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Abstract — We measured a panel of 12 cytokines in seven different 
populations: i.e., healthy non-smokers, healthy smokers, COPD, 
Adenocarcinoma and Squamous cell carcinoma of the lung. From 
these 12 biomarkers of host response to lung disease we have 
developed a computational and visual model that reliably 
distinguishes these clinical types. Protein biomarker behavior 
models are developed as the topological evolution of linear discrete 
systems from changes in patient protein sample concentrations. 

Keywords: proteomics, topological analysis, cytokine biomarker, 
discrete time evolution. 

I. MOTIVATION 
Our overall goal is to ensure that people with lung diseases 

are accurately and cost-effectively diagnosed and then treated 
accordingly. A significant pair of obstacles in reliably 
measuring proteomic biomarker concentrations is due to 
technical and biological variation. We have developed a 
computational and visual model that reliably distinguishes 
various clinically diagnosed lung cancer types Our 
computational model hypothesizes that host biomarker 
response interactivity induces a distinctive concentration 
topology and that ensembles of host response proteins are 
topologically conserved based upon their relative concentration 
gradients. Whereas patient concentration values vary nearly all 
the time, certain topological properties remain 
characteristically invariant according to the patient’s clinical 
type. 

The Introduction, §II, describes the suitability of cytokine 
proteins as host response biomarkers and the sources of data 
being analyzed. System Characterization, §III, discusses the 
difficulties in accounting for biological variation and the 
constraints governing our model, especially the issues of over-
fitting and working within a high-dimensional configuration 
space. §IV on Discrete Time Evolution describes how the 
stochastic master equation is modified to accommodate our 
model, particularly in terms of calculating bin states and their 
joint probability distribution. §V, Topologically Modeling 
Proteomic Data, introduces computational topology, how 
protein concentrations can be topologically analyzed, and the 
computational model that computes topological connectedness 
in terms of Betti numbers. Experimental Results are given in 
§VI and Conclusions in §VII. 

 

II. INTRODUCTION 

A. Cytokine Biomarkers 
Cytokines are proteins that are secreted by components of 

the adaptive immune systems, and they act as effectors or 
modulators of inflammatory response. Our protein biomarkers 
– EGF, IFNG, IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, MCP1, 
TNFA, VEGF (IL: interleukin; EGF: epidermal growth factor; 
MCP: monocyte chemo-attractant protein; TNF: tumor 
necrosis factor; VEGF: vascular endothelial growth factor) – 
were chosen because of their known sensitivity in host 
response to various cancers [4], so that concentrations of 
circulating cytokines in serum may be associated with lung 
cancer survival [5]. Evidence also suggests that IL6 and IL8 
are associated with increased risk of lung cancer [6, 7]. 

B. Data Sources 
Our preliminary model was developed from cytokine 

measurements of blood samples drawn from patients who have 
been clinically diagnosed with patients with adenocarcinoma, 
squamous cell carcinoma, smokers with chronic obstructive 
pulmonary disease (COPD), as smokers without COPD, or as 
those who have never smoked [1]. The total number of clinical 
samples for each of the seven analyzed is 343. The first five 
data sets are all from the same unpublished set of experiments. 
The last two data sets are from different experiments, although 
the wet-lab analytics were performed in the same way by the 
same lab as the first five data sets. All these data are biomarker 
host response values given in picograms (10-12 gram) per 
milliliter of individual patients. At least two subsamples were 
collected from each patient at the same time, and these 
subsamples were averaged to provide a single sample per 
patient. Patients were assigned to one and only one clinical 
type. We are working directly with precise concentrations of 
secreted proteins expressed in the blood. Our sampling strategy 
can be justified because it is non-invasive, generated a large set 
of data with quantitative accuracy involving a small number 
(12) of targeted variables, and works with a homogeneous 
composition indicative of the entire organism. 

III. SYSTEM CHARACTERIZATION 

A. Biological Constraints 
Measured protein concentrations in individuals vary across 

orders of magnitude depending upon the progression of their Acknowledgment: We wish to thank Dr. M. Duncan of 
USHSC for providing us with these unpublished data sets. 
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disease state, how and where the samples were collected, and 
by what method and protocol. An overall solution must 
efficiently navigate within the large and complex probability 
space in which both the disease and the protein responses 
occur. Our model is significantly constrained by several 
conditions, among others. 

1) Sample biomarker observations are made of noisy, 
incomplete and widely variable protein concentration values, 
so the model(s) and their predictions must be qualitative in 
nature. The challenge is to make accurate clinical classification 
and prognostic prediction without relying on statistical 
inference based upon averaged population concentration 
values.  

2) Protein interaction behavior is qualified using protein 
concentrations that represent a balance between functional and 
structural interactions. An interaction produces a change in 
gradient of either or both of the interacting proteins. The 
interaction between two proteins depends not only on their 
binding affinity but also on their concentrations such that the 
control of protein abundances is an important factor in the 
functional operation and evolution of natural protein-protein 
interactions [3]. Even with the wide variation of protein 
concentrations, their relative abundances may be under tight 
evolutionary control [2]. These putative structural interactions, 
involving regions of both high density and very low density, 
are both important. 

3) The range of protein concentrations are also governed by 
the regulation of kinetic rates. Protein interactions also cover a 
spectrum of order and function from weakly random to highly-
structured because protein function is aggregated from multiple 
sources. Kumar et al state that “The function of a protein and 
its properties are decided not only by the static folded three-
dimensional structure but also by the distribution and 
redistributions of the populations of its conformational and 
dynamic sub-states under different (physical or binding) 
environments” [10]. These differing levels of organization 
reveal topological structure. 

4) Patients that are sampled are nearly always being 
clinically treated at the same time, yet the effects of those 
treatments on relative biomarker concentration levels are 
usually unknown. This influence is mitigated somewhat by 
focusing on host response concentrations, but it remains a 
problem. 

B. System Constraints 
1) Over-fitting. A great deal of proteomics research is 

plagued by the issue of over-fitting, which occurs when a 
statistical model describes random error or noise instead of the 
underlying relationship. Over-fitting generally occurs when a 
model is excessively complex, such as having too many 
parameters or experimental variables relative to the number of 
observations or data points, making it easy to fit multiple 
models to the data and expose structure that does not correlate 
with the hypothesis being investigated. Researchers often find 
that their preliminary or training data fits their model well, but 
that independent validation study data performs very poorly. 
We handle this issue by limiting the number of model 
parameters to only one. Given that proteomics experiments 

conducted in different laboratories using the same sample-
handling protocols can produce drastically different results [8, 
9], it is prudent to group and process data sets separately. 

2) High-dimensional configuration space. Many physical 
systems can change geometry more easily than they can change 
topology, and we hypothesize that many interesting proteomic 
systems can be analyzed as such. For these objects, topological 
invariants, a map f that assigns the same object to spaces of the 
same topological type, offer a more meaningful description 
than linear geometric measures, particularly in terms of 
configuration space. The notion of configuration space, also 
called parametric space, is used in molecular biology [11] for 
representing the space of all possible states of a system 
characterized by many degrees of freedom. Much of the 
difficulty in approximating a high-dimensional configuration 
space is in understanding and simplifying the topology of the 
space, and little is known about simplifying topology [12]. Yet 
qualitative equivalence can be determined by looking at a set 
of configurations in a state space and how a system moves 
through them. If two systems have the same topological 
structures in their state spaces, then the two systems are 
qualitatively the same. We therefore use the topological 
property of connectedness to suppress the significance of many 
types of variations and make valid correlations between 
concentration values and clinical type. The first part to building 
this computational model is to formulate an equation that 
navigates within these system constraints. 

IV. DISCRETE TIME EVOLUTION 

A. Discrete Time Evolution Equation 
We start with the differential Stochastic Master Equation as 
given by van Kampen [14], which describes how the 
probability of the sample being in a certain state (i.e. a certain 
set of protein concentrations) changes with time [13] as t → 0.  

       ��� �(�, �) = �(�, �) �� − � 	
���
�� � + � �
���

��       (�)��

In (1), m is the number of possible state interactions in the 
sample (i.e., those in the study of interest), 	
�� is the 
probability that interaction j will occur in interval [t, � + ��] 
given that the system is in state X at time t, and �
�� is the 
probability that interaction j will bring the system into state X 
from any other state, say Y. Equation (1) is a gain-loss equation 
for the probabilities of the separate states. But there are several 
conceptual issues with this model. First, differential equations 
presuppose that concentrations of substances vary continuously 
and deterministically, but these assumptions may be 
questionable in the genetic regulation of proteins [15, 16]. We 
also want to treat time t as discrete because of the inherently 
discrete nature of sampling clinical data. Lastly, the equation 
assumed that the increments for concentration dc and time dt 
were common, but in fact they are expressed in different units. 
The solution to this problem is to represent concentration [c] as 
various state variables under a joint probability distribution and 
discretize t as step transformations among these various states. 
This discrete statistical approach places the protein 
concentration probability distributions into a vector X for each 
sample as the state variables. A joint probability distribution 
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p(X, t) then represents the probability that at time t the sample 
contains X1 proteins of the first type, X2 proteins of the second 
type, and so on. The necessary inputs to the analysis are the 
distributions of protein concentrations for a clinical sample 
relative to a standard in pg/μl. The discrete time evolution 
(DTE) of X in p(X, t) is then understood as the following unit-
less quantity. 

�(�, � + ��)  = �(�, �) �� − � 	
���
�� � + � �
���

��           (�) 

	
�� is computed as the matrix of marginal values given 
state X at time t, and ��� is computed as the matrix of X / Y at 
time t. Physically this equation represents a set of discrete 
states embedded within a continuous range. We adapted the 
Stochastic Master Equation by computing the necessary state 
variables, represented by unit-less biomarker concentration 
probabilities, as discrete bins of concentrations that balances 
the total number of bins with the number of empty bins. 

B. Calculating Bin States 
The discrete time evolution of the samples depends upon 

how the concentration values are binned. We purposely do not 
exclude any putative outliers because this analysis claims that 
outliers are legitimate data points due to the topological 
properties of the ensemble. These bins are biomarker-specific 
state variables that correspond directly to a concentration 
binning method that maximizes the number of bins, for the 
sake of higher data resolution, while minimizing the number of 
empty bins, for the sake of reducing the number of bin states. 
This is calculated as the intersection of the curve of the bin size 
and the curve of the natural log of the number of empty bins, 
both as a function of the total number of bins. Each bin is then 
considered as a discrete random variable, a separate state.  
Each clinical type – marker combination has its own unique 
(but constant) bin width. Empty bins are considered as non-
permissible states. We simultaneously maximize the number of 
occupied bins for the sake of data point resolution while 
minimizing the number of unoccupied bins for the sake of 
reducing the number of possible bin states. The linearity of the 
ratio of the number of empty bins to the total number of bins 
for all 7*12=84 clinical type – biomarker combinations allows 
us to logically compare different clinical types even though 
their bin widths are numerically different, as shown in Fig. 1. 
The DTE values for each group are given in Fig. 2-8, and each 
has a number of distinguishable holes. These holes and 
boundaries reflect changes in the behavior of the respective 
proteins and their concentration trajectories. 

 
Fig. 1: Ratio of empty bins to total number of bins. 

 
Fig. 2: DTE values for Adenocarcinoma group. 

 
Fig. 3: DTE values for Squamous group. 
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Fig. 4: DTE values for Never Smokers group. 

 
Fig. 5: DTE values for Smokers with COPD group. 

 
Fig. 6: DTE values for Smokers without COPD group. 

 
Fig. 7: DTE values for Acute Lung Injury group. 

 
Fig. 8: DTE values for Cystic Fibrosis group. 

C. Joint Probability Distribution 
Calculating the discrete time evolution of the protein 

biomarker concentrations depends upon how the bin states are 
interpreted as separate random variables. When random 
variables are independent, the joint distribution is the product 
of the marginal densities. If a subset A of the variables X1, …, 
Xn is conditionally dependent given another subset B of these 
variables then the joint distribution can be can be efficiently 
represented by the lower-dimensional probability distributions 
P(B) and P(A|B). The conditional probability distribution can 
be calculated by taking the joint density and dividing it by the 
marginal density of one of the variables. We have incorporated 
conditional dependencies among the set of biomarker 
concentration interactions because our implementation of the 
Stochastic Master Equation directly calculates and incorporates 
the conditional probability distribution. 
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V. TOPOLOGICALLY MODELING PROTEOMIC DATA 

A. Computational Topology 
A topology is a dynamic system of sets that describes the 

connectivity of the set. Topological objects can be grouped into 
classes that have same connectivity. Topological properties 
include multi-stationary behavior (a stochastic process whose 
joint probability distribution does not change when shifted in 
time or space), connectedness (a topological space is said to be 
connected if it is not the union of two disjoint nonempty open 
sets), and various feedback mechanisms [17]. The most useful 
topological invariants involve homology, which defines a 
sequence of groups describing the “connectedness” of a 
topological space. 

B. Topological Analysis of Proteins 
Topology emphasizes those properties of protein systems 

involving connectivity, continuity, and behavioral space. Many 
pathological conditions are characterized by pronounced 
changes in a common set of biochemical variables, at which 
point a catastrophic response affects how the concentration 
functionally depends upon the controls. The complexity of 
cancer biology is exposed by determining those surfaces that 
reveal the qualitative change from regulated biochemical 
processes to unregulated. 

C. Topological Equivalence and Connectedness 
In order to compute connectedness, we must first determine 

whether samples are topologically equivalent. We compute the 
Euler characteristic χ(s) of a point set to distinguish between 
topologically non-equivalent spaces. To topologically 
characterize the difference between functional and diseased 
proteomes then implies that particular clinical type samples 
reveal topologically non-equivalent concentration surfaces. 

Our computational model hypothesizes that statistical 
ensembles of protein-protein interactions induce a 
concentration topology, and that certain protein ensembles are 
topologically conserved based upon their relative concentration 
gradients. Whereas individual concentration values vary nearly 
all the time, certain topological properties remain the same 
under normal biological conditions, and differ substantially 
under disease conditions. Abnormal concentrations expose a 
new topological property within a topological space which 
directly changes the behavior of the respective proteins and 
their concentration trajectories. 

D. Computational Model 
We compute topological connectedness as follows. 

1) Replace a set of data points with a family of simplicial 
complexes or simplexes (vertices, edges, triangles, tetrahedra)  
indexed by a proximity parameter. A simplex is defined as the 
point set consisting of the convex hull of a set of linear 
independent points. 

2) Analyze these topological complexes using the theory of 
persistent homology. 

3) Encode the persistent homology of a data set in the form 
of a parameterized version of a Betti number -- a barcode.[18] 
A barcode can be thought of as the persistence analogue of a 
Betti number since they represent the data set at various scales. 

4) Compute the Betti numbers. 

Informally, the kth Betti number refers to the number of 
unconnected k-dimensional surfaces or the number of k-
dimensional holes [19]. A Betti number is the maximum 
number of cuts that can be made without dividing a surface 
into two separate pieces. Formally, the  nth Betti number is the 
rank of the nth homology group of a simplicial complex space. 
The Betti numbers of an object embedded in R3 are 
respectively:  

� β0 - the number of connected parts separated by gaps,  

� β1 - the number of circles surrounding tunnels,  

� β2 - the number of shells surrounding voids. 

Betti intervals describe how the homology of a simplicial 
complex X(t) changes with t. We want to find Betti intervals 
that persist for a relatively long time. A filtration or filter on a 
complex X is a collection of sub-complexes {X(t) | t ≤ R} of X 
such that X(t) ≤ X(s) whenever t ≤ s. A filter basically defines 
the maximum resolution of the components of the complex. 
Complex construction is very sensitive to the maximum 
filtration value, so it is important to establish an algorithm that 
assigns a consistent filter value. 

The algorithm for computing β0, β1, β2 proceeds as follows.  

1) A point cloud is assigned as the set of points for each 
biomarker per clinical type. A point cloud is a finite metric 
space, a finite set of points equipped with a notion of distance. 

2) A Euclidean metric space is calculated from the cloud.  

3) A Vietoris-Rips stream is created using inputs of the 
maximum dimension (1, 2, or 3), the maximum filtration time, 
and the number of divisions, which is set to the number of 
points in the cloud. 

4) The number of simplices is calculated from the stream.  

5) The persistent intervals are computed using the default 
simplicial algorithm.  

6) The β0, β1, β2 Betti numbers are computed. 

A Vietoris–Rips complex is an abstract simplicial complex 
that can be defined from any metric space M and distance δ by 
forming a simplex for every finite set of points that has 
diameter at most δ. In a Vietoris-Rips stream, once the 
filtration value t is greater than the diameter of the point cloud, 
the Betti numbers will become β0=1,β1,=β2= :::=0. The 
computed semi-infinite intervals are simply those that persist 
until t = tmax. We use the open-source JavaPlex library [20] 
within MATLAB R2013a and 64-bit Java JRE v1.6.32 to 
compute the Betti numbers. 

VI. TOPOLOGICALLY MODELING PROTEOMIC DATA 

A. Point Cloud Data 
We model the distance metric of our point clouds as the 

changing probabilities of the discrete time evolution equation 
as a function of concentration, where each clinical type is 
indexed as the log of each of the 12 concentrations, the 
probability of that concentration happening in the population,  
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Fig. 9: β0 values for each clinical type for dimension = 1. 

and the computed discrete time evolution. This metric is 
sufficiently sensitive to distinguish among the clinical types 
within their first dimension of data, the DTE values.  

B. Clinical Type Classification 
Fig. 9 plots the results for each clinical type in the first 

dimension using the filter value that produces a Euler 
characteristic value of zero, which is computed as the 
alternating sum of the Betti numbers χ(s) = β0 − β1 + β2 −… 
Choosing this filter value allows for a reasonable comparison 
between the Betti numbers of the various clinical types. 
Systematically incrementing the filter value before calculating 
the Betti numbers always produces at least one χ(s) value that 
can be found arbitrarily close to 0, in this case computed to 4 
decimal places. Monotonically increasing the filter value 
decreases the χ(s) value from positive values through zero to 
negative values. 

C. Discussion 
We are able to distinguish between all of the clinical types 

using the computed DTE probabilities and Betti numbers, 
although it is difficult to assign a physical interpretation to any 
of the numbers because Betti numbers are not linearly related 
to each other. Certain markers (IL10, IL1A, IL2, and MCP1) 
are better at distinguishing among the clinical types because 
they have no duplicate Betti numbers. Additional validation 
would use longitudinal sample data to classify subjects as early 
as possible in their disease progression. 

VII. CONCLUSIONS 
We suppressed much of the variation inherent to using 

concentration data from proteomic host biomarkers by 
applying a qualitative topological analysis to reliably 
distinguish among several lung disease clinical types. The 
Discrete Time Evolution equation separates the clinical type 
populations by modeling concentrations as bin states that 
undergo only certain state transitions. We did not exclude 
outlier data points and considered empty bin intervals as non-
permissible states. The Betti numbers distinguish clinical types, 
although the list of types cannot be ordered in a linear manner.  
The Discrete Time Evolution equation served to simplify the 
high-dimensional biomarker concentration space so that some 
topology of the lung cancer space was revealed.  
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