications. These computer models have characteristics such as

accessibility, scalability, coherency, virtualization and interoperability and (Moghe et al., 2012). Thus, many

internet services have been developed in many scientific applications, such as mathematic, physic, chemistry

and engineering.

Most specifically, in many works this technology has been focused to numerical simulations and partial

differential equations solutions (Ari and Muhtaroglu, 2012; Jorissen et al., 2012). Such scientific applications

often require complexes and high-cost calculation, large amount of data, high performance environment and

several computational resources. Furthermore, cloud services applications have being developed for real-time

interaction and communication with users (Villegas-Puyod, 2012), which requires high performance

algorithms and methods.

Problems involving mathematical applications are difficulty for conventional means in classrooms,

because of the extensive theory and experimental knowledge. Some developed web tools (Grande et al.,

2010; Basak, 2012) for mathematical and physical phenomena visualization uses video recording and

interactive tools which require a large computer memory, ideal hardware configuration and local softwares or

plug-ins installations for ideal design and responses.

There are many advantages and motivations of web technologies for numerical simulations (Perus et al.,

2013), such as the automatic licensing, system maintenance, upgrade and version control made from a web

server for global use and facility of deployment. Furthermore, finite difference discretization method is a

straightforward method and for refined mesh, it is necessary high cost linear algebra operations, such as

linear systems resolution (Reimer and Cheviakov, 2013) or sparse matrix-vector multiplication and a huge

amount of data requiring a remote database for information storage and server applications which are

maintained and easily accessible from anywhere and anytime.

IADIS International Conference Applied Computing 2013

35

Considering the above, this paper presents the development of a service called CloudPDE to solve 1D and

2D problems solutions involving time dependent partial differential equations (PDE), such as heat conduction

and wave propagation equation. The method used to solve these equations is the finite difference

discretization considering Cartesian coordinates. For this purpose, a real time front-end client-server

communication and a back-end to process all the calculations in remote server independent on user’s

machine or device performance, were developed in order to help the understanding of heat transfer

phenomena and interaction with surfaces and boundary conditions.

Thus, the structure of this paper is as follows: Section 2 presents a review of literatures about related

works; Section 3 presents the finite difference discretization method for 2D heat conduction equation and 1D

wave propagation equation. In Section 4, we described the CloudPDE architecture to support the demand of

finite difference calculation. Section 5 shows some results examples of both cases of equations. Section 6 is

the conclusions and some future works.

2. LITERATURE REVIEW

Several works have been developed to solve differential equation by finite difference discretization method.

Russel and Probert (2004) for example developed the Fdiff3 educational software to solve heat conduction by

finite difference method, aiming to facilitate the understanding of the physical phenomena. Reimer and

Cheviakov (2013) developed a Matlab simulator to solve problem involving Poisson Equation, a time-

independent PDE to calculate the static heat distribution, in rectangular, cylindrical and spherical coordinates,

with mesh refinement control in a local application. However, many scientific applications are migrating to

the Internet, providing a new paradigm of softwares and computing services.

Considering the advents of this new computing paradigm, several web and cloud services for scientific

applications have been developed recently. One of the most relevant and recent, we can cite the Ari and

Muhtaroglu (2012) work. On this work, the authors implanted a cloud service for linear and non-linear

mechanical structures, using finite elements method to solve PDEs. In the same research line, Xiao-ping and

Hu (2010) developed a web service for remote finite elements analysis focused on ideal design of complex

products aiming the local fast modeling.

Another work with the same approach was developed to support scientific applications, such as a PaaS

that provides some material sciences and quantum chemistry applications source-codes and benchmarks and

interface tools (Jorissen et al., 2012). This work developed a platform using high performance resources and

the scalability was tested in cloud clusters distributed on Amazon Web Services virtual machines.

In this same line of research, Costa et al., (2012) for example, established an information management,

data analysis and processing technique to numerical simulations of natural phenomena in scientific cloud

applications. The authors mentioned that an accurate simulation is performed considering a high scale

simulation with more level of detail and a fine grained mesh representation of a physical domain. The main

work challenges were the simulation data storage, the physical data representation and data management.

3. FINITE DIFFERENCE DISCRETIZATION METHOD

The numerical method chosen to solve PDEs was the finite difference discretization. This method has been

applied to solve many PDEs in several scientific areas (Yang and Sen, 2009). The main idea is to solve PDEs

using finite difference equations obtained by Taylor series to approximate the partial derivatives. Then, this

method consists on spatial domain discretization in a computational mesh using the finite difference

equations to approximate the values of each mesh point. The next sections will present the kinds of PDEs to

be discretized and considered on this work.

3.1 One Dimensional Wave Equation

On the one dimensional wave equation (1), different from 2D heat equation, we considered the mesh

dimension of x axis [x0,xf], the final time simulation (Tmax), the boundaries conditions given by u(x0,t) and

ISBN: 978-989-8533-20-3 © 2013 IADIS

36

u(xf,t), the initial condition u0(x,0), the initial speed condition
∂u

∂ t
(x ,0)= g (x) and a C constant. The

mesh is discretized according of Nx and Nt partitions, which refers to number of partitions in x and t

respectively, and the spacing of each mesh node ∆x = (xf-x0)/(Nx-1) and ∆t = (Tmax)/(Nt-1).

∂
2
u

∂ t
2
= C

2 ∂
2
u

∂ x
2

(x0⩽x⩽x f) (1)

The Equation 1 discretization consists on substitute the second order partial derivatives on time-domain

and the second order partial derivative on spatial-domain finite difference equation (2), and the initial speed

condition application g(x) for ui,1 (3).

∂2u

∂ t2
=

ui,j+1− 2ui,j +ui,j− 1

∆t 2

∂2 u

∂ x2
=

u i+1, j− 2ui,j +ui− 1,j

∆x2

 (2)

u i , 1= (1− λ
2
)u0(x i ,0)+

λ
2

2
u0(x i+ 1 ,0)+

λ
2

2
u0(xi− 1 ,0)+ C g (x i) (3)

Considering u i , j the time-step mesh approximation in a time tj, a spatial xi and λ=(C.∆t)/∆x, the scheme

of the discretized equation is showed in (4). It is necessary that λ≤1 for the stability condition and the non-

oscillation during the simulation.

ui , j+ 1= 2 (1− λ2)ui , j+ λ2 ui+ 1, j+ λ2 ui−1, j− ui , j− 1 (4)

The equation above (4) leads to a matrix-vector multiplication, where the matrix A is a tridiagonal formed

of a main diagonal [2(1-λ²), 2(1-λ²), 2(1-λ²) … 2(1-λ²)], a subdiagonal and a superdiagonal formed of

[λ² ,λ²,λ²…λ²] elements, and the vector is ui,j elements. As we can see on (4), the discretized equation finds the

tj+1 time step of wave propagation, then the vector resulted from the multiplication is subtracted from ui,j-1,

which is found by the initial speed condition equation (3). For these operations we used routines from

BLAS/LAPACK (2013) library, which has high-performance linear algebra functions that execute vector

operations efficiently on shared memories and parallel processors. The routines used to perform these

operations are SBMV (matrix-vector operation for banded matrix) for tridiagonal matrix-vector

multiplication and a SAXPY (vector addition with scalar multiplication) operation. for vectors subtractions.

Then, the operation to find ui,j+1 is SAXPY(SBMV(A, ui,j), ui,j-1, -1), where -1 indicates that the SAXPY

performs a vector subtraction.

3.2 Two Dimensional Heat Equation

On the two dimensional heat equation (5), we consider the mesh dimensions [x0,xf] e [y0,yf], the final time

simulation (Tmax), the boundaries conditions given by T(x0,y,t), T(xf,y,t), T(x,y0,t) e T(x,yf,t) and the initial

condition T0(x,y,0). The mesh is discretized according of Nx, Ny and Nt partitions, which refers to number of

partitions in x, y and t respectively, and the spacing of each mesh node ∆x=(xf-x0)/(Nx-1), ∆y=(yf-y0)/(Ny-1)

and ∆t=(Tmax)/(Nt-1). The K is the thermal diffusivity constant (cm²/s) and the value depend on the material.

∂T

∂ t
= K (

∂
2
T

∂ x
2
+
∂

2
T

∂ y
2
) (x0⩽x⩽x f ; y0⩽ y⩽ y f) (5)

The Equation 1 discretization consists on substitute the first order partial derivatives on time-domain by

the regressive difference equation (6) and the second order partial derivative on spatial-domain by the central

difference equation (7).

IADIS International Conference Applied Computing 2013

37

∂T

∂ t
=

T i,j
k
− T i,j

k− 1

∆t
(6)

∂2
T

∂ x
2
=

T i− 1, j
k − 2T i , j

k + T i+ 1, j
k

∆ x
2

∂2
T

∂ y
2
=

T i , j−1
k − 2T i , j

k + T i , j+ 1
k

∆ y
2 (7)

Considering T i,j

k
the time-step mesh approximation in a time th and a spatial point (xi,yj) and α= (K. ∆t)/

∆x² and β= (K. ∆t)/ ∆y², we obtain the implicit scheme of the discretized equation (8).

T i,j
k
= (1+ 2α+2β)T i,j

k+1
− αT i+1,j

k+1
− αT i−1,j

k+1
− βT i,j+1

k+1
− βT i,j− 1

k+1
(8)

The equation above (8) refers to a block tridiagonal linear system with multiple diagonals (Reimer and

Cheviakov, 2013), which solution are the values of T i,j

k
in a set of interior points of the mesh. These linear

systems are solved by LU factorization adapted to special matrixes, provided by the LAPACK (Linear

Algebra Package) library. In this case, the routine SGBSV were selected, because it is optimized to banded

matrixes with multiple diagonals, which is stored as an array for each column j: AB(KU+KL+i-j, j) = A(i,j)

em que Max(0,j-KU) ≤ i ≤Min(n,j+KL), where KU is the number of superdiagonals, KL is the number of

subdiagonals and n the banded matrix A order. This storage means make the SGBSV routine efficient to

solving linear systems, considering only the non-zero values of matrixes.

4. CLOUD SERVICE ARCHITECTURE

This section presents a general architecture of the CloudPDE (Figure 1) composed of a front-end of client-

server communication and interaction, and a back-end that executes the applications of each requester user in

a remote server.

Web

service

User

registration

Calculation

request

User 1

User 2

User n

Server Client

Hibernate

Pooling

Perform

calculations

PostgreSQL

Input

parameters

Web service

request

Return the Results

LAPACK

C/C++

Users request

.

.

.

...

...

Front-end Back-end

GlassFish domain

Database Management

Remote server access

Results access

for data analyzing

and exploration

Browser

Graphical visualization

Customized time step visualization

User

Request

Result

Final Result

Equations

2D heat

1D wave

Client-server

communication
Web-browser

result exhibition

Figure 1. CloudPDE architecture (front-end, back-end and user interface) and main modules

The main modules presented on the cloud service architecture (Figure 1) are described below:

1. User registration: the user makes the registration and mounts the problem, entering the

parameters.

2. Calculation request: Send the problem to the solver contained on a remote server.

ISBN: 978-989-8533-20-3 © 2013 IADIS

38

3. Client-server communication: The server receives the problem and start solving it. For each

iteration, the server sends the partial solution to the client.

4. Web-browser result exhibition: The client shows the results in the browser.

The client and server web services are built in NetBeans IDE as a Java Servlet application, and the deploy

of them was made on GlassFish 3.1 server. The PostgreSQL 9.2 database was used as mean of calculation

and output storage and queries and the client-server database communication are performed by Hibernate

Framework. The finite difference server application was developed in C/C++ language with PostgreSQL

integration to store the outputs on database and LAPACK integration to perform the optimized and efficient

linear algebra calculations.

4.1 Front-end and Back-end

The front-end of the cloud service is responsible to information and inputs/outputs exchange between client

and server, providing a real time interaction with the users. The main way to make this interaction is the

database that stores all the related information (users, problems and solutions). The entity-relationship model

of database is shown on Figure 2.

User Request

Result Final Result

Make

Has

Has

1 N

1

1

1 1

ID user
Name

Email

Password

Scholarity
Institution

ID solic

ID user

Flag Date

Info

ID result

ID solic Values

ID result

ID solic Values

Figure 2. Entity-relationship model of client-server communication database.

As we can see on Figure 2, when a request is made, the front-end inserts the user information on ‘User’

table and the respective request information, with flag=’A’ on ‘Request’ table, indicating the calculation are

being processed. The front-end also sends the users input to server as a text file format indexed with the user

ID. This file is stored on the GlassFish server domain and is read by the back-end application, which is

responsible to perform the calculations and updates the results on each time instance.

While the calculations are performed on each ∆t instance, the results are inserted on ‘Result’ table as

varchar(1000000) format and mirrored to ‘Final Result’ table performed by a trigger function until Tmax

time and the flag=’A’ are maintained. When the calculation is terminated, the flag field is assigned as ‘F’,

activating another trigger to remove all results information related to a determined ID request. This way

makes the ‘Result’ a temporary table, aiming to not degrade the performance during the queries and real time

results exhibition, especially when many simultaneous users are accessing the service.

The 'Final Result' table is a history of results of 'Result', utilized to future queries, in the case when a new

user define a problem to solve, the cloud service makes a search on the database to verify their existence. If

the return is true, the solved problem is presented to the users. This management database model allows the

sharing of previously solved problems, existing solutions and also provides an economical use of remote

server resources, so it is not necessary to solve a problem whose solution is already stored in the database. In

addition, it is possible to available the solution to any users and organize the information by date of request,

name, e-mail or ID of users and institutions that requested the processed problems, creating a collaborative

system accessible from anywhere.

IADIS International Conference Applied Computing 2013

39

4.2 Graphical User Interface and Mesh Visualization

While the calculations are performed, the respective results instances are exhibited to the user. The results

queries and real time exhibition are performed by a component called pooling, from Prime Faces framework.

The pooling makes asynchronous calls every three seconds, which is considered the ideal maximum time

response for real time tasks (Villegas-Puyod, 2012), to verify if there is any new line inserted in a ‘Result’

table, that’s it, if there is a new state of the 1D bar (wave equation) or 2D surface (heat equation) in a time

instance. If the pooling process detects a new line inserted, the values of discretized mesh points are written

on browser on CSV (Comma Separated Values) format. On the end of processing, all the mesh points values

on all t time instances (0<t<Tmax) for both cases of equations are available to the user.

Furthermore, there is an option where the user can view the graphics correspondent to each time instance

0<t<Tmax. For the 1D visualization, we used the JFreeChart framework to plot line graphics to represent the

temperature distribution and variation along the time. The visualization process is performed by taking the

tuple of 'Result' table, which values are CSVs represented as string, inserted in a DataTable (from

PrimeFaces) grid and inserted on a JFreeChart dataset.

For the 2D discretized mesh visualization, it is used the chain colors of 15 shades for positive and

negative temperatures values, where the largest and the smallest values of temperature in a t is divided by 15

(number of shades), from which the interval colors is constructed and a HTML table is built to represent the

surface heat distribution. In this table mesh, the user can access the temperature values on each discretized

region, as well as having access to meta-information, such as (x,y) position, the influential boundary

condition and the temperature variation with respect to the previous t value.

Despite the simplicity of our graphical output visualization, the visualization of discretized mesh of heat

distribution can be performed on any device with HTML and Java support browsers, such as personal

computers, mobile devices (tablets and smartphones). The real-time visualization of heat conduction

phenomena is possible due to the simple configuration of the mesh generated by colored HTML table.

5. RESULTS

To check the viability of the system, we solved two problems. The first one is a 1D wave equation (Figure 3)

with: C = 1, T(x0,t)=0, T(xf,t)=0, the initial condition T0(x,0) = sen(πx) and the initial speed condition g(x)=0.

The mesh dimension specified was [0,1] and the mesh size Nx=1000, implying in a resolution of a tridiagonal

linear system of order 998. The final time instance was Tmax=2 with Nt =100 time steps.

Figure 3. Line-charts of 1D wave equation outputs extracted in some time instances.

As we can see on Figure 3, the sinusoidal wave amplitude decreases over the time, until when

approximately t=1 with the wave length constant. After that, the amplitude increases until the amplitude of

the initial time step, however with displacement in x. Then, the wave equation can simulate this amplitude

changing phenomenon periodically.

For the 2D heat equation (Figure 4), we considered K=10
-3

, T(x0,y,t)=e
y
-cos(y), T(xf,y,t)=e

y
cos(4)-

e
4
cos(y), T(x,y0,t)=cos(x)-e

x
 and T(x,yf,t)=e

4
cos(x)-e

x
cos(4) and the initial condition T0(x,y,0)=100. The mesh

dimension specified was x=[0,4], y=[0,4] and the mesh size Nx=Ny=101, which implies the resolution of a

linear system of order 10,000 (matrix order of 10,000x10,000). The final time instance considered was

Tmax=60 and the number of time steps specified was Nt=5.

ISBN: 978-989-8533-20-3 © 2013 IADIS

40

