
A significant contribution of their work is the ability to use an 

implicit smoothing technique to enable the algorithm to work 

on noisy images. This was particularly important as the 

Prewitt edge detection algorithm is known to be sensitive to 

noise and therefore may not generate satisfactory results in the 

presence of noise. The implicit smoothing technique used in 

[6] calculates the gradient magnitude of the eight directions as 

the basis to find the final magnitude to reduce the effect of 

noise. Our experiments show that the gradient based implicit 

smoothing approach will not be very effective when the image 

is impacted with high noise percentage.  In our work, we 

propose to use an explicit smoothing technique that can be 

applied to noisy images as a prefix step to the Prewitt edge 

detection algorithm [9]. Our results show an improvement in 

the quality and overall execution time even when we include 

the prefix smoothing step. In this paper we present an efficient 

parallel eight directions Prewitt edge detection augmented 

with explicit smoothing and iterative thresholding 

functionality capable of producing fast and accurate results. 

The Pseudocode of the eight directions edge detection is very 

similar to the bidirectional presented in Figure 2 with 

additional 6 windows to convolve the image with a total of 

eight windows proposed in [6].  

/* Where f(x,y) is the input image, k1(x,y)and  k2(x,y)are the two mask windows in 

direction 0” and 90” respectively and  g(x,y) is the output image */  

I[imgHeight, imgWidth]  := imRead(image);  

                              /* imgHeight: image’s height, imgWidth: image’s width. */ 

k1[maskHeight,mWidth] := imRead(Mask); 

                             /* maskHeight: mask’s height, maskWidth: mask’s width. */ 

k2[maskHeight,mWidth] := imRead(Mask); 

                            /* maskHeight: mask’s height, maskWidth: mask’s width. */ 

h := (maskHeight-1)/2 ; 

w := (maskWidth-1)/2 ; 

for y := 0 until  imgHeight do 

     for x := 0 until imgWidth do 

        {  sum   = 0 ;  sum1 = 0 ;  sum2 = 0 ; /* initialization */ 

 for i := -h until h do  

      for j := -w until w do 

        { sum1 + = k1(j,i)*I(x-j,y-i) ; /*convolution in the first direct*/ 

           sum2 + = k2(j,i)*I(x-j,y-i); /* convolution in the second direct*/ 

            sum = max(sum1, sum2) } /* select the max intensity */  

          g(x,y) = sum;   }              /* result image */ 

Figure 2: Original two directions Prewitt edge detection’s 

Pseudocode. 

Section 2 describes the design of the augmented parallel eight 

directions Prewitt algorithm. Section 3 covers the 

experimental results and analysis. Section 4 summarizes the 

paper and conclusions. 

2 Augmented parallel eight direction n 

Prewitt edge detection algorithm 

The original bidirectional Prewitt algorithm is known for its 

good computational complexity but noise sensitivity; lack of 

an affective smoothing mechanism has mostly disqualified its 

usage. Analytical studies conducted in [7] indicate that Prewitt 

edge detection algorithm cannot be used along with practical 

images that are often corrupted with impulse noise as well as 

Gaussian and Poisson noises. Majority of images are often 

inflicted by varying degree of noise caused by transmission 

channels and camera sensors [7]. Furthermore, Prewitt 

algorithm does not incorporate a thresholding mechanism in 

order to produce binary images. Most object detection 

applications rely on background subtraction. The presence of 

only two values in the resulting binary image, one representing 

the object and the other representing the background, is 

desirable in object detection applications [10]. We have 

augmented our parallel algorithm with both smoothing and 

thresholding mechanisms. In this section we will first discuss 

our choices for smoothing and thresholding strategies and then 

present the description of complete parallel application. 

 

2.1 Selecting an appropriate filter to use as 

prefix step to eight direction Prewitt 

The stand-alone Prewitt algorithm does not incorporate any 

mechanisms to deal with noisy images. The Canny edge 

detection algorithm uses Gaussian filter or Blurring as a prefix 

smoothing mechanism [3, 5] to address the noise issue. 

Blurring can destroy some real edges during the process of 

noise suppression. Bilateral is known to be a better choice 

because it has less negative impact on real edges than 

Blurring. To select a suitable smoothing method, we 

conducted several experiments using Blurring, Median 

Blurring, Gaussian, Bilateral, Median filtering and an 

improved version of Median filter. Our improved Median 

filter, added as a prior step to localization in the eight 

direction Prewitt algorithm, shows the best results for 

suppressing impulse noises such as Salt and Pepper and at the 

same time is able to suppress other types of noises such as 

Gaussian and Poisson. Median filter is a nonlinear filter used 

to remove impulse noise with the least negative impact on the 

real edges [5, 11, 12]. This filter starts arranging all the pixels 

within the range of the specified window in ascending order to 

choose the median value. This approach helps keep some real 

values unchanged as opposed to the blurring technique that 

takes the average of all pixels within that neighborhood. The 

main idea behind our improved Median filter is to allow the 

window size be variable and not fixed as in the standard 

Median for the sake of not only better noise suppression 

capability but also operations reduction [12]. Larger window 

sizes can be used effectively in processing images with higher 

noise percentage using the same mechanism of Median filter. 

In the current version, we provide the users full control to 

judge the intensity of the noise in order to determine the 

desired window size. We recommend to start with a window 

of size 3x3, considered to be the standard case (level 1). If the 

resulting output reflects detection of false edges, users can 

increase the size of the window to 5x5(level 2), 7x7(level 3), 

9x9(level 4), or double 9x9 (level 5) respectively. Double 9x9 

stands for re-smoothing the results of level 4 with 9x9 window 

size. Our results demonstrate clear detection of edges in the 

presence of noise when smoothing is enabled. The 

experimental results are presented in the results section, Table 

1 and Figure 6.  
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2.2 Dynamic Iterative Thresholding  

Thresholding is desirable in many applications; we have 

added this functionality to the algorithm to be used when 

needed. There are many thresholding techniques available 

ranging from visual judgment using trial and error to reliance 

on global or local methods [5, 13, 14]. In this work we have 

selected to add the basic global thresholding method due to its 

computational simplicity, acceptable quality and applicability 

to a variety of applications [5]. The technique works 

iteratively to find the thresholding value as described in Figure 

3. 

Step 1: Start with initial guess for the thresholding value T. 

 /* For faster convergence, choose initial T to be the average of all 

intensities of the assigned work [5] */ 

Step 2: For each pixel, marked as group 1 (G1) or group 2 (G2): 

a. if img[i,j] > T, img[i,j] ɛ G1 

b. else img[i,j] ɛ G2 

Step 3: For each group, find the average of intensities Av1 and Av2 

respectively. 

Step 4: Find the new threshold value: Tnew = (Av1 + Av2 )/2. 

Step 5: Stop if | Tnew – T| ≤ tolerant value; Otherwise T = Tnew  and 

repeat the process from step 2. 

Figure 3: The procedure of the Basic Global Thresholding. 

2.3 Parallel application 

 Adding a smoothing mechanism with variable window sizes, 

six additional directions to the localization step and a global 

thresholding mechanism adds computational complexity to the 

original bidirectional Prewitt algorithm. These additional 

computations affect the overall performance. A parallel 

version of the proposed algorithm for the new shared memory 

MIMD multicore platforms is designed and implemented in 

order to speed up the computation. The parallel algorithm is 

designed and implemented using C/C++ as a base language 

and two open source libraries OpenMP and the open computer 

vision library (OpenCV) to overcome complexities added to 

the original algorithm. OpenCV library supports hundreds of 

optimized image processing algorithms mainly designed for 

real time applications contributing to the field of computer 

vision specifically [13, 15]. These libraries lend themselves 

well to parallel processing [13, 16]. One of the main 

challenges working on shared memory multiprocessors is the 

work distribution [1, 17]. Work, for good distribution, can be 

divided into rows, columns or blocks.  Using appropriate 

mechanisms for data partitioning not only provides an 

independent chunk of data that can be processed concurrently 

but also will add flexibility in tuning the algorithm to run more 

efficiently on different architectural platforms to enhance data 

locality that in turn reduces the number of time-consuming 

cache misses. Work distribution starts by allowing each of the 

processors to copy its assigned private data to its local 

memory. To gain efficiency, it is desired to decrease the 

number of times needed to copy data from slower shared 

memory to local memory at each computational unit. The 

algorithm starts dividing the image into a number of equal 

sized tiles (sub-images). Parallel processes will work 

independently on different sub-images using a self-scheduling 

technique for work distribution. Each processor applies 

smoothing, localization, and iterative thresholding before 

writing the processed data to its final location as shown in 

Figure 4. 

 

Figure 4: Processing life cycle. 

As seen in Figure 4, the parallelism is applied at the highest 

possible level in which all work, in between the time of 

loading the main image up until merging sub-images, is done 

in parallel. We are presenting only partitioning into rows only. 

Yet our implementation supports all three partitioning 

methods (rows, columns, and blocks). The original input 

image is defined as an object (Region Of Interest, ROI) in the 

OpenCV library resulting in the need for some 

synchronization when the final result is written back to this 

object. This is a requirement enforced by OpenCV to 

guarantee data integrity, therefore, each processor will write 

the data to its original region of interest atomically. It is best 

to choose self-scheduling instead of pre-scheduling for good 

work balance.  This will prevent the problem of having some 

processors idle while the others have excess work due to 

varying amount work required in each region of the image. It 

is important to note that sub-images are completely treated 

individually and are processed within the iterative 

thresholding mechanism separately. This strategy, according 

to our experiments, can result in better detection where more 

real edges are detected. Self-scheduling will overcome the 

difference in time required by applying the iterative 

thresholding mechanism on the assigned data as the number of 

computations may vary depending on the data itself. 
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A significant contribution of their work is the ability to use an 

implicit smoothing technique to enable the algorithm to work 

on noisy images. This was particularly important as the 

Prewitt edge detection algorithm is known to be sensitive to 

noise and therefore may not generate satisfactory results in the 

presence of noise. The implicit smoothing technique used in 

[6] calculates the gradient magnitude of the eight directions as 

the basis to find the final magnitude to reduce the effect of 

noise. Our experiments show that the gradient based implicit 

smoothing approach will not be very effective when the image 

is impacted with high noise percentage.  In our work, we 

propose to use an explicit smoothing technique that can be 

applied to noisy images as a prefix step to the Prewitt edge 

detection algorithm [9]. Our results show an improvement in 

the quality and overall execution time even when we include 

the prefix smoothing step. In this paper we present an efficient 

parallel eight directions Prewitt edge detection augmented 

with explicit smoothing and iterative thresholding 

functionality capable of producing fast and accurate results. 

The Pseudocode of the eight directions edge detection is very 

similar to the bidirectional presented in Figure 2 with 

additional 6 windows to convolve the image with a total of 

eight windows proposed in [6].  

/* Where f(x,y) is the input image, k1(x,y)and  k2(x,y)are the two mask windows in 

direction 0” and 90” respectively and  g(x,y) is the output image */  

I[imgHeight, imgWidth]  := imRead(image);  

                              /* imgHeight: image’s height, imgWidth: image’s width. */ 

k1[maskHeight,mWidth] := imRead(Mask); 

                             /* maskHeight: mask’s height, maskWidth: mask’s width. */ 

k2[maskHeight,mWidth] := imRead(Mask); 

                            /* maskHeight: mask’s height, maskWidth: mask’s width. */ 

h := (maskHeight-1)/2 ; 

w := (maskWidth-1)/2 ; 

for y := 0 until  imgHeight do 

     for x := 0 until imgWidth do 

        {  sum   = 0 ;  sum1 = 0 ;  sum2 = 0 ; /* initialization */ 

 for i := -h until h do  

      for j := -w until w do 

        { sum1 + = k1(j,i)*I(x-j,y-i) ; /*convolution in the first direct*/ 

           sum2 + = k2(j,i)*I(x-j,y-i); /* convolution in the second direct*/ 

            sum = max(sum1, sum2) } /* select the max intensity */  

          g(x,y) = sum;   }              /* result image */ 

Figure 2: Original two directions Prewitt edge detection’s 

Pseudocode. 

Section 2 describes the design of the augmented parallel eight 

directions Prewitt algorithm. Section 3 covers the 

experimental results and analysis. Section 4 summarizes the 

paper and conclusions. 

2 Augmented parallel eight direction n 

Prewitt edge detection algorithm 

The original bidirectional Prewitt algorithm is known for its 

good computational complexity but noise sensitivity; lack of 

an affective smoothing mechanism has mostly disqualified its 

usage. Analytical studies conducted in [7] indicate that Prewitt 

edge detection algorithm cannot be used along with practical 

images that are often corrupted with impulse noise as well as 

Gaussian and Poisson noises. Majority of images are often 

inflicted by varying degree of noise caused by transmission 

channels and camera sensors [7]. Furthermore, Prewitt 

algorithm does not incorporate a thresholding mechanism in 

order to produce binary images. Most object detection 

applications rely on background subtraction. The presence of 

only two values in the resulting binary image, one representing 

the object and the other representing the background, is 

desirable in object detection applications [10]. We have 

augmented our parallel algorithm with both smoothing and 

thresholding mechanisms. In this section we will first discuss 

our choices for smoothing and thresholding strategies and then 

present the description of complete parallel application. 

 

2.1 Selecting an appropriate filter to use as 

prefix step to eight direction Prewitt 

The stand-alone Prewitt algorithm does not incorporate any 

mechanisms to deal with noisy images. The Canny edge 

detection algorithm uses Gaussian filter or Blurring as a prefix 

smoothing mechanism [3, 5] to address the noise issue. 

Blurring can destroy some real edges during the process of 

noise suppression. Bilateral is known to be a better choice 

because it has less negative impact on real edges than 

Blurring. To select a suitable smoothing method, we 

conducted several experiments using Blurring, Median 

Blurring, Gaussian, Bilateral, Median filtering and an 

improved version of Median filter. Our improved Median 

filter, added as a prior step to localization in the eight 

direction Prewitt algorithm, shows the best results for 

suppressing impulse noises such as Salt and Pepper and at the 

same time is able to suppress other types of noises such as 

Gaussian and Poisson. Median filter is a nonlinear filter used 

to remove impulse noise with the least negative impact on the 

real edges [5, 11, 12]. This filter starts arranging all the pixels 

within the range of the specified window in ascending order to 

choose the median value. This approach helps keep some real 

values unchanged as opposed to the blurring technique that 

takes the average of all pixels within that neighborhood. The 

main idea behind our improved Median filter is to allow the 

window size be variable and not fixed as in the standard 

Median for the sake of not only better noise suppression 

capability but also operations reduction [12]. Larger window 

sizes can be used effectively in processing images with higher 

noise percentage using the same mechanism of Median filter. 

In the current version, we provide the users full control to 

judge the intensity of the noise in order to determine the 

desired window size. We recommend to start with a window 

of size 3x3, considered to be the standard case (level 1). If the 

resulting output reflects detection of false edges, users can 

increase the size of the window to 5x5(level 2), 7x7(level 3), 

9x9(level 4), or double 9x9 (level 5) respectively. Double 9x9 

stands for re-smoothing the results of level 4 with 9x9 window 

size. Our results demonstrate clear detection of edges in the 

presence of noise when smoothing is enabled. The 

experimental results are presented in the results section, Table 

1 and Figure 6.  
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2.2 Dynamic Iterative Thresholding  

Thresholding is desirable in many applications; we have 

added this functionality to the algorithm to be used when 

needed. There are many thresholding techniques available 

ranging from visual judgment using trial and error to reliance 

on global or local methods [5, 13, 14]. In this work we have 

selected to add the basic global thresholding method due to its 

computational simplicity, acceptable quality and applicability 

to a variety of applications [5]. The technique works 

iteratively to find the thresholding value as described in Figure 

3. 

Step 1: Start with initial guess for the thresholding value T. 

 /* For faster convergence, choose initial T to be the average of all 

intensities of the assigned work [5] */ 

Step 2: For each pixel, marked as group 1 (G1) or group 2 (G2): 

a. if img[i,j] > T, img[i,j] ɛ G1 

b. else img[i,j] ɛ G2 

Step 3: For each group, find the average of intensities Av1 and Av2 

respectively. 

Step 4: Find the new threshold value: Tnew = (Av1 + Av2 )/2. 

Step 5: Stop if | Tnew – T| ≤ tolerant value; Otherwise T = Tnew  and 

repeat the process from step 2. 

Figure 3: The procedure of the Basic Global Thresholding. 

2.3 Parallel application 

 Adding a smoothing mechanism with variable window sizes, 

six additional directions to the localization step and a global 

thresholding mechanism adds computational complexity to the 

original bidirectional Prewitt algorithm. These additional 

computations affect the overall performance. A parallel 

version of the proposed algorithm for the new shared memory 

MIMD multicore platforms is designed and implemented in 

order to speed up the computation. The parallel algorithm is 

designed and implemented using C/C++ as a base language 

and two open source libraries OpenMP and the open computer 

vision library (OpenCV) to overcome complexities added to 

the original algorithm. OpenCV library supports hundreds of 

optimized image processing algorithms mainly designed for 

real time applications contributing to the field of computer 

vision specifically [13, 15]. These libraries lend themselves 

well to parallel processing [13, 16]. One of the main 

challenges working on shared memory multiprocessors is the 

work distribution [1, 17]. Work, for good distribution, can be 

divided into rows, columns or blocks.  Using appropriate 

mechanisms for data partitioning not only provides an 

independent chunk of data that can be processed concurrently 

but also will add flexibility in tuning the algorithm to run more 

efficiently on different architectural platforms to enhance data 

locality that in turn reduces the number of time-consuming 

cache misses. Work distribution starts by allowing each of the 

processors to copy its assigned private data to its local 

memory. To gain efficiency, it is desired to decrease the 

number of times needed to copy data from slower shared 

memory to local memory at each computational unit. The 

algorithm starts dividing the image into a number of equal 

sized tiles (sub-images). Parallel processes will work 

independently on different sub-images using a self-scheduling 

technique for work distribution. Each processor applies 

smoothing, localization, and iterative thresholding before 

writing the processed data to its final location as shown in 

Figure 4. 

 

Figure 4: Processing life cycle. 

As seen in Figure 4, the parallelism is applied at the highest 

possible level in which all work, in between the time of 

loading the main image up until merging sub-images, is done 

in parallel. We are presenting only partitioning into rows only. 

Yet our implementation supports all three partitioning 

methods (rows, columns, and blocks). The original input 

image is defined as an object (Region Of Interest, ROI) in the 

OpenCV library resulting in the need for some 

synchronization when the final result is written back to this 

object. This is a requirement enforced by OpenCV to 

guarantee data integrity, therefore, each processor will write 

the data to its original region of interest atomically. It is best 

to choose self-scheduling instead of pre-scheduling for good 

work balance.  This will prevent the problem of having some 

processors idle while the others have excess work due to 

varying amount work required in each region of the image. It 

is important to note that sub-images are completely treated 

individually and are processed within the iterative 

thresholding mechanism separately. This strategy, according 

to our experiments, can result in better detection where more 

real edges are detected. Self-scheduling will overcome the 

difference in time required by applying the iterative 

thresholding mechanism on the assigned data as the number of 

computations may vary depending on the data itself. 
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Abstract— Local Binary Pattern (LBP) features and its
variants are computed on the patches with the fixed positions
and a fixed size in images, while the limited variety of
the size and position cannot accurately measure the nature
of face image. In this paper, we propose a new learning
method, Hierarchical Sparse Patch Learning (HSPL), to
select face patches with different positions and sizes for
face recognition. HSPL employs a sparse learning model
to hierarchically select patches at two levels: in level 1 the
optimal patch candidates are figured out, while in level 2
the optimal patches from the candidates are obtained. LBP
features are extracted from the optimal patches to recognize
faces. Experimental results show that the proposed method
is more efficient and achieves higher recognition rate than
the other two compared methods.

Keywords: Feature Description, Face Recognition, Patch Selec-
tion, LBP, Sparse Learning

1. Introduction
Face feature description plays an essential role for face

recognition[1]. In recent years, many face feature description
algorithms have been proposed, including Eigenface [2],
Fisherface [3], Local Binary Pattern (LBP) [4] and Elastic
Bunch Graph Matching [5]. Among them, LBP and its
variants [4], [6], [7], [8], [9] are the most widely used face
feature descriptors, which divide the face image into patches
with the fixed positions and a fixed size to extract LBP
features [10]. However, the way that LBP and its variants
adopted for patch generation leads to limited variety of
the size and position of the obtained features. In order to
solve this problem, Zhang et al. [11] scan the face image
with a scalable sub-window, and over 7000 sub-patches are
obtained. Then they use Adaboost learning algorithm to
select an optimal subset of local patches and extract LBP
features from these patches.

By shifting and scaling a sub-window, abundant patches
with different positions and sizes could be generated with
Zhang’s method [11]. The features extracted from these
patches yield a more complete and agile description of
the face image. Unfortunately, there are two problems of
the application of Adaboost learning algorithm in Zhang’s
method. Firstly, the training process and the test process are

not accordant. The training process of Adaboost is iterative,
and each cycle selects only one patch. For any two patches
generated in the neighboring cycles, the former is preferable
to the latter for face recognition. But in the test process,
all the patches are treated equally, which leads to inferior
combination of selected patches for recognition. Secondly,
the method is inefficient, since the optimal patch should be
selected via comparisons among all patches in each cycle.

In order to attenuate these two problems, this paper
proposes a new learning method, Hierarchical Sparse Patch
Learning (HSPL), to select adaptive face patches, and then to
recognize faces. Firstly, it proposes a feature transformation
to generate within- and between-class distance vectors, and
constructs a sparse learning model based on them, which
can automatically select adaptive patches. Based on the
sparse learning model, HSPL hierarchically select patches
at two levels: in level 1 patch candidates are obtained by
automatical parameter setting, while in level 2 the optimal
patches from the candidates are reached.

The rest of this paper is organized as follows. The
proposed method is presented in Section 2. In Section 3,
some experiments are performed to evaluate the performance
of the proposed method, followed by conclusions in Section
4.

2. Hierarchical Sparse Patch Learning

2.1 Sparse Learning Model for Adaptive Patch
Selection
2.1.1 Within- and Between-class Distance Vectors Gen-
eration

Given any two face images I and Ĩ , if we shift and
scale a sub-window on them, respectively, we can get
N adaptive patches for each image with different posi-
tions and sizes [11]. I = [T1, . . . , Tj , . . . , TN ] and Ĩ =
[T̃1, . . . , T̃j , . . . , T̃N ], where Tj and T̃j are any one patch
from I and Ĩ . After extracted LBP features [4] from Tj

and T̃j , two histogram feature vectors are obtained as Tj =
[t1, . . . , tk, . . . , tl] and T̃j = [t̃1, . . . , t̃k, . . . , t̃l], where Tj

and T̃j are both a 1× l histogram feature vector. tk and t̃k
are the kth element of Tj and T̃j respectively.
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Figure 5: Pseudocode of the proposed algorithm. 

3 Experimental results and analysis 

 To compare the quality of the proposed Improved Median 

filter that uses variable-sized windows with the standard 

Median that uses a fixed window of size 3x3, we use the well-

known Peak Signal-to-Noise Ratio PSNR (dB) [2]. The results 

are shown in Table 1 in which the test image (Lena see, Figure 

6) is corrupted with varying degrees of impulse noise. As 

shown in Table 1, the improved Median filter generates 

significantly higher quality output than the standard in every 

case. The comparison of various window sizes and various 

noise levels and types can be seen from the first (input image 

indicating noise type and level) and forth (Median filter and 

the corresponding window size) columns of Figure 6. Each 

row of the figure represents application of different algorithms 

to the input image in column 1. To visually demonstrate the 

quality of the resulting image, using PSNR measurement, the 

output of the Canny (industry standard) is shown in Figure 6.  

Procedure of the proposed algorithm: 
1) Initialization  

a) Input Image 

b) User specifies the following options: 

i) Partitioning Method: rows, columns, or blocks (due to the space constrain, we will demonstrate row partitioning only) 

ii)  Number of desired sub images, [numOfSubImage]; 

iii)  Number of processes, [numOfProcl];  

iv) Enabled or disabled: Smoothing technique, Thresholding. [toSmooth],[toThreshold]; 

v) Noise level of the image (visual guess): 1 very low – 5 very high. [levelOfNoise]; 

2) Partitioning data 

a) Divide into the sub work as specified by the user’s chosen mechanism of partitioning. 

b) Divide the work among the assigned processors. Processes will self-schedule to obtain the next available work 

3) On each of the sub works (if any) do the following: 

a) De-noising 

i)  If smoothing is enabled : 

(1) Apply improved median filter with specific window size on the image. 

(2) The size of the window depends on the visual guess specified by the user at 1.b.v. (Noise Level) 

b) Localization 

Eight-direction Prewitt (as described in Section 1)  

c) Thresholding  

i) If thresholding is enabled then apply the basic iterative global thresholding (as described in Section 2.2, Figure 3) 

d) Merging data 

i) Merge the processed sub work to its final destination. 

e) Return processed image 

Pseudocode of partitioning into rows (our implementation supports rows, columns and blocks partitioning mechanisms). The 

Pseudocode conventions are taken from [17]: 

procedure parmain(initialization as specified in step 1) 

Img [imgHeight,imgWidth] := imRead[imgName];   /* Loading the image */ 

workLoad := imgHeight/numOfSubImage;   

shared img, destImage, numOfSubImage, levelOfNoise, numOfProc, toThreshold,toSmooth, workLoad, imgWidth, imgHeight; 

private i, subImg,x,y;   

Self-Scheduled forall i := 0 until numOfSubImage  /* Dynamic Scheduling of parallel processes */ 

begin   /* partitioning data into sub-images each having the same imgWidth but with specific height*/ 

x : = 0; 

y := i * workLoad;           /* We are giving an example of partitioning into rows */ 

subImage := Rectangle( Img, Rect(x, y, imgWidth, imgHeight/numOfSubImage)); /* copy specified rect to subImage */  

if (toSmooth) then                  /* De-noising: if smoothing is enabled */ 

subImage := Smoothing (subImage,LevelOfNoise); 

end   /* Localization: Eighth direction Prewitt */ 

subImage := eightDirections (subImage); 

if (Thresholding) then    /* Thresholding:  if thresholding is enabled */ 

subImage := iterativeThresholding (subImage); 

end 

critical work;   /* Merging Data: /* Writing Data to its final destination*/ 

mergeSubImage (destImage, subImage, Rect (x, y, imgWidth, imgHeight /numOfSubImage )); 

end critical; 

Release(subImage);  

end 

Return (destImage);  /* Return Processed image*/ 

End Procedure  
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“Standard Canny” refers to the default run with Matlab 7.10.0 

(R2010a) without any tuning (Column 2) while “best Canny” 

is the best results (Column 3) that can be produced by tuning 

the supported parameters. 

From Figure 6 in the following page, we can see the capability 

of the proposed algorithm to suppress Salt & Pepper noise 

even when the image is impacted with very high noise 

percentage. Furthermore, the algorithm is able to suppress 

different types of noise with less impact on the real edges than 

the bidirectional Prewitt implemented with Matlab.  

Table 1: Comparison of quality between standard Median 

filter and our proposed one using PSNR applied on Lena 

impacted with different percentage of impulse noise 

Image: Lena 512 x 512, (see Figure 6 for image) 

Impulse Noise 

Percentage 

Standard Median 

filter PSNR(dB) 

Improved Median filter 

PSNR (dB) Window size 
Noise 

level 

10 33.5798 33.5798 3x3 level 1 

20 29.5107 30.2259 5x5 level 2 

30 24.1262 29.3523 5x5 level 2 

40 19.1859 27.8228 5x5 level 2 

50 15.3806 26.646 7x7 level 3 

60 12.4786 25.2654 9x9 level 4 

70 10.098 23.2942 Double 9x9 level 5 

 

In order to provide a fair comparison of the efficiency of our 

algorithms and implementation choices, we compare the 

sequential execution times of our proposed method with the 

existing implementations of bidirectional Prewitt and Canny 

algorithms with Matlab that are already in-use in Table 2. 

Table 2 shows the results of all tests-cases run sequentially on 

the same platform. As mentioned in the previous section, our 

algorithms are implemented using C/C++ as the base language 

with OpenCV. 

Table 2: Sequential run of the presented algorithm vs. the 

bidirectional Prewitt and Canny edge detections implemented 

within Matlab 

Image Details 

Intel I Core ™ i7-3720QM CPU @ 2.60 GHz, 16 GB RAM, 64-bit 

Windows 7, L1 D :4 x 32 Kbytes 8-way set associative, L1 I :4 x 32 

Kbytes, 8-way set associative L2 : 4 x 256 Kbytes 8-way set, 

associative, L3 : 6 Mbytes 12-way set associative 

Image Size 

Proposed 

8 Direction 

Prewitt by itself 

Proposed: Smoothing 

(level1) & 8 Direction 

Prewitt & Iterative 

Thresholding 

Matlab 

Bidirectional 

Prewitt 

Matlab  

Canny Edge 

detection 

15315 x 11624 169   MB 2.456 sec 3.51 sec 8.719067 sec 55.23517 sec 

2250 x 2250 14.4  MB 0.063 sec 0.171 sec 0.8991 sec 2.411595 sec 

1536 x 2048 5.91  MB 0.047 sec 0.109 sec 0.263233 sec 1.494402 sec 

512 x 512 768   KB 0.0145 sec 0.016 sec 0.137101 sec 0.334044 sec 

256 x 256 192  KB 0.001 sec 0.0025 sec 0.026171 sec 0.2432 sec 

 

As shown in Table 2, our sequential implementation 

outperforms bidirectional Prewitt and Canny edge detections. 

It is important to note that in the table, execution times 

reported for our implementation include smoothing (with 

different levels), localization and the iterative thresholding 

technique. From observing Table 2 (running on Intel i7) 

processing an image of dimension 512 x 512 takes 16 ms 

resulting in 62.5 fps (Frames per Second) with level 1 

smoothing [43 ms (23.2 fps) when it is smoothed with level 5]. 

Obviously higher noise percentage requires more 

computations for good suppression. However, we are able to 

accelerate the previous runs using 4 processors, running on the 

same platform, to 6 ms at 166 fps for level 1 smoothing [and 

11 ms at 90.9 fps for level 5]. Having shown how efficient the 

algorithm works on images of small dimensions, we present 

the execution times of our parallel implementation working on 

larger images using two different multiple core platforms as its 

shows in Table 3 and Table 4 respectively. Due to space 

constraints a subset of the general cases are presented. The 

two multicore platforms used for our experiments are a 12-

core AMD with Opteron module (Table 3) and a 64-core 

AMD with Bulldozer module (Table 4). The organizations of 

the two processors are quite different. The Opteron consists of 

two chips each with 6 cores each. Each Opteron core has its 

own private first level instruction and data caches of 64 KB 

size each and a private unified L2 cache of 512 KB.  Every 6 

core/chip share 6 MB of L3 cache. On the other hand, the 64-

core AMD with Bulldozer consists of eight Bulldozer modules 

on one chip (16 cores). A Bulldozer module consists of two 

integer execution cores that share a first level instruction cache 

of 64 KB and a floating point unit. Each core has a private 

first level data cache of 16 KB. The two cores within one 

Bulldozer module share a unified L2 cache (2 MB).  Every 

four modules share 16 MB of L3 cache.  

The L1 data cache in Opteron is four times larger than the 

Bulldozer’s L1 data cache. The idea of partitioning the image 

into a number of equal sized tiles helps enhance the locality of 

data. The main difference between Opteron and Bulldozer is 

that more resources are shared within the Bulldozer module. 

For instance, when we process relatively large images (29649 

x 22008) using 32 cores, running on the Bulldozer, the best 

results are achieved when the parallel task is distributed such 

that each task is executed on every other core. This means the 

32 Bulldozer modules, one active core per module, will be 

working compared to the case in which only 16 Bulldozer 

modules, two active cores per unit, are used. Using more 

Bulldozer units not only provides larger L3 cache, a total of 

total 128 MB on the four chips, but also allows each core to 

use the entire shared L2 cache as a dedicated second level 

cache and have exclusive use of the single floating point unit 

that is shared by the two integer cores. Although the 

communication is costly especially if the cores do not have 

shared cache space, i.e., the cost of one core accessing cache 

memory located on different chips, having a better data 

locality (when larger caches are used) enhances the overall 

performance of the application. This statement will not apply 

to all applications, but in our design we aimed to divide the 

input image to independent tiles in order to decrease the 

amount of communication required at the same time increases 

the locality of data gained from using larger cache space.  
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Figure 6: Output of Canny (industry standard) and bidirectional Prewitt vs. our proposed work 

Table 3: Execution time for the proposed algorithm running on 12-core compute nodes 

Case 1: Eight direction Prewitt, Case 2: Smoothing (level 1) & Eight direction Prewitt, Case 3: Smoothing 

(level 1) & Eight direction Prewitt & thresholding, Case 4: Smoothing (level 5) & Eight direction Prewitt 

& thresholding 

  Image of size 29649 x 22008  Image of size 15315 x 11624 

 N cores Best 

execution 

time TN (sec) 

Sequential 

T1 (sec) 

Speed 

up 

Number 

of cores 

Best 

execution 

time TN (sec) 

Sequential 

T1 (sec) 

Speed 

up 

Case 1 12 2.890 22.850 7.91 12 0.803 6.021 7.50 

Case 2 12 3.145 23.798 7.57 12 0.843 6.534 7.75 

Case 3 12 4.521 33.532 7.42 12 1.381 8.854 6.41 

Case 4 12 13.015 143.52 11.03 12 3.724 39.45 10.59 
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  Image of size 2250 x 2250  Image of size 1536 x 2048 

Case 1 12 0.028 0.180 6.43 8 0.024 0.108 4.50 

Case 2 12 0.032 0.189 5.91 8 0.026 0.114 4.38 

Case 3 12 0.067 0.491 7.33 12 0.051 0.305 5.98 

Case 4 12 0.147  1.589 10.81 12 0.130 1.016 7.82 

  Image of size 2048 x 2048  Image of size 2704 x 4064 

Case 1 8 0.031 0.147 4.74 8 0.069 0.374 5.42 

Case 2 8 0.031 0.156 5.03 8 0.075 0.403 5.39 

Case 3 12 0.051 0.372 7.29 12 0.160 1.297 8.11 

Case 4 12 0.132 1.201 9.10 12 0.348 3.959 11.38 
12-core compute node (shared memory multi-processor, processor @ 2.2 Ghz of AMD (Opteron) type, 6x64 KB L1 instruction cache per processor, 6x64 KB L1 

data cache per processor, 6x512 KB L2 per processor, 6MB L3 per processor, 24 GB RAM, 64-bit Linux version 2.6.18. 

Table 4: Execution time for the proposed algorithm running on 64-core compute nodes 

Case 1: Eight direction Prewitt, Case 2: Smoothing (level 1) & Eight direction Prewitt, Case 3: Smoothing 

(level 1) & Eight direction Prewitt & thresholding, Case 4: Smoothing (level 5) & Eight direction Prewitt 

& thresholding 

  Image of size 29649 x 22008  Image of size 15315 x 11624 

 N cores Best execution 

time TN (sec) 

Sequential 

T1 (sec) 

Speed 

up 

Number 

of cores 

Best 

execution 

time TN (sec) 

Sequential 

T1 (sec) 

Speed 
up 

Case 1 28 1.35 19.07 14.13 28 0.39 5.22 13.38 

Case 2 32 1.35 19.89 14.73 24 0.42 5.46 13.00 

Case 3 32 1.86 28.14 15.13 32 0.65 7.64 11.75 

Case 4 44 4.35 115.56 26.57 40 1.32 31.41 23.80 

  Image of size 2250 x 2250  Image of size 1536 x 2048 

Case 1 12 0.027 0.155 5.74 12 0.019 0.096 5.05 

Case 2 12 0.029 0.163 5.62 12 0.023 0.102 4.43 

Case 3 16 0.051 0.460 9.02 16 0.040 0.284 7.10 

Case 4 24 0.094 1.461 15.54 24 0.073 0.979 13.41 

  Image of size 2048 x 2048  Image of size 2704 x 4064 

Case 1 12 0.023 0.126 5.48 16 0.040 0.324 8.10 

Case 2 12 0.025 0.139 5.56 16 0.043 0.342 7.95 

Case 3 12 0.043 0.336 7.81 24 0.117 1.135 9.70 

Case 4 24 0.092 1.067 11.60 32 0.184 3.364 18.28 
64-core compute node (shared memory multi-processor, processor @ 2.2 Ghz of AMD (Bulldozer) type, 1x64 KB L1 instruction cache per module which contains 

two execution cores, 2x16 KB L1 data cache per module, 1x2 MB L2 per module, 16 MB L3 shared by four modules (located on the same chip), 128 GB RAM, 

64-bit Linux version 2.6.18. 

4 Conclusion 

 A parallel edge detection application based on eight 

direction Prewitt edge detection algorithm is designed and 

implemented to work on different multicore platforms 

efficiently. Different functionalities are added to the 

original Prewitt such as smoothing and a global 

thresholding mechanism. In order to suppress noise more 

efficiently, an improved Median filter that enables the 

application to work effectively on noisy images is added. 

This method not only strengthens the original algorithm by 

allowing it to work on noisy images more effectively but 

also lets it compete with the industry standard detection 

algorithm Canny. Our algorithm when run sequentially, 

with all added functionality and complexity included, 

outperforms the default runs of both Prewitt and Canny 

already implemented in Matlab. Our parallel 

implementation of the algorithm uses C/C++ as the base 

language with two open source libraries OpenCV and 

OpenMP. Different experiments show improved 

performance gained from processing different size images 

especially when the complexity of the problem increases. 

Variety of tuning mechanisms have been added throughout 

the design to allow flexibility of work distribution to 

enhance the overall performance. The parallel 

implementation of this application is tested on two new 

shared memory MIMD multicore platforms namely Opteron 

and Bulldozer. Finally this implementation can effectively 

be used within the applications of image processing that 

relies on fast and accurate edge detection. 
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