
A significant contribution of their work is the ability to use an

implicit smoothing technique to enable the algorithm to work

on noisy images. This was particularly important as the

Prewitt edge detection algorithm is known to be sensitive to

noise and therefore may not generate satisfactory results in the

presence of noise. The implicit smoothing technique used in

[6] calculates the gradient magnitude of the eight directions as

the basis to find the final magnitude to reduce the effect of

noise. Our experiments show that the gradient based implicit

smoothing approach will not be very effective when the image

is impacted with high noise percentage. In our work, we

propose to use an explicit smoothing technique that can be

applied to noisy images as a prefix step to the Prewitt edge

detection algorithm [9]. Our results show an improvement in

the quality and overall execution time even when we include

the prefix smoothing step. In this paper we present an efficient

parallel eight directions Prewitt edge detection augmented

with explicit smoothing and iterative thresholding

functionality capable of producing fast and accurate results.

The Pseudocode of the eight directions edge detection is very

similar to the bidirectional presented in Figure 2 with

additional 6 windows to convolve the image with a total of

eight windows proposed in [6].

/* Where f(x,y) is the input image, k1(x,y)and k2(x,y)are the two mask windows in

direction 0” and 90” respectively and g(x,y) is the output image */

I[imgHeight, imgWidth] := imRead(image);

 /* imgHeight: image’s height, imgWidth: image’s width. */

k1[maskHeight,mWidth] := imRead(Mask);

 /* maskHeight: mask’s height, maskWidth: mask’s width. */

k2[maskHeight,mWidth] := imRead(Mask);

 /* maskHeight: mask’s height, maskWidth: mask’s width. */

h := (maskHeight-1)/2 ;

w := (maskWidth-1)/2 ;

for y := 0 until imgHeight do

 for x := 0 until imgWidth do

 { sum = 0 ; sum1 = 0 ; sum2 = 0 ; /* initialization */

 for i := -h until h do

 for j := -w until w do

 { sum1 + = k1(j,i)*I(x-j,y-i) ; /*convolution in the first direct*/

 sum2 + = k2(j,i)*I(x-j,y-i); /* convolution in the second direct*/

 sum = max(sum1, sum2) } /* select the max intensity */

 g(x,y) = sum; } /* result image */

Figure 2: Original two directions Prewitt edge detection’s

Pseudocode.

Section 2 describes the design of the augmented parallel eight

directions Prewitt algorithm. Section 3 covers the

experimental results and analysis. Section 4 summarizes the

paper and conclusions.

2 Augmented parallel eight direction n

Prewitt edge detection algorithm

The original bidirectional Prewitt algorithm is known for its

good computational complexity but noise sensitivity; lack of

an affective smoothing mechanism has mostly disqualified its

usage. Analytical studies conducted in [7] indicate that Prewitt

edge detection algorithm cannot be used along with practical

images that are often corrupted with impulse noise as well as

Gaussian and Poisson noises. Majority of images are often

inflicted by varying degree of noise caused by transmission

channels and camera sensors [7]. Furthermore, Prewitt

algorithm does not incorporate a thresholding mechanism in

order to produce binary images. Most object detection

applications rely on background subtraction. The presence of

only two values in the resulting binary image, one representing

the object and the other representing the background, is

desirable in object detection applications [10]. We have

augmented our parallel algorithm with both smoothing and

thresholding mechanisms. In this section we will first discuss

our choices for smoothing and thresholding strategies and then

present the description of complete parallel application.

2.1 Selecting an appropriate filter to use as

prefix step to eight direction Prewitt

The stand-alone Prewitt algorithm does not incorporate any

mechanisms to deal with noisy images. The Canny edge

detection algorithm uses Gaussian filter or Blurring as a prefix

smoothing mechanism [3, 5] to address the noise issue.

Blurring can destroy some real edges during the process of

noise suppression. Bilateral is known to be a better choice

because it has less negative impact on real edges than

Blurring. To select a suitable smoothing method, we

conducted several experiments using Blurring, Median

Blurring, Gaussian, Bilateral, Median filtering and an

improved version of Median filter. Our improved Median

filter, added as a prior step to localization in the eight

direction Prewitt algorithm, shows the best results for

suppressing impulse noises such as Salt and Pepper and at the

same time is able to suppress other types of noises such as

Gaussian and Poisson. Median filter is a nonlinear filter used

to remove impulse noise with the least negative impact on the

real edges [5, 11, 12]. This filter starts arranging all the pixels

within the range of the specified window in ascending order to

choose the median value. This approach helps keep some real

values unchanged as opposed to the blurring technique that

takes the average of all pixels within that neighborhood. The

main idea behind our improved Median filter is to allow the

window size be variable and not fixed as in the standard

Median for the sake of not only better noise suppression

capability but also operations reduction [12]. Larger window

sizes can be used effectively in processing images with higher

noise percentage using the same mechanism of Median filter.

In the current version, we provide the users full control to

judge the intensity of the noise in order to determine the

desired window size. We recommend to start with a window

of size 3x3, considered to be the standard case (level 1). If the

resulting output reflects detection of false edges, users can

increase the size of the window to 5x5(level 2), 7x7(level 3),

9x9(level 4), or double 9x9 (level 5) respectively. Double 9x9

stands for re-smoothing the results of level 4 with 9x9 window

size. Our results demonstrate clear detection of edges in the

presence of noise when smoothing is enabled. The

experimental results are presented in the results section, Table

1 and Figure 6.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 | 853

2.2 Dynamic Iterative Thresholding

Thresholding is desirable in many applications; we have

added this functionality to the algorithm to be used when

needed. There are many thresholding techniques available

ranging from visual judgment using trial and error to reliance

on global or local methods [5, 13, 14]. In this work we have

selected to add the basic global thresholding method due to its

computational simplicity, acceptable quality and applicability

to a variety of applications [5]. The technique works

iteratively to find the thresholding value as described in Figure

3.

Step 1: Start with initial guess for the thresholding value T.

 /* For faster convergence, choose initial T to be the average of all

intensities of the assigned work [5] */

Step 2: For each pixel, marked as group 1 (G1) or group 2 (G2):

a. if img[i,j] > T, img[i,j] ɛ G1

b. else img[i,j] ɛ G2

Step 3: For each group, find the average of intensities Av1 and Av2

respectively.

Step 4: Find the new threshold value: Tnew = (Av1 + Av2)/2.

Step 5: Stop if | Tnew – T| ≤ tolerant value; Otherwise T = Tnew and

repeat the process from step 2.

Figure 3: The procedure of the Basic Global Thresholding.

2.3 Parallel application

 Adding a smoothing mechanism with variable window sizes,

six additional directions to the localization step and a global

thresholding mechanism adds computational complexity to the

original bidirectional Prewitt algorithm. These additional

computations affect the overall performance. A parallel

version of the proposed algorithm for the new shared memory

MIMD multicore platforms is designed and implemented in

order to speed up the computation. The parallel algorithm is

designed and implemented using C/C++ as a base language

and two open source libraries OpenMP and the open computer

vision library (OpenCV) to overcome complexities added to

the original algorithm. OpenCV library supports hundreds of

optimized image processing algorithms mainly designed for

real time applications contributing to the field of computer

vision specifically [13, 15]. These libraries lend themselves

well to parallel processing [13, 16]. One of the main

challenges working on shared memory multiprocessors is the

work distribution [1, 17]. Work, for good distribution, can be

divided into rows, columns or blocks. Using appropriate

mechanisms for data partitioning not only provides an

independent chunk of data that can be processed concurrently

but also will add flexibility in tuning the algorithm to run more

efficiently on different architectural platforms to enhance data

locality that in turn reduces the number of time-consuming

cache misses. Work distribution starts by allowing each of the

processors to copy its assigned private data to its local

memory. To gain efficiency, it is desired to decrease the

number of times needed to copy data from slower shared

memory to local memory at each computational unit. The

algorithm starts dividing the image into a number of equal

sized tiles (sub-images). Parallel processes will work

independently on different sub-images using a self-scheduling

technique for work distribution. Each processor applies

smoothing, localization, and iterative thresholding before

writing the processed data to its final location as shown in

Figure 4.

Figure 4: Processing life cycle.

As seen in Figure 4, the parallelism is applied at the highest

possible level in which all work, in between the time of

loading the main image up until merging sub-images, is done

in parallel. We are presenting only partitioning into rows only.

Yet our implementation supports all three partitioning

methods (rows, columns, and blocks). The original input

image is defined as an object (Region Of Interest, ROI) in the

OpenCV library resulting in the need for some

synchronization when the final result is written back to this

object. This is a requirement enforced by OpenCV to

guarantee data integrity, therefore, each processor will write

the data to its original region of interest atomically. It is best

to choose self-scheduling instead of pre-scheduling for good

work balance. This will prevent the problem of having some

processors idle while the others have excess work due to

varying amount work required in each region of the image. It

is important to note that sub-images are completely treated

individually and are processed within the iterative

thresholding mechanism separately. This strategy, according

to our experiments, can result in better detection where more

real edges are detected. Self-scheduling will overcome the

difference in time required by applying the iterative

thresholding mechanism on the assigned data as the number of

computations may vary depending on the data itself.

854 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 |

A significant contribution of their work is the ability to use an

implicit smoothing technique to enable the algorithm to work

on noisy images. This was particularly important as the

Prewitt edge detection algorithm is known to be sensitive to

noise and therefore may not generate satisfactory results in the

presence of noise. The implicit smoothing technique used in

[6] calculates the gradient magnitude of the eight directions as

the basis to find the final magnitude to reduce the effect of

noise. Our experiments show that the gradient based implicit

smoothing approach will not be very effective when the image

is impacted with high noise percentage. In our work, we

propose to use an explicit smoothing technique that can be

applied to noisy images as a prefix step to the Prewitt edge

detection algorithm [9]. Our results show an improvement in

the quality and overall execution time even when we include

the prefix smoothing step. In this paper we present an efficient

parallel eight directions Prewitt edge detection augmented

with explicit smoothing and iterative thresholding

functionality capable of producing fast and accurate results.

The Pseudocode of the eight directions edge detection is very

similar to the bidirectional presented in Figure 2 with

additional 6 windows to convolve the image with a total of

eight windows proposed in [6].

/* Where f(x,y) is the input image, k1(x,y)and k2(x,y)are the two mask windows in

direction 0” and 90” respectively and g(x,y) is the output image */

I[imgHeight, imgWidth] := imRead(image);

 /* imgHeight: image’s height, imgWidth: image’s width. */

k1[maskHeight,mWidth] := imRead(Mask);

 /* maskHeight: mask’s height, maskWidth: mask’s width. */

k2[maskHeight,mWidth] := imRead(Mask);

 /* maskHeight: mask’s height, maskWidth: mask’s width. */

h := (maskHeight-1)/2 ;

w := (maskWidth-1)/2 ;

for y := 0 until imgHeight do

 for x := 0 until imgWidth do

 { sum = 0 ; sum1 = 0 ; sum2 = 0 ; /* initialization */

 for i := -h until h do

 for j := -w until w do

 { sum1 + = k1(j,i)*I(x-j,y-i) ; /*convolution in the first direct*/

 sum2 + = k2(j,i)*I(x-j,y-i); /* convolution in the second direct*/

 sum = max(sum1, sum2) } /* select the max intensity */

 g(x,y) = sum; } /* result image */

Figure 2: Original two directions Prewitt edge detection’s

Pseudocode.

Section 2 describes the design of the augmented parallel eight

directions Prewitt algorithm. Section 3 covers the

experimental results and analysis. Section 4 summarizes the

paper and conclusions.

2 Augmented parallel eight direction n

Prewitt edge detection algorithm

The original bidirectional Prewitt algorithm is known for its

good computational complexity but noise sensitivity; lack of

an affective smoothing mechanism has mostly disqualified its

usage. Analytical studies conducted in [7] indicate that Prewitt

edge detection algorithm cannot be used along with practical

images that are often corrupted with impulse noise as well as

Gaussian and Poisson noises. Majority of images are often

inflicted by varying degree of noise caused by transmission

channels and camera sensors [7]. Furthermore, Prewitt

algorithm does not incorporate a thresholding mechanism in

order to produce binary images. Most object detection

applications rely on background subtraction. The presence of

only two values in the resulting binary image, one representing

the object and the other representing the background, is

desirable in object detection applications [10]. We have

augmented our parallel algorithm with both smoothing and

thresholding mechanisms. In this section we will first discuss

our choices for smoothing and thresholding strategies and then

present the description of complete parallel application.

2.1 Selecting an appropriate filter to use as

prefix step to eight direction Prewitt

The stand-alone Prewitt algorithm does not incorporate any

mechanisms to deal with noisy images. The Canny edge

detection algorithm uses Gaussian filter or Blurring as a prefix

smoothing mechanism [3, 5] to address the noise issue.

Blurring can destroy some real edges during the process of

noise suppression. Bilateral is known to be a better choice

because it has less negative impact on real edges than

Blurring. To select a suitable smoothing method, we

conducted several experiments using Blurring, Median

Blurring, Gaussian, Bilateral, Median filtering and an

improved version of Median filter. Our improved Median

filter, added as a prior step to localization in the eight

direction Prewitt algorithm, shows the best results for

suppressing impulse noises such as Salt and Pepper and at the

same time is able to suppress other types of noises such as

Gaussian and Poisson. Median filter is a nonlinear filter used

to remove impulse noise with the least negative impact on the

real edges [5, 11, 12]. This filter starts arranging all the pixels

within the range of the specified window in ascending order to

choose the median value. This approach helps keep some real

values unchanged as opposed to the blurring technique that

takes the average of all pixels within that neighborhood. The

main idea behind our improved Median filter is to allow the

window size be variable and not fixed as in the standard

Median for the sake of not only better noise suppression

capability but also operations reduction [12]. Larger window

sizes can be used effectively in processing images with higher

noise percentage using the same mechanism of Median filter.

In the current version, we provide the users full control to

judge the intensity of the noise in order to determine the

desired window size. We recommend to start with a window

of size 3x3, considered to be the standard case (level 1). If the

resulting output reflects detection of false edges, users can

increase the size of the window to 5x5(level 2), 7x7(level 3),

9x9(level 4), or double 9x9 (level 5) respectively. Double 9x9

stands for re-smoothing the results of level 4 with 9x9 window

size. Our results demonstrate clear detection of edges in the

presence of noise when smoothing is enabled. The

experimental results are presented in the results section, Table

1 and Figure 6.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 | 853

2.2 Dynamic Iterative Thresholding

Thresholding is desirable in many applications; we have

added this functionality to the algorithm to be used when

needed. There are many thresholding techniques available

ranging from visual judgment using trial and error to reliance

on global or local methods [5, 13, 14]. In this work we have

selected to add the basic global thresholding method due to its

computational simplicity, acceptable quality and applicability

to a variety of applications [5]. The technique works

iteratively to find the thresholding value as described in Figure

3.

Step 1: Start with initial guess for the thresholding value T.

 /* For faster convergence, choose initial T to be the average of all

intensities of the assigned work [5] */

Step 2: For each pixel, marked as group 1 (G1) or group 2 (G2):

a. if img[i,j] > T, img[i,j] ɛ G1

b. else img[i,j] ɛ G2

Step 3: For each group, find the average of intensities Av1 and Av2

respectively.

Step 4: Find the new threshold value: Tnew = (Av1 + Av2)/2.

Step 5: Stop if | Tnew – T| ≤ tolerant value; Otherwise T = Tnew and

repeat the process from step 2.

Figure 3: The procedure of the Basic Global Thresholding.

2.3 Parallel application

 Adding a smoothing mechanism with variable window sizes,

six additional directions to the localization step and a global

thresholding mechanism adds computational complexity to the

original bidirectional Prewitt algorithm. These additional

computations affect the overall performance. A parallel

version of the proposed algorithm for the new shared memory

MIMD multicore platforms is designed and implemented in

order to speed up the computation. The parallel algorithm is

designed and implemented using C/C++ as a base language

and two open source libraries OpenMP and the open computer

vision library (OpenCV) to overcome complexities added to

the original algorithm. OpenCV library supports hundreds of

optimized image processing algorithms mainly designed for

real time applications contributing to the field of computer

vision specifically [13, 15]. These libraries lend themselves

well to parallel processing [13, 16]. One of the main

challenges working on shared memory multiprocessors is the

work distribution [1, 17]. Work, for good distribution, can be

divided into rows, columns or blocks. Using appropriate

mechanisms for data partitioning not only provides an

independent chunk of data that can be processed concurrently

but also will add flexibility in tuning the algorithm to run more

efficiently on different architectural platforms to enhance data

locality that in turn reduces the number of time-consuming

cache misses. Work distribution starts by allowing each of the

processors to copy its assigned private data to its local

memory. To gain efficiency, it is desired to decrease the

number of times needed to copy data from slower shared

memory to local memory at each computational unit. The

algorithm starts dividing the image into a number of equal

sized tiles (sub-images). Parallel processes will work

independently on different sub-images using a self-scheduling

technique for work distribution. Each processor applies

smoothing, localization, and iterative thresholding before

writing the processed data to its final location as shown in

Figure 4.

Figure 4: Processing life cycle.

As seen in Figure 4, the parallelism is applied at the highest

possible level in which all work, in between the time of

loading the main image up until merging sub-images, is done

in parallel. We are presenting only partitioning into rows only.

Yet our implementation supports all three partitioning

methods (rows, columns, and blocks). The original input

image is defined as an object (Region Of Interest, ROI) in the

OpenCV library resulting in the need for some

synchronization when the final result is written back to this

object. This is a requirement enforced by OpenCV to

guarantee data integrity, therefore, each processor will write

the data to its original region of interest atomically. It is best

to choose self-scheduling instead of pre-scheduling for good

work balance. This will prevent the problem of having some

processors idle while the others have excess work due to

varying amount work required in each region of the image. It

is important to note that sub-images are completely treated

individually and are processed within the iterative

thresholding mechanism separately. This strategy, according

to our experiments, can result in better detection where more

real edges are detected. Self-scheduling will overcome the

difference in time required by applying the iterative

thresholding mechanism on the assigned data as the number of

computations may vary depending on the data itself.

854 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 |

LBP-based Hierarchical Sparse Patch Learning for Face
Recognition

Yue Zhao1, and Jianbo Su1

1Department of Automation, Shanghai Jiao Tong University,
and Key Laboratory of System Control and Information Processing,

Ministry of Education, Shanghai, 200240, China

Abstract— Local Binary Pattern (LBP) features and its
variants are computed on the patches with the fixed positions
and a fixed size in images, while the limited variety of
the size and position cannot accurately measure the nature
of face image. In this paper, we propose a new learning
method, Hierarchical Sparse Patch Learning (HSPL), to
select face patches with different positions and sizes for
face recognition. HSPL employs a sparse learning model
to hierarchically select patches at two levels: in level 1 the
optimal patch candidates are figured out, while in level 2
the optimal patches from the candidates are obtained. LBP
features are extracted from the optimal patches to recognize
faces. Experimental results show that the proposed method
is more efficient and achieves higher recognition rate than
the other two compared methods.

Keywords: Feature Description, Face Recognition, Patch Selec-
tion, LBP, Sparse Learning

1. Introduction
Face feature description plays an essential role for face

recognition[1]. In recent years, many face feature description
algorithms have been proposed, including Eigenface [2],
Fisherface [3], Local Binary Pattern (LBP) [4] and Elastic
Bunch Graph Matching [5]. Among them, LBP and its
variants [4], [6], [7], [8], [9] are the most widely used face
feature descriptors, which divide the face image into patches
with the fixed positions and a fixed size to extract LBP
features [10]. However, the way that LBP and its variants
adopted for patch generation leads to limited variety of
the size and position of the obtained features. In order to
solve this problem, Zhang et al. [11] scan the face image
with a scalable sub-window, and over 7000 sub-patches are
obtained. Then they use Adaboost learning algorithm to
select an optimal subset of local patches and extract LBP
features from these patches.

By shifting and scaling a sub-window, abundant patches
with different positions and sizes could be generated with
Zhang’s method [11]. The features extracted from these
patches yield a more complete and agile description of
the face image. Unfortunately, there are two problems of
the application of Adaboost learning algorithm in Zhang’s
method. Firstly, the training process and the test process are

not accordant. The training process of Adaboost is iterative,
and each cycle selects only one patch. For any two patches
generated in the neighboring cycles, the former is preferable
to the latter for face recognition. But in the test process,
all the patches are treated equally, which leads to inferior
combination of selected patches for recognition. Secondly,
the method is inefficient, since the optimal patch should be
selected via comparisons among all patches in each cycle.

In order to attenuate these two problems, this paper
proposes a new learning method, Hierarchical Sparse Patch
Learning (HSPL), to select adaptive face patches, and then to
recognize faces. Firstly, it proposes a feature transformation
to generate within- and between-class distance vectors, and
constructs a sparse learning model based on them, which
can automatically select adaptive patches. Based on the
sparse learning model, HSPL hierarchically select patches
at two levels: in level 1 patch candidates are obtained by
automatical parameter setting, while in level 2 the optimal
patches from the candidates are reached.

The rest of this paper is organized as follows. The
proposed method is presented in Section 2. In Section 3,
some experiments are performed to evaluate the performance
of the proposed method, followed by conclusions in Section
4.

2. Hierarchical Sparse Patch Learning

2.1 Sparse Learning Model for Adaptive Patch
Selection
2.1.1 Within- and Between-class Distance Vectors Gen-
eration

Given any two face images I and Ĩ , if we shift and
scale a sub-window on them, respectively, we can get
N adaptive patches for each image with different posi-
tions and sizes [11]. I = [T1, . . . , Tj , . . . , TN] and Ĩ =
[T̃1, . . . , T̃j , . . . , T̃N], where Tj and T̃j are any one patch
from I and Ĩ . After extracted LBP features [4] from Tj

and T̃j , two histogram feature vectors are obtained as Tj =
[t1, . . . , tk, . . . , tl] and T̃j = [t̃1, . . . , t̃k, . . . , t̃l], where Tj

and T̃j are both a 1× l histogram feature vector. tk and t̃k
are the kth element of Tj and T̃j respectively.

860 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 |

Figure 5: Pseudocode of the proposed algorithm.

3 Experimental results and analysis

 To compare the quality of the proposed Improved Median

filter that uses variable-sized windows with the standard

Median that uses a fixed window of size 3x3, we use the well-

known Peak Signal-to-Noise Ratio PSNR (dB) [2]. The results

are shown in Table 1 in which the test image (Lena see, Figure

6) is corrupted with varying degrees of impulse noise. As

shown in Table 1, the improved Median filter generates

significantly higher quality output than the standard in every

case. The comparison of various window sizes and various

noise levels and types can be seen from the first (input image

indicating noise type and level) and forth (Median filter and

the corresponding window size) columns of Figure 6. Each

row of the figure represents application of different algorithms

to the input image in column 1. To visually demonstrate the

quality of the resulting image, using PSNR measurement, the

output of the Canny (industry standard) is shown in Figure 6.

Procedure of the proposed algorithm:
1) Initialization

a) Input Image

b) User specifies the following options:

i) Partitioning Method: rows, columns, or blocks (due to the space constrain, we will demonstrate row partitioning only)

ii) Number of desired sub images, [numOfSubImage];

iii) Number of processes, [numOfProcl];

iv) Enabled or disabled: Smoothing technique, Thresholding. [toSmooth],[toThreshold];

v) Noise level of the image (visual guess): 1 very low – 5 very high. [levelOfNoise];

2) Partitioning data

a) Divide into the sub work as specified by the user’s chosen mechanism of partitioning.

b) Divide the work among the assigned processors. Processes will self-schedule to obtain the next available work

3) On each of the sub works (if any) do the following:

a) De-noising

i) If smoothing is enabled :

(1) Apply improved median filter with specific window size on the image.

(2) The size of the window depends on the visual guess specified by the user at 1.b.v. (Noise Level)

b) Localization

Eight-direction Prewitt (as described in Section 1)

c) Thresholding

i) If thresholding is enabled then apply the basic iterative global thresholding (as described in Section 2.2, Figure 3)

d) Merging data

i) Merge the processed sub work to its final destination.

e) Return processed image

Pseudocode of partitioning into rows (our implementation supports rows, columns and blocks partitioning mechanisms). The

Pseudocode conventions are taken from [17]:

procedure parmain(initialization as specified in step 1)

Img [imgHeight,imgWidth] := imRead[imgName]; /* Loading the image */

workLoad := imgHeight/numOfSubImage;

shared img, destImage, numOfSubImage, levelOfNoise, numOfProc, toThreshold,toSmooth, workLoad, imgWidth, imgHeight;

private i, subImg,x,y;

Self-Scheduled forall i := 0 until numOfSubImage /* Dynamic Scheduling of parallel processes */

begin /* partitioning data into sub-images each having the same imgWidth but with specific height*/

x : = 0;

y := i * workLoad; /* We are giving an example of partitioning into rows */

subImage := Rectangle(Img, Rect(x, y, imgWidth, imgHeight/numOfSubImage)); /* copy specified rect to subImage */

if (toSmooth) then /* De-noising: if smoothing is enabled */

subImage := Smoothing (subImage,LevelOfNoise);

end /* Localization: Eighth direction Prewitt */

subImage := eightDirections (subImage);

if (Thresholding) then /* Thresholding: if thresholding is enabled */

subImage := iterativeThresholding (subImage);

end

critical work; /* Merging Data: /* Writing Data to its final destination*/

mergeSubImage (destImage, subImage, Rect (x, y, imgWidth, imgHeight /numOfSubImage));

end critical;

Release(subImage);

end

Return (destImage); /* Return Processed image*/

End Procedure

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 | 855

“Standard Canny” refers to the default run with Matlab 7.10.0

(R2010a) without any tuning (Column 2) while “best Canny”

is the best results (Column 3) that can be produced by tuning

the supported parameters.

From Figure 6 in the following page, we can see the capability

of the proposed algorithm to suppress Salt & Pepper noise

even when the image is impacted with very high noise

percentage. Furthermore, the algorithm is able to suppress

different types of noise with less impact on the real edges than

the bidirectional Prewitt implemented with Matlab.

Table 1: Comparison of quality between standard Median

filter and our proposed one using PSNR applied on Lena

impacted with different percentage of impulse noise

Image: Lena 512 x 512, (see Figure 6 for image)

Impulse Noise

Percentage

Standard Median

filter PSNR(dB)

Improved Median filter

PSNR (dB) Window size
Noise

level

10 33.5798 33.5798 3x3 level 1

20 29.5107 30.2259 5x5 level 2

30 24.1262 29.3523 5x5 level 2

40 19.1859 27.8228 5x5 level 2

50 15.3806 26.646 7x7 level 3

60 12.4786 25.2654 9x9 level 4

70 10.098 23.2942 Double 9x9 level 5

In order to provide a fair comparison of the efficiency of our

algorithms and implementation choices, we compare the

sequential execution times of our proposed method with the

existing implementations of bidirectional Prewitt and Canny

algorithms with Matlab that are already in-use in Table 2.

Table 2 shows the results of all tests-cases run sequentially on

the same platform. As mentioned in the previous section, our

algorithms are implemented using C/C++ as the base language

with OpenCV.

Table 2: Sequential run of the presented algorithm vs. the

bidirectional Prewitt and Canny edge detections implemented

within Matlab

Image Details

Intel I Core ™ i7-3720QM CPU @ 2.60 GHz, 16 GB RAM, 64-bit

Windows 7, L1 D :4 x 32 Kbytes 8-way set associative, L1 I :4 x 32

Kbytes, 8-way set associative L2 : 4 x 256 Kbytes 8-way set,

associative, L3 : 6 Mbytes 12-way set associative

Image Size

Proposed

8 Direction

Prewitt by itself

Proposed: Smoothing

(level1) & 8 Direction

Prewitt & Iterative

Thresholding

Matlab

Bidirectional

Prewitt

Matlab

Canny Edge

detection

15315 x 11624 169 MB 2.456 sec 3.51 sec 8.719067 sec 55.23517 sec

2250 x 2250 14.4 MB 0.063 sec 0.171 sec 0.8991 sec 2.411595 sec

1536 x 2048 5.91 MB 0.047 sec 0.109 sec 0.263233 sec 1.494402 sec

512 x 512 768 KB 0.0145 sec 0.016 sec 0.137101 sec 0.334044 sec

256 x 256 192 KB 0.001 sec 0.0025 sec 0.026171 sec 0.2432 sec

As shown in Table 2, our sequential implementation

outperforms bidirectional Prewitt and Canny edge detections.

It is important to note that in the table, execution times

reported for our implementation include smoothing (with

different levels), localization and the iterative thresholding

technique. From observing Table 2 (running on Intel i7)

processing an image of dimension 512 x 512 takes 16 ms

resulting in 62.5 fps (Frames per Second) with level 1

smoothing [43 ms (23.2 fps) when it is smoothed with level 5].

Obviously higher noise percentage requires more

computations for good suppression. However, we are able to

accelerate the previous runs using 4 processors, running on the

same platform, to 6 ms at 166 fps for level 1 smoothing [and

11 ms at 90.9 fps for level 5]. Having shown how efficient the

algorithm works on images of small dimensions, we present

the execution times of our parallel implementation working on

larger images using two different multiple core platforms as its

shows in Table 3 and Table 4 respectively. Due to space

constraints a subset of the general cases are presented. The

two multicore platforms used for our experiments are a 12-

core AMD with Opteron module (Table 3) and a 64-core

AMD with Bulldozer module (Table 4). The organizations of

the two processors are quite different. The Opteron consists of

two chips each with 6 cores each. Each Opteron core has its

own private first level instruction and data caches of 64 KB

size each and a private unified L2 cache of 512 KB. Every 6

core/chip share 6 MB of L3 cache. On the other hand, the 64-

core AMD with Bulldozer consists of eight Bulldozer modules

on one chip (16 cores). A Bulldozer module consists of two

integer execution cores that share a first level instruction cache

of 64 KB and a floating point unit. Each core has a private

first level data cache of 16 KB. The two cores within one

Bulldozer module share a unified L2 cache (2 MB). Every

four modules share 16 MB of L3 cache.

The L1 data cache in Opteron is four times larger than the

Bulldozer’s L1 data cache. The idea of partitioning the image

into a number of equal sized tiles helps enhance the locality of

data. The main difference between Opteron and Bulldozer is

that more resources are shared within the Bulldozer module.

For instance, when we process relatively large images (29649

x 22008) using 32 cores, running on the Bulldozer, the best

results are achieved when the parallel task is distributed such

that each task is executed on every other core. This means the

32 Bulldozer modules, one active core per module, will be

working compared to the case in which only 16 Bulldozer

modules, two active cores per unit, are used. Using more

Bulldozer units not only provides larger L3 cache, a total of

total 128 MB on the four chips, but also allows each core to

use the entire shared L2 cache as a dedicated second level

cache and have exclusive use of the single floating point unit

that is shared by the two integer cores. Although the

communication is costly especially if the cores do not have

shared cache space, i.e., the cost of one core accessing cache

memory located on different chips, having a better data

locality (when larger caches are used) enhances the overall

performance of the application. This statement will not apply

to all applications, but in our design we aimed to divide the

input image to independent tiles in order to decrease the

amount of communication required at the same time increases

the locality of data gained from using larger cache space.

856 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 |

Figure 6: Output of Canny (industry standard) and bidirectional Prewitt vs. our proposed work

Table 3: Execution time for the proposed algorithm running on 12-core compute nodes

Case 1: Eight direction Prewitt, Case 2: Smoothing (level 1) & Eight direction Prewitt, Case 3: Smoothing

(level 1) & Eight direction Prewitt & thresholding, Case 4: Smoothing (level 5) & Eight direction Prewitt

& thresholding

 Image of size 29649 x 22008 Image of size 15315 x 11624

 N cores Best

execution

time TN (sec)

Sequential

T1 (sec)

Speed

up

Number

of cores

Best

execution

time TN (sec)

Sequential

T1 (sec)

Speed

up

Case 1 12 2.890 22.850 7.91 12 0.803 6.021 7.50

Case 2 12 3.145 23.798 7.57 12 0.843 6.534 7.75

Case 3 12 4.521 33.532 7.42 12 1.381 8.854 6.41

Case 4 12 13.015 143.52 11.03 12 3.724 39.45 10.59

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 | 857

 Image of size 2250 x 2250 Image of size 1536 x 2048

Case 1 12 0.028 0.180 6.43 8 0.024 0.108 4.50

Case 2 12 0.032 0.189 5.91 8 0.026 0.114 4.38

Case 3 12 0.067 0.491 7.33 12 0.051 0.305 5.98

Case 4 12 0.147 1.589 10.81 12 0.130 1.016 7.82

 Image of size 2048 x 2048 Image of size 2704 x 4064

Case 1 8 0.031 0.147 4.74 8 0.069 0.374 5.42

Case 2 8 0.031 0.156 5.03 8 0.075 0.403 5.39

Case 3 12 0.051 0.372 7.29 12 0.160 1.297 8.11

Case 4 12 0.132 1.201 9.10 12 0.348 3.959 11.38
12-core compute node (shared memory multi-processor, processor @ 2.2 Ghz of AMD (Opteron) type, 6x64 KB L1 instruction cache per processor, 6x64 KB L1

data cache per processor, 6x512 KB L2 per processor, 6MB L3 per processor, 24 GB RAM, 64-bit Linux version 2.6.18.

Table 4: Execution time for the proposed algorithm running on 64-core compute nodes

Case 1: Eight direction Prewitt, Case 2: Smoothing (level 1) & Eight direction Prewitt, Case 3: Smoothing

(level 1) & Eight direction Prewitt & thresholding, Case 4: Smoothing (level 5) & Eight direction Prewitt

& thresholding

 Image of size 29649 x 22008 Image of size 15315 x 11624

 N cores Best execution

time TN (sec)

Sequential

T1 (sec)

Speed

up

Number

of cores

Best

execution

time TN (sec)

Sequential

T1 (sec)

Speed
up

Case 1 28 1.35 19.07 14.13 28 0.39 5.22 13.38

Case 2 32 1.35 19.89 14.73 24 0.42 5.46 13.00

Case 3 32 1.86 28.14 15.13 32 0.65 7.64 11.75

Case 4 44 4.35 115.56 26.57 40 1.32 31.41 23.80

 Image of size 2250 x 2250 Image of size 1536 x 2048

Case 1 12 0.027 0.155 5.74 12 0.019 0.096 5.05

Case 2 12 0.029 0.163 5.62 12 0.023 0.102 4.43

Case 3 16 0.051 0.460 9.02 16 0.040 0.284 7.10

Case 4 24 0.094 1.461 15.54 24 0.073 0.979 13.41

 Image of size 2048 x 2048 Image of size 2704 x 4064

Case 1 12 0.023 0.126 5.48 16 0.040 0.324 8.10

Case 2 12 0.025 0.139 5.56 16 0.043 0.342 7.95

Case 3 12 0.043 0.336 7.81 24 0.117 1.135 9.70

Case 4 24 0.092 1.067 11.60 32 0.184 3.364 18.28
64-core compute node (shared memory multi-processor, processor @ 2.2 Ghz of AMD (Bulldozer) type, 1x64 KB L1 instruction cache per module which contains

two execution cores, 2x16 KB L1 data cache per module, 1x2 MB L2 per module, 16 MB L3 shared by four modules (located on the same chip), 128 GB RAM,

64-bit Linux version 2.6.18.

4 Conclusion

 A parallel edge detection application based on eight

direction Prewitt edge detection algorithm is designed and

implemented to work on different multicore platforms

efficiently. Different functionalities are added to the

original Prewitt such as smoothing and a global

thresholding mechanism. In order to suppress noise more

efficiently, an improved Median filter that enables the

application to work effectively on noisy images is added.

This method not only strengthens the original algorithm by

allowing it to work on noisy images more effectively but

also lets it compete with the industry standard detection

algorithm Canny. Our algorithm when run sequentially,

with all added functionality and complexity included,

outperforms the default runs of both Prewitt and Canny

already implemented in Matlab. Our parallel

implementation of the algorithm uses C/C++ as the base

language with two open source libraries OpenCV and

OpenMP. Different experiments show improved

performance gained from processing different size images

especially when the complexity of the problem increases.

Variety of tuning mechanisms have been added throughout

the design to allow flexibility of work distribution to

enhance the overall performance. The parallel

implementation of this application is tested on two new

shared memory MIMD multicore platforms namely Opteron

and Bulldozer. Finally this implementation can effectively

be used within the applications of image processing that

relies on fast and accurate edge detection.

858 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'13 |

