
High Performance Frequent Pattern Mining

on Multi-Core Cluster

Lan Vu and Gita Alaghband

Department of Computer Science and Engineering

University of Colorado Denver

Denver, USA

Lan.Vu@ucdenver.edu

Gita.Alaghband@ucdenver.edu

POSTER PAPER

Abstract— Mining frequent patterns is a fundamental data

mining task with numerous practical applications such as

consumer market-basket analysis, web mining, and network

intrusion detection. When database size is large, executing this

mining task on a personal computer is non-trivial because of

huge computational time and memory consumption. In our

previous research, we proposed a novel algorithm named FEM

which is more efficient than well-known algorithms like Apriori,

Eclat or FP-growth in discovering frequent patterns from both

dense and sparse databases. However, in order to apply FEM to

applications with large-scale databases, it is essential to develop

new parallel algorithms that are based on FEM and deploy this

mining task on high performance computer systems. In this

paper, we present a new method named PFEM that parallelizes

the FEM algorithm for a cluster of multi-core machines. Our

proposed method allows each machine in the cluster execute an

independent mining workload to improve the scalability.

Computations within a multi-core machine use shared memory

model to reduce communication overhead and maintain load

balance. With the collaboration of both distributed memory and

shared memory computational models, PFEM can adapt well to

large computer systems with many multi-core.

Keyword – data mining; frequent pattern mining; association

rule mining; multi-core cluster; parallel algorithm; transactional

databases.

I. INTRODUCTION

Frequent pattern mining is an important problem in data
mining which is aimed to search for groups of itemsets,
subsequences, or substructures that co-occur in a database with
their frequency no less than a user-specified minimum support
threshold. This mining task can be used to discover many types
of relationships in large databases such as associations [1],
correlations [2], causality [3], sequential patterns [4], episodes
[5] and partial periodicity [6]. In addition to its numerous
practical applications, it is also applied in data indexing,
classification, clustering, especially association rule mining as
well [7], [8].

Motivation: Although frequent pattern mining has a simple
computational model, this task is computationally intensive,

I/O intensive, and requires large computing resources
especially memory [9]. In our previous research [27], [28], we
proposed a novel approach for frequent pattern mining that
combines mining strategies of two well-known algorithms
Eclat [10] and FP-growth [11]. The FEM algorithm developed
from this mining approach performs better than many popular
algorithms like Apriori [1], Eclat or FP-growth on both dense
and sparse databases. However, our experiments show that
mining on very large databases (e.g. web document databases
or integrated biological databases) requires parallel frequent
pattern mining methods to efficiently utilize computing
resources of large high performance computer systems such as
clusters.

For over a decade, many parallel and distributed algorithms
have been proposed [8], [23], [30], [31]. However, most of
these methods were developed for shared memory systems or
distributed memory systems alone. Clusters of multi-core
machines is the current trend in high performance computing
which requires new algorithm and system design that can take
advantage of both the shared and distributed memory
environments. Although clusters offer a much higher
computing power, they pose major challenges in design and
implementation of efficient high performance algorithms. The
goal here is to design an efficient and fast parallel and
distributed frequent pattern mining task for large-scale
applications.

Contribution:

In summary, the contributions of this paper are as follows:

(1) We propose PFEM, a parallel method based on FEM [27]

for large-scale frequent pattern mining on multi-core

clusters. PFEM can improve the scalability by distributing

independent mining workload over the multi-core

machines of the cluster and utilizing shared memory

computational model to reduce communication overhead

as well as maintain the balance of the workload.

(2) Because of the similarities of FEM and FP-growth, our

proposed method of combining distributed memory and

978-1-4673-1382-7/12/$31.00 ©2012 IEEE 630

shared memory computational models can be also applied

to parallelize FP-growth-like algorithms [11].

II. OVERVIEW OF THE FEM ALGORITHM

A. Frequent Pattern Mining Problem

The frequent pattern mining problem aims to search for
groups of itemsets, subsequences, or substructures that co-
occur in a database with their frequency no less than a user-
specified minimum support threshold. For example, a set of
items (itemset), such as milk and bread that appear frequently
together in a database is a frequent itemset or frequent pattern.
In a typical transactional database, the number of distinct single
items and their combinations are usually very large. For a small
minimum support threshold, the number of generated itemsets
can be extremely large. Hence, it is a great challenge to design
algorithms for mining frequent patterns that scale with memory
size and run in reasonable time [9].

B. FEM: An Adaptive Method for Mining Frequent Patterns

from Dense and Sparse Databases

Many algorithms have been proposed for frequent pattern
mining [1], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26]. However, most of
them behave differently on different databases making it
difficult for users to select a suitable method for their
applications. To address this issue, we have developed a new
algorithm called FEM that combines mining strategies of two
well-know algorithms Eclat and FP-growth to unify their
merits and adapt mining behavior to characteristics of
databases. Our experimental results show that FEM performs
efficiently on both dense and sparse databases [27], [28]. The
FEM algorithm includes three main tasks:

 FP-tree construction: Database is scanned for the first time
to find the frequent items and create the header table. A
second database scan is conducted to get frequent items of
each transaction. Then, these items are inserted into the
FP-tree in their frequency descending order.

 FP-tree mining: This task uses the mining solution of FP-
growth to construct the conditional FP-trees and
recursively mines these trees to find the frequent patterns.
However, before a conditional FP-tree is constructed, it
will check the size of the appropriate conditional pattern
base. If its size is smaller or equal to a threshold K (e.g.
K=128), the conditional pattern base will be transformed
into TID bit vectors and a weight vector and the mining
process switches to the TID-bit-vector mining task.

 TID-bit-vector mining: This task obtains the TID bit
vectors and continues searching for frequent patterns
recursively by logical ANDing these bit vectors. The new
patterns are constructed by concatenating the suffix pattern
of previous steps with the newly generated frequent
patterns. This mining task is inspired by Eclat’s mining
strategy. However, TID bit vectors are used instead of the
TID-lists for their efficiency as shown in [8].

III. PFEM: PARALLEL FEM FOR MULTI-CORE CLUSTER

A. Multi-core Cluster Architecture

A typical multi-core cluster is usually a network of many

multi-core machines (nodes) with Gigabit Ethernet/Infiniband

interconnection. Each node can have one or many multi-core

chips which share main memory. Cores on a single chip can

have private and shared caches. Figure 1 shows an example

architecture of a typical dual six-core cluster in which two

chips of a node share main memory; six cores of a chip share

L3 cache and each core has private L1 and L2 caches.

Communication latency among cores on the same chips is

smaller than among cores on different chips because of the

impact of shared cache. Communication latency between cores

on different nodes is largest because of large latency of

interconnection network among the nodes.

Figure 1: Architecture of a Typical Cluster with Dual Six-core nodes

B. Challenges in Developing a Parallel Algorithm bBased

on FEM

Scalability and load balancing are two major desirable

characteristics of a parallel frequent pattern mining algorithm

used in large-scale mining applications. In this research, we

aim to develop a parallel algorithm for FEM that runs fast and

scales well on multi-core clusters. There are several challenges

to be solved in order to obtain high scalability and speedup

[9].

 Memory consumption. For large databases or mining with

very low minimum support, the corresponding FP-trees

are very large and may not fit in main memory. Hence, it

is necessary to partition the database into smaller ones

that fit in the main memory of each of the nodes.

 Data communication: parallel frequent pattern mining

algorithms like FEM usually requires huge

communication and synchronization to construct FP-trees.

Core Core Core

Memory

L3 Cache

Core Core Core

Core Core Core

L3 Cache

Core Core Core

Core Core Core

Memory

L3 Cache

Core Core Core

Core Core Core

L3 Cache

Core Core Core

Network

Node 0

…

Node N-1

631

 Load balancing: FEM works in a depth-first manner with

recursive computational model. Thus, load balancing is

important to avoid unfair computational distribution.

 Other elements like cache architecture and I/O utilization

can affect the program performance and scalability that

also needs to be considered.

In addition, our observations on many experimental results

conducted on our cluster [29] show that a parallel algorithm

that maximizes the use of shared memory, both main memory

and the shared caches, will minimize the communication

overhead and result in better speedup and scalability.

C. PFEM: Design of Parallel FEM For Multi-Core Cluster

PFEM is designed with consideration of challenges

presented in previous section. Its computational model

combines features of both distributed memory and shared

memory systems where communication among nodes in the

cluster will use message passing and communication among

cores in a node is done via shared memory. In the context of

this paper, we use core to indicate thread/process running on

one core of a node.

PFEM divides mining workload into M parts where

frequent pattern generation of each part is independent. M

should be much larger than the number of nodes in the cluster.

Data and computation of M parts will be distributed to nodes

in a dynamic manner to improve load balance. Cores in a same

node share same memory space and working data. Each core

will generate frequent patterns from shared data and store

them in its own local file. Finally, all frequent pattern sets are

combined for final mining results.

The detailed design of PFEM consists of two stages:

Stage 1 - Parallel FP-tree construction:

This stage executes the FP-tree construction task of FEM.

1. Create a local copy of database on each node in the

cluster.

2. Each core in the cluster scans its data partition to

compute local counts of all items. Then, global

counts of all items are computed using all local count

values.

3. Frequent items are specified and grouped into M

groups. M is large enough for good load balancing.

4. Each node will be assigned a group of frequent items

to construct a set of FP-trees where each tree is

associated with an item in the group. There are two

ways to do this task: (1) each core reads the whole

database and create FP-trees of one or several item in

the group; (2) all cores in a node read their portions

of the database to construct a set of FP-trees where

each tree is associated with one item in the group.

5. When all FP-trees of items in the group are

constructed, the mining process starts by switching to

Stage 2 to find all frequent patterns from these FP-

trees.

Figure 2: Overview computational model of PFEM

Stage 2 - Parallel Frequent Pattern Generation
This stage executes two tasks FP-tree mining and TID-

bit-vector mining of FEM.

1. Each node creates a queue that contains all FP-trees

in the set of FP-trees generated in Stage 1.

2. Each core in a node obtains a FP-tree from this queue

and starts mining using FEM approach. Frequent

patterns generated by each core are stored in its local

output file.

3. During the recursive mining process, new conditional

FP-trees are generated and added to the queue. When

all frequent patterns of the FP-tree set are found,

mining process of the node will stop.

4. The algorithm will check if another group of frequent

items created in Stage 1 is available. If there is an

unprocessed group, the algorithm will switch to Step

3 of Stage 1 to work on this group.

5. When all frequent patterns are found and the

frequent pattern generation completes, all local
output files will be combined into a global output file

containing the datasets.

IV. CONCLUSION

In this paper, we present PFEM, a parallel version of the

FEM algorithm for mining frequent pattern on multi-core
clusters. By addressing the computing resource challenges,
PFEM can solve the computation and memory bottleneck as
well as minimize the data communication and automatically
balance the workload. This algorithm is expected to scale well
and result in fast performance on the parallel systems. The
proposed method of combining distributed memory and shared
memory computational model can be also applied to parallelize
FP-growth like algorithms and other related problem.

…

Input DB

Node 0

C1 C2 Ck

Memory

…

Node 2

C1 C2 Ck

Memory

…

Node N-1

C1 C2 Ck

Memory

Memory

…

… … …

Input DB Input DB

Output

632

REFERENCES

[1] R. Agrawal, R. Srikant, “Fast Algorithms for Mining Association

Rules,” Proc. of the 20th Int. Conf. on Very Large Databases, pp. 487-

499, 1994.

[2] S. Brin, R. Motwani, C. Silverstein, “Beyond Market Basket:

Generalizing Association Rules to Correlations,” Proc. ACM SIGMOD

Management of Data, vol. 26, issue 2, pp. 265-276, Jun. 1997.

[3] C. Silverstein, S. Brin, R. Motwani, J. Ullman, “Scalable Techniques for

Mining Causal Structures,” J. Data Mining and Knowledge Discovery,

vol. 4, issue 2-3, pp. 163–192, July 2000.

[4] R. Agrawal, R. Srikant, “Mining Sequential Patterns,” Proc. Data

Engineering, pp. 3–14, 1995.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of Frequent

Episodes in Event Sequences,” J. Data Mining and Knowledge

Discovery, vol. 1, issue 3, pp. 259-289, Sep. 1997.

[6] J. Han, G. Dong, Y. Yin, “Efficient Mining of Partial Periodic Patterns

in Time Series Database,” Proc. IEEE Data Engineering, pp. 106-115,

Mar. 1999, doi: 10.1109/ICDE.1999.754913.

[7] J. Han, H. Cheng, D. Xin, X. Yan, “Frequent Pattern Mining: Current

Status and Future Directions,” J. Data Mining and Knowledge

Discovery, vol. 15, issue 1, pp. 55-86, Aug. 2007.

[8] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, T. Yiu, “MAFIA: A

Maximal Frequent Itemset Algorithm,” IEEE Trans. on Knowledge and

Data Engineering, vol. 17, no. 11, pp. 1490–1504, Nov. 2005, doi:

10.1109/TKDE.2005.183

[9] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, “PFP: Parallel FP-

Growth for Query Recommendation,” Proc. 2008 ACM Recommender

systems, pp. 107-114, 2008.

[10] M. Zaki, S. Parthasarathy, M. Ogihara, W. Li, “New algorithms for fast

discovery of association rules,” Proc. Knowledge Discovery and Data

Mining, pp. 283-286, 1997.

[11] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate

Generation,” Proc. Management of Data, vol. 29, issue 2, pp. 1-12, Jun.

2000.

[12] JS. Park, MS. Chen, P. Yu, "An Effective Hash-based Algorithm for

Mining Association Rules," Proc. ACM SIGMOD Management of Data,

vol. 24, issue 2, pp. 175–186, May 1995.

[13] H. Toivonen, “Sampling Large Databases for Association Rules,” Proc.

Very Large Databases, pp. 134–145, 1996.

[14] S. Brin, R. Motwani, JD. Ullman, S. Tsur, “Dynamic Itemset Counting

and Implication Rules for Market Basket Analysis,” Proc. ACM

SIGMOD Management of Data, vol. 26, issue 2, pp. 255–264, 1997.

[15] A. Fiat, S. Shporer, “AIM: Another Itemset Miner,” Proc. Frequent

Itemset Mining Implementations, 2003.

[16] M. J. Zaki, K. Gouda, “Fast Vertical Mining Using Diffsets,” Proc.

ACM SIGKDD Knowledge Discovery and Data Mining, pp. 326-335,

2003.

[17] C. Borgelt, “An Implementation of the FP-growth Algorithm,” Proc.

OSDM Frequent Pattern Mining Implementations, Aug. 2005.

[18] G. Grahne, J. Zhu, “Efficiently Using Prefix-trees in Mining Frequent

Itemsets,” Proc. Frequent Pattern Mining Implementations, pp 123–132,

2003.

[19] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang, “Hmine : Hyper-

structure Mining of Frequent Patterns in Large Databases,” Proc. IEEE

Data Mining, pp. 441–448, Nov. 2001, doi:

10.1109/ICDM.2001.989550

[20] B. Racz. “nonordfp: An FP-growth Variation Without Rebuilding the

FP-tree,” Proc. IEEE ICDM Workshop on Frequent Itemset Mining

Implementations, Nov. 2004.

[21] S. Shporer, “AIM2: Improved Implementation of AIM,” Proc. IEEE

Frequent Itemset Mining Implementations, Nov. 2004.

[22] L. Schmidt-Thieme., “Algorithmic Features of Eclat,” Proc. IEEE

Frequent Itemset Mining Implementations, Nov. 2004.

[23] L. Liu, E. Li , Y. Zhang, Z. Tang, “Optimization of Frequent Itemset

Mining on Multiple-core Processor,” Proc. of the 33rd Int. Conf. on

Very Large Databases, pp. 1275-1285, 2007.

[24] W. Li, A. Mozes, “Computing Frequent Itemsets Inside Oracle 10g,”

Proc. of the 30th Int. conf. on Very Large Databases, pp. 1253–1256,

2004.

[25] C. Utley, “Introduction to SQL Server 2005 Data Mining,” Microsoft

SQL Server 9.0 technical articles, available at:

http://technet.microsoft.com/en-us/library/ms345131.aspx, Jun. 2005.

[26] T. Yoshizawa, I. Pramudiono, M. Kitsuregawa, “SQL Based Association

Rule Mining Using Commercial RDBMS (IBM db2 UBD EEE),” Proc.

Data Warehousing and Knowledge Discovery, pp. 301–306, 2000.

[27] L. Vu, G. Alaghband, "A Fast Algorithm Combining FP-Tree and TID-

List for Frequent Pattern Mining," Proc. IEEE Information and

Knowledge Engineering, pp. 472-477, Jul. 2011.

[28] L. Vu, G. Alaghband, "Efficient Algorithms Combining FP-Tree and

TID-List for Frequent Pattern Mining,” submitted to the IEEE

Transaction on Knowledge and Data Engineering in Mar. 2012.

[29] Parallel and Distributed System Laboratory, University of Colorado

Denver, http://pds.ucdenver.edu

[30] M. J. Zaki, “Parallel and Distributed Association Mining: A Survey”,
IEEE Concurrency Journal, vol. 7, issue 4, pp. 14- 45, Oct-Dec 1999.

[31] R. Garg, P. K. Mishra, "Some Observations of Sequential, Parallel and

Distributed Association Rule Mining Algorithms", IEEE Proc. Of the

2009 Int. conf. on Computer and Automation Engineering, pp. 336-342,

8-10 March 2009.

633

