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Abstract— Mining frequent patterns is a fundamental data 

mining task with numerous practical applications such as 

consumer market-basket analysis, web mining, and network 

intrusion detection. When database size is large, executing this 

mining task on a personal computer is non-trivial because of 

huge computational time and memory consumption. In our 

previous research, we proposed a novel algorithm named FEM 

which is more efficient than well-known algorithms like Apriori, 

Eclat or FP-growth in discovering frequent patterns from both 

dense and sparse databases. However, in order to apply FEM to 

applications with large-scale databases, it is essential to develop 

new parallel algorithms that are based on FEM and deploy this 

mining task on high performance computer systems. In this 

paper, we present a new method named PFEM that parallelizes 

the FEM algorithm for a cluster of multi-core machines. Our 

proposed method allows each machine in the cluster execute an 

independent mining workload to improve the scalability. 

Computations within a multi-core machine use shared memory 

model to reduce communication overhead and maintain load 

balance. With the collaboration of both distributed memory and 

shared memory computational models, PFEM can adapt well to 

large computer systems with many multi-core. 

Keyword – data mining; frequent pattern mining; association 

rule mining; multi-core cluster; parallel algorithm; transactional 

databases. 

I.  INTRODUCTION 

Frequent pattern mining is an important problem in data 
mining which is aimed to search for groups of itemsets, 
subsequences, or substructures that co-occur in a database with 
their frequency no less than a user-specified minimum support 
threshold. This mining task can be used to discover many types 
of relationships in large databases such as associations [1], 
correlations [2], causality [3], sequential patterns [4], episodes 
[5] and partial periodicity [6]. In addition to its numerous 
practical applications, it is also applied in data indexing, 
classification, clustering, especially association rule mining as 
well [7], [8]. 

Motivation: Although frequent pattern mining has a simple 
computational model, this task is computationally intensive, 

I/O intensive, and requires large computing resources 
especially memory [9]. In our previous research [27], [28], we 
proposed a novel approach for frequent pattern mining that 
combines mining strategies of two well-known algorithms 
Eclat [10] and FP-growth [11]. The FEM algorithm developed 
from this mining approach performs better than many popular 
algorithms like Apriori [1], Eclat or FP-growth on both dense 
and sparse databases. However, our experiments show that 
mining on very large databases (e.g. web document databases 
or integrated biological databases) requires parallel frequent 
pattern mining methods to efficiently utilize computing 
resources of large high performance computer systems such as 
clusters.  

For over a decade, many parallel and distributed algorithms 
have been proposed [8], [23], [30], [31]. However, most of 
these methods were developed for shared memory systems or 
distributed memory systems alone. Clusters of multi-core 
machines is the current trend in high performance computing 
which requires new algorithm and system design that can take 
advantage of both the shared and distributed memory 
environments. Although clusters offer a much higher 
computing power, they pose major challenges in design and 
implementation of efficient high performance algorithms. The 
goal here is to design an efficient and fast parallel and 
distributed frequent pattern mining task for large-scale 
applications. 

Contribution:  

In summary, the contributions of this paper are as follows: 

(1) We propose PFEM, a parallel method based on FEM [27] 

for large-scale frequent pattern mining on multi-core 

clusters. PFEM can improve the scalability by distributing 

independent mining workload over the multi-core 

machines of the cluster and utilizing shared memory 

computational model to reduce communication overhead 

as well as maintain the balance of the workload. 

(2) Because of the similarities of FEM and FP-growth, our 

proposed method of combining distributed memory and 
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shared memory computational models can be also applied 

to parallelize FP-growth-like algorithms [11].  

II. OVERVIEW OF THE FEM ALGORITHM 

A. Frequent Pattern Mining Problem 

The frequent pattern mining problem aims to search for 
groups of itemsets, subsequences, or substructures that co-
occur in a database with their frequency no less than a user-
specified minimum support threshold. For example, a set of 
items (itemset), such as milk and bread that appear frequently 
together in a database is a frequent itemset or frequent pattern. 
In a typical transactional database, the number of distinct single 
items and their combinations are usually very large. For a small 
minimum support threshold, the number of generated itemsets 
can be extremely large. Hence, it is a great challenge to design 
algorithms for mining frequent patterns that scale with memory 
size and run in reasonable time [9]. 

B. FEM: An Adaptive Method for Mining Frequent Patterns 

from Dense and Sparse Databases 

Many algorithms have been proposed for frequent pattern 
mining [1], [10], [11], [12], [13], [14], [15], [16], [17], [18], 
[19], [20], [21], [22], [23], [24], [25], [26]. However, most of 
them behave differently on different databases making it 
difficult for users to select a suitable method for their 
applications. To address this issue, we have developed a new 
algorithm called FEM that combines mining strategies of two 
well-know algorithms Eclat and FP-growth to unify their 
merits and adapt mining behavior to characteristics of 
databases. Our experimental results show that FEM performs 
efficiently on both dense and sparse databases [27], [28]. The 
FEM algorithm includes three main tasks: 

 FP-tree construction: Database is scanned for the first time 
to find the frequent items and create the header table. A 
second database scan is conducted to get frequent items of 
each transaction. Then, these items are inserted into the 
FP-tree in their frequency descending order.  

 FP-tree mining: This task uses the mining solution of FP-
growth to construct the conditional FP-trees and 
recursively mines these trees to find the frequent patterns. 
However, before a conditional FP-tree is constructed, it 
will check the size of the appropriate conditional pattern 
base. If its size is smaller or equal to a threshold K (e.g. 
K=128), the conditional pattern base will be transformed 
into TID bit vectors and a weight vector and the mining 
process switches to the TID-bit-vector mining task. 

 TID-bit-vector mining: This task obtains the TID bit 
vectors and continues searching for frequent patterns 
recursively by logical ANDing these bit vectors. The new 
patterns are constructed by concatenating the suffix pattern 
of previous steps with the newly generated frequent 
patterns. This mining task is inspired by Eclat’s mining 
strategy. However, TID bit vectors are used instead of the 
TID-lists for their efficiency as shown in [8]. 

III. PFEM: PARALLEL FEM FOR MULTI-CORE CLUSTER 

A. Multi-core Cluster Architecture 

A typical multi-core cluster is usually a network of many 

multi-core machines (nodes) with Gigabit Ethernet/Infiniband 

interconnection. Each node can have one or many multi-core 

chips which share main memory. Cores on a single chip can 

have private and shared caches. Figure 1 shows an example 

architecture of a typical dual six-core cluster in which two 

chips of a node share main memory; six cores of a chip share 

L3 cache and each core has private L1 and L2 caches. 

Communication latency among cores on the same chips is 

smaller than among cores on different chips because of the 

impact of shared cache. Communication latency between cores 

on different nodes is largest because of large latency of 

interconnection network among the nodes.  

 
Figure 1: Architecture of a Typical Cluster with Dual Six-core nodes 

B. Challenges in Developing a Parallel Algorithm bBased 

on  FEM 

Scalability and load balancing are two major desirable 

characteristics of a parallel frequent pattern mining algorithm 

used in large-scale mining applications. In this research, we 

aim to develop a parallel algorithm for FEM that runs fast and 

scales well on multi-core clusters. There are several challenges 

to be solved in order to obtain high scalability and speedup 

[9].  

 Memory consumption. For large databases or mining with 

very low minimum support, the corresponding FP-trees 

are very large and may not fit in main memory. Hence, it 

is necessary to partition the database into smaller ones 

that fit in the main memory of each of the nodes. 

 Data communication: parallel frequent pattern mining 

algorithms like FEM usually requires huge 

communication and synchronization to construct FP-trees.  

Core Core Core 

Memory 

L3 Cache 

Core Core Core 

Core Core Core 

L3 Cache 

Core Core Core 

Core Core Core 

Memory 

L3 Cache 

Core Core Core 

Core Core Core 

L3 Cache 

Core Core Core 

Network 

Node 0 

… 
 
 

Node N-1 

631



 Load balancing: FEM works in a depth-first manner with 

recursive computational model. Thus, load balancing is 

important to avoid unfair computational distribution.  

 Other elements like cache architecture and I/O utilization 

can affect the program performance and scalability that 

also needs to be considered.  

In addition, our observations on many experimental results 

conducted on our cluster [29] show that a parallel algorithm 

that maximizes the use of shared memory, both main memory 

and the shared caches, will minimize the communication 

overhead and result in better speedup and scalability.  

C. PFEM: Design of Parallel FEM For Multi-Core Cluster 

PFEM is designed with consideration of challenges 

presented in previous section. Its computational model 

combines features of both distributed memory and shared 

memory systems where communication among nodes in the 

cluster will use message passing and communication among 

cores in a node is done via shared memory. In the context of 

this paper, we use core to indicate thread/process running on 

one core of a node. 

PFEM divides mining workload into M parts where 

frequent pattern generation of each part is independent. M 

should be much larger than the number of nodes in the cluster. 

Data and computation of M parts will be distributed to nodes 

in a dynamic manner to improve load balance. Cores in a same 

node share same memory space and working data. Each core 

will generate frequent patterns from shared data and store 

them in its own local file. Finally, all frequent pattern sets are 

combined for final mining results.  

The detailed design of PFEM consists of two stages:  

Stage 1 - Parallel FP-tree construction:  

This stage executes the FP-tree construction task of FEM. 

1. Create a local copy of database on each node in the 

cluster. 

2. Each core in the cluster scans its data partition to 

compute local counts of all items. Then, global 

counts of all items are computed using all local count 

values. 

3. Frequent items are specified and grouped into M 

groups. M is large enough for good load balancing.  

4. Each node will be assigned a group of frequent items 

to construct a set of FP-trees where each tree is 

associated with an item in the group. There are two 

ways to do this task: (1) each core reads the whole 

database and create FP-trees of one or several item in 

the group; (2) all cores in a node read their portions 

of the database to construct a set of FP-trees where 

each tree is associated with one item in the group. 

5. When all FP-trees of items in the group are 

constructed, the mining process starts by switching to 

Stage 2 to find all frequent patterns from these FP-

trees. 

 

 
Figure 2: Overview computational model of PFEM 

 

Stage 2 - Parallel Frequent Pattern Generation 
This stage executes two tasks FP-tree mining and TID-

bit-vector mining of FEM. 

1. Each node creates a queue that contains all FP-trees 

in the set of FP-trees generated in Stage 1. 

2. Each core in a node obtains a FP-tree from this queue 

and starts mining using FEM approach. Frequent 

patterns generated by each core are stored in its local 

output file. 

3. During the recursive mining process, new conditional 

FP-trees are generated and added to the queue. When 

all frequent patterns of the FP-tree set are found, 

mining process of the node will stop.  

4. The algorithm will check if another group of frequent 

items created in Stage 1 is available. If there is an 

unprocessed group, the algorithm will switch to Step 

3 of Stage 1 to work on this group.  

5. When all frequent patterns are found and the 

frequent pattern generation completes, all local 
output files will be combined into a global output file 

containing the datasets. 

 

IV. CONCLUSION 

 
In this paper, we present PFEM, a parallel version of the 

FEM algorithm for mining frequent pattern on multi-core 
clusters. By addressing the computing resource challenges, 
PFEM can solve the computation and memory bottleneck as 
well as minimize the data communication and automatically 
balance the workload. This algorithm is expected to scale well 
and result in fast performance on the parallel systems. The 
proposed method of combining distributed memory and shared 
memory computational model can be also applied to parallelize 
FP-growth like algorithms and other related problem. 
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