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ABSTRACT 

Frequent pattern mining (FPM) is an important and 

computationally intensive task in data mining. We present a 

novel method, CGMM (CPU & GPU based Multi-strategy 

Mining), for mining frequent patterns that combines the 
computing power of CPU and GPU to speed up the frequent 

pattern mining. CGMM employs two different mining 

strategies and dynamically switches between them; the 

CPU-based strategy uses FP-tree data structure to perform 

the mining task on CPU while the GPU-based method 

converts the allocated data portions to bit vectors to work 

mainly on GPU. This unique approach has the following 

advantages compared to the existing methods: (1) utilizes 

the parallel processing capability of GPU for 

computationally intensive portions; the flexibility and low 

memory latency of CPU for the sophisticated data 

processing needed to manipulate the more complex data 
structures to enhance the overall performance (2) applies 

two mining strategies to efficiently mine both sparse and 

dense databases. The performance evaluation of CGMM on 

a machine with AMD CPUs and NVIDIA Tesla GPUs  

shows  that in the best cases, the proposed method runs up 

to 229 times faster than well-known sequential FPM 

algorithms and 7.2 - 13.9 times faster than GPApriori, a 

GPU based algorithm for FPM. In addition to 

outperforming them, CGMM has more stable performance 

on both dense and sparse test datasets. 
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INTRODUCTION 

General-Purpose Graphics Processing Units (GPGPU) have 

emerged as powerful computing resources for general–

purpose computing applications. They are used as co-
processors capable of fast intensive computational 

processing that was once performed by CPUs [1, 2]. 

GPGPU applications are implemented using either CUDA 

[3] or OpenCL [4]. As the volume of data generated in most 

fields is fast growing, applying high performance 
techniques to enhance the overall performance of data 

analysis tasks has become important. Frequent pattern 

mining (FPM) is a crucial component of data mining used 

to find various types of relationships among variables in 

large databases such as associations  [5], correlations  [6], 

causality  [7], sequential patterns  [8], episodes  [9] and 

partial periodicity  [10] and has many practical applications 

such as market analysis, biomedical and computational 

biology, web mining, decision support, telecommunications 

alarm diagnosis and prediction, and network intrusion 

detection  [11, 12].  

Motivation 

Most existing FPM methods for GPU [13 - 22] are derived 

from Apriori [5], a sequential method that uses breadth-first 
strategy and the candidate generation-and-test approach to 

find frequent patterns as well as utilizes downward closure 

property (i.e. a k-itemset is frequent only if all of its sub-

itemsets are frequent) to sharply reduce the search space. 

These features allow the GPU-based methods which create 

a large amount of workload with data suitable for 

presentation on GPU. However, for very large databases, 

the Apriori-like methods are significantly slower and 

consume much more memory in comparison to sequential 

methods like Eclat  [23], FP-growth  [24], and especially 

our proposed methods, FEM  [25] and DFEM [26]. In many 
cases, Apriori is hundred times slower than FP-growth or its 

variants the FP-tree traversal time  [27], H-mine  [28], 

nonordfp  [29], the use of FP-array data structure  [30] and 

FP-growth with database partition projection [31]. Huang et 

al. [19] have shown that a parallel Apriori algorithm on 

GPU even run slower than sequential FP-growth run on 

CPU. Therefore, better mining strategy is essential. 

Additionally, Apriori performs efficiently on sparse data 

but not on dense databases [32, 33, 34], the GPU based 

Apriori methods for FPM exhibit the same poor 

performance on dense datasets as well. 

Contribution 

We propose CGMM for FPM which utilizes both CPU and 

GPU for its computation. The following features of CGMM 
contribute to its improved performance and distinguish it 

from the prior FPM methods: 

1) CGMM consists of two different mining strategies, 

CPUBasedMining and GPUBasedMining, specifically 

designed to exploit the computing power of both CPU 
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and GPU. It uses a heuristic approach to dynamically 

select a suitable strategy for each data subset of the 

database based on its density characteristics during the 

execution.  

2) The CPUBasedMining strategy uses only CPU to mine 

the frequent patterns by recursively constructing FP-
trees without generating a large number of candidates. 

It is applied for data portions with sparse 

characteristics.  

3) The GPUBasedMining strategy uses GPU as the main 

computing engine to mine the data portions with dense 

characteristics using a hybrid solution that consists of a 

new adaptive breadth-first approach, bit vector data 

structures, and candidate generation and test approach.   

BACKGROUND 

Problem Statement 

The FPM problem is defined as follows: Let I = {i1, i2,. . . , 

in} be the set of all distinct items in the transactional 

database D. The support of an itemset α, a set of items, is 

the percentage of transactions containing α in D. A k-

itemset α, which consists of k items from I, is frequent if α’s 
support is larger or equal to minsup, where minsup is a 

user-specified minimum support threshold. Given a 

database D and a minsup, FPM searches for the complete 

set of frequent itemsets in D. For example, given the 

database in Table 1 and minsup=20%, the frequent 1-

itemsets include a, b, c, d and e while f is infrequent 

because the support of f is only 11%.  Similarly, ab, ac, ad, 

ae, bc, bd, cd, ce, de are frequent 2-itemsets and abc, abd, 

ace, ade are the frequent 3-itemsets. 

Table 1. Sample dataset with minsup = 20% 

Transaction ID Items Sorted Frequent Items 

1 b,d,a a,b,d 
2 c,b,d b,c,d 
3 c,d,a,e a,c,d,e 
4 d,a,e a,d,e 
5 c,b,a a,b,c 

6 c,b,a a,b,c 
7 f  
8 b,d,a a,b,d 
9 c,b,a,e,f a,b,c,e 

Mining Frequent Pattern Using GPU 

Mining frequent patterns is nontrivial because of its 

exponential search space, large amount of data and 

computational intensity. In the trend of applying high 

performance computing to increase the processing speed of 

data analysis tasks, developing FPM methods for GPU has 

received much interest because of the massive parallel 

capability of this device. 

Modern GPUs have between dozens to hundreds of computing 

units/cores used as co-processors and can deliver much larger 
performance than a CPU for the right type of application. Their 

architectures typically consist of several streaming 

multiprocessors sharing same device memory. Each 

multiprocessor can have eight or more computing 

units/cores depending on the device model. The following 

general steps are needed for an application to run on a GPU: (1) 

copy input data from the main memory of CPU to the 

device (GPU) memory; (2) perform the computation on 

GPU; (3) copy the output data back from the device 

memory to the main memory. Two popular software platforms 

used to develop applications for GPU are CUDA [3] and 

OpenCL [4]. In CUDA computation is written as a kernel 

on the CPU to be launched on GPU with a massive amount 
of similar computational units known as threads [13]. A 

kernel launched to execute on GPU is referred to as a grid. 

A grid consists of multiple thread blocks where each block 

is a group of threads. A thread block is assigned to a 

multiprocessor whose execution is in the form of SIMT 
(Single Instruction, Multiple Threads). The computing model of 
OpenCL is similar to CUDA. The GPU SIMT model of 
computation (which for most practical purposes is very similar to 
SIMD: Single Instruction, Multiple Data) works great for 
applications with massive amount of repetitive parallelism with 

regular access patterns. Performance penalties occur on GPUs due 
to irregular workloads, irregular access patterns, need for 
synchronization among threads belonging to different blocks, and 
need to move and access data in different levels of memory 
hierarchy. 

The traditional FPM methods developed for sequential execution 
on CPU must be redesigned so that their computational model and 
data structure can adapt well to the GPU architecture. This is a 

highly challenging task for many of the complex applications 
designed for general purpose computing including FPM because 

GPU requires data presentation that can be processed 

uniformly and independently by a large number of 

concurrent threads. In addition, data pre/post processing in 

CPU and transferring data between CPU and GPU can add 
a large enough overhead to the total execution time of FPM 

to negate the benefits of GPU. 

Prior GPU-based FPM Algorithms 

In this section, we review three most relevant GPU FPM 

algorithms CSFPM  [17], GPApriori [20] and gpuDCI [18] 

CSFPM (Candidate Slicing Frequent Pattern Mining)  [17] 

is an Apriori-like method for GPU. It off-loads the most 

time consuming phase of counting to compute the supports 

to the GPU to speed up the total execution time. For better 

load balancing, the algorithm parallelizes and distributes the 

candidate itemsets to the GPU threads; each thread checks 

its own transaction in a candidate item. This reduces the 

processor waiting time since the load between processing 

units is more balanced. 

GPApriori [20] is also an Apriori-like method for GPU. It  

maps the Apriori algorithm to the SIMD execution model 

by using bitset to represent the input database where the ith 

bit in a bitset presents the occurrence of that item/itemset in 

the ith transaction of database (1: exist, 0: does not exist). 

This data structure improves upon the traditional approach 

of the vertical data layout in state-of-the-art Apriori 

implementations. Similar to CSFPM, GPApiori parallelizes 

only support counting step on the GPU while the remaining 
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steps are executed on CPU. GPApriori applies several 

optimization techniques in its implementation: (1) before 

support counting is performed on GPU, candidates are 

preloaded to shared memory to prevent repeating global 

memory reads, (2) manual, hand-tuned loop unrolling to 

further improve the kernel speed; and (3) hand-tuned block 
size [20]. 

gpuDCI  [18] is adapted from the DCI algorithm  [35], a 

sequential mining approach that combines Apriori and 

Eclat. This algorithm starts its computation on CPU, as in 

DCI, and moves the pruned datasets to the GPU as soon as 

the bitwise vertical dataset fits into the GPU global 

memory. Afterwards the support computation is performed 

on GPU. However, after switching to GPU, the CPU still 

manages patterns, generates candidates and stores patterns 

that are frequent according to the supports computed by the 

GPU. Two parallel techniques were investigated: (1) for the 

transaction-wise technique, all GPU cores independent of 
the GPU multiprocessor they belong to, work on the same 

intersection or count operation; (2) for the candidate-wise 

technique, each GPU multiprocessor intersects and counts a 

different candidate. The candidate-wise technique has 

shown to perform better than the transaction-wise technique 

because it requires fewer synchronization operations. 

NEW FREQUENT PATTERN MINING APPROACH USING 
A CPU-GPU HYBRID MODEL 

Among many sequential frequent pattern mining methods 

that are traditionally developed for machines without GPU, 

FP-growth and its variants [27 – 31] are most efficient, 

especially for sparse large databases. They do not require 

generating a very large number of candidate itemsets as 

Apriori and Eclat do and hence save both memory and 

computation.  The main mining computation of FP-growth 

is based on recursively generating FP-trees [24]. 

While the benefits of applying FP-growth cannot be 

ignored, developing a method based on FP-growth for FPM 

poses a lot of challenges for GPU due to FP-tree data 

structure, recursive tree construction, and tree traversal 

need. GPUs perform best for tasks whose data structures are 

linear and computations lend themselves well to vector 

processing. Moreover, it has been shown that FP-growth 

does not perform as well as Eclat when mining dense 

databases or mining with low minsups where the number of 

generated frequent pattern is very large [33, 34, 36]. For 

such cases, manipulating a very large number of FP-trees in 
FP-growth becomes more costly than intersecting the TID-

lists of Eclat - the vertical layout of database where each list 

of a item/itemset stores IDs of transactions containing that 

item/itemset. It is important to keep in mind that for TID-

lists, the vertical and linear data formats and list intersection 

operations of Eclat are quite suitable for GPU but the depth-

first approach does not allow creation of enough parallel 

workload, compared to Apiori, to fully utilize the large 

computing resources of GPU.  

Therefore, we combine and redesign the advanced features 

of FP-growth, Eclat, MAFIA [12] and Apriori into a new 

mining method, named CGMM, that applies both CPU and 

GPU computing to provide high FPM performance. As in 

DFEM, CGMM consists of two mining strategies and 

dynamically selects a suitable mining for each data portion 
of a database. 

Overview of CGMM 

CGMM consists of three main tasks: FP-tree construction, 
CPUBasedMining and GPUBasedMining described below. 

It starts with constructing the corresponding FP-tree 

followed by dynamically selecting between 

CPUBasedMining and GPUBasedMining similar to DFEM 

as depicted in Figure 1. 

 

Figure 1: The overview of CGMM 

FP-tree construction (on CPU) reads the database to build 

the corresponding FP-tree. Use of this data structure 

significantly reduces the I/O cost because it compacts the 

database in memory before mining is performed. It also 

enables multiple mining strategies to be employed with 

relative ease as subsets of data from this tree can be used to 
create independent sub-mining tasks where each may use a 

different mining strategy. 

CPUBasedMining (on CPU) extracts from the FP-tree the 

data subsets to recursively construct child FP-trees. The 

frequent patterns are identified based on newly generated 

FP-trees without the requirement of generating a large 

number of frequent pattern candidates. Because FP-tree 

data structure is complex and inefficient for mining on 

GPUbasedMining 

CPUbasedMining 

FP-Tree construction 

FP-tree 

 Is the data subset 

sparse? 

No 

 

Yes 

 
Child FP-tree of 

the data subset 

Database 

 Is size limit of the 

lists reached ? 

 

Data Lists 

No 
  

Yes 
  

 

Frequent Pattern Set 

Weight Vector Set 

194



GPU, only CPU is used to process the mining task. 

CPUBasedMining is distinct from the other mining 

methods because it is applied to sparse data subsets only. 

Determination of whether a data subset is sparse or dense is 

described in following section. 

GPUBasedMining uses a new hybrid mining model 
designed for GPU applied to the dense data subsets. It 

presents data used to compute the support as bit vectors and 

maintains input and output data in data lists including 

Frequent Pattern Set List and Weight Vector List. The new 

frequent patterns are generated by applying candidate 

generation-and-test approach using a self-adaptive breath-

first solution. Only a subset of frequent patterns is used to 

generate frequent pattern candidates at a time as long as 

their input and output data fit in the GPU memory. It 

addresses GPU memory limitation problem. Unlike the 

existing GPU solutions that off-load only the support 

counting phase to GPU, GPUBasedMining performs both 
the candidate generation and the support counting on GPU 

to increase GPU utilization and reduce overall processing 

on CPU as well as data transfer between CPU and GPU 

memories. 

CGMM ALGORITHM 

The CGMM algorithm (Figure 2) is performed in two 

stages. The first stage is loading data into memory by 

constructing the FP-tree. Then, frequent patterns are 

generated using the two mining strategies in our algorithms 

by initially invoking CPUBasedMining. 

CGMM algorithm 

Input: Transactional database D and minsup 
Output: Complete set of frequent patterns  
1:    Scan D once to identify all frequent items 
2:    Scan D a second time to construct the FP-tree T 

4:    Call CPUBasedMining(T,,minsup) 

Figure 2: CGMM algorithm 

FP-tree Construction 

FP-tree is a prefix tree that compacts all sets of ordered 

frequent items from database into memory. This tree 

consists of a header table storing the frequent items with 

their count, a root node and a set of prefix sub-trees. Each 

node of the tree includes an item name, a count indicating 

the number of transactions that contain all items in the path 

from the root node to the current node, and a link to its 

parent node. Each linked list starting from the header table 

links all nodes of the same frequent item. If two itemsets 

share a common prefix, the shared part can be merged as 

long as the count properly reflects the frequency of each 

itemset in the database.  

The construction of FP-tree requires two database scans.  

Only CPU is used for this stage because the tree data 

structure and operations are not suitable for GPU 

computing. Database is scanned the first time to find the 

frequent items and create the header table. A second 

database scan is done to get frequent items of each 

transaction. Next, these items are sorted and inserted in the 

FP-tree in frequency descending order. During the top-

down traversal of the tree construction, if a node presenting 

an item exists, its count will be incremented by one. 

Otherwise, a new node is added to the FP-tree. Figure 3 
illustrates an FP-tree constructed from the dataset in Table 

1 where a pair <x:y> indicates item name and its count. 

  

Figure 3: FP-tree constructed from the database in Table 1 

CPUBasedMining 

CPUBasedMining initializes the process of generating 

frequent patterns and mines the sparse data portions of the 
database. Similar to FP-tree construction stage, only CPU is 

used in this stage. The frequent patterns are reported by 

concatenating the suffix pattern of the previous step with 

each item  of the input FP-tree. At the beginning, this 
suffix pattern is Ø. Then, CGMM constructs a child FP-tree 

called conditional FP-tree for every item   using a data 
subset called conditional pattern base. This data subset is 

extracted from the input FP-tree of each recursive iteration 

and consists of sets of frequent items co-occurring with the 

suffix pattern. For example, the conditional pattern base of 

item d, which is extracted from the FP-tree (Figure 3) by 

bottom-up traversal starting from the nodes in the linked list 

of item d, consists of the 4 sets {a:2, b:2}, {a:1, c:1}, {a:1} 

and {b:1, c:1} in which {a , b} occurs twice (Figure 4-a). 
This base is used to construct the conditional FP-tree 

(Figure 4-b). The new tree is then used as the input of the 

next step of recursive iteration of this mining task.  

 
Figure 4: FP-tree constructed from the conditional pattern base of 

item d 
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CPUBasedMining does not process data subsets which have 

dense characteristics. Instead, it converts them into 

Frequent Pattern Set and Weight Vector and adds them into 

the Frequent Pattern Set List and Weight Vector List 

managed by GPUBasedMining. As the mining proceeds 

and when CPUBasedMining finds these lists full, it invokes 
GPUBasedMining to start the mining process on GPU. The 

algorithmic description of CPUBasedMining is in Figure 5. 

CPUBasedMining algorithm 

Input: FP-Tree T, suffix, minsup 

Output: Set of frequent patterns  

1:    If  T contains a single path P 

2:    Then For each combination x of the items in T 

3:                 Output  = x  suffix 

4:    Else For each item  in the header table of T 

5:    {    Output  =   suffix   

6:          Construct 's conditional pattern base C 

7:          size = the number of nodes in the linked list of  

8:          If size > K 

9:          Then { Construct 's conditional FP-tree T’  

10:                     Call CPUBasedMining (T’,,minsup)} 

11:        Else  { Create Frequent Pattern Set S and  

12:                               Weight Vector W from C  

13:                    Add S into Frequent Pattern Set List LS 

14:                    Add W to Weight Vector List Lw 

15:                    If (LS   is full)    

16:                     Call GPUBasedMining(LS, Lw, minsup) 

17:                 } 

18:    } 

Figure 5: CPUBasedMining algorithm 

GPUBasedMining 

GPUBasedMining mines the dense data portions of the 

database. It uses the GPU as co-processor for its most 
computational intensive need and CPU for the complicated 

tasks with data dependence to exploit the power and 

flexibility of GPU and CPU respectively.  

Data Structures 

GPUBasedMining uses several data structures to manage 

the mining data including Frequent Pattern Set, Frequent 

Pattern Set List and Weight Vector List (Figure 6). 

Frequent Pattern Set is a set of frequent patterns that have 

same length k (i.e. they have k items in their itemsets) in 

which (k–1) items are common and one item is different 

among the frequent patterns in the set. For example, three 

frequent patterns abc, abd, abe can form a Frequent Pattern 

Set because they have ab in common. It contains a set of bit 

vectors where each presents the occurrence of a frequent 
pattern in the database. This data structure is used to 

generate new (k+1) length frequent pattern candidates and 

compute their supports. Some additional information of a 

Frequent Pattern Set includes size - the number of frequent 

patterns in the set, length - the number of items in a 

frequent pattern. Figure 6 demonstrates two Frequent 

Pattern Sets that are created from the conditional pattern 

bases of items e and c extracted from the FP-tree (Figure 3). 

A Frequent Pattern Set is only created if it satisfies the 

condition for GPUBasedMining and contains the data of at 
least two frequent patterns. 

Frequent Pattern Set List works as a container that holds 

all Frequent Pattern Sets generated during the mining 

process and is updated by both CPUBasedMining and 

GPUBasedMining. In our example (Figure 6), two 

Frequent Pattern Sets are added into the Frequent Pattern 

Set List. 

 
Figure 6: Data structures used by GPUBasedMining 

Weight Vector List: the weight vector is a portion of 

Frequent Pattern Set that is used to compute the support of 

the patterns and is created by collecting the frequency 

values of sets in the conditional pattern base. Because 

many Frequent Pattern Sets that are newly generated by 

GPUBasedMining may share a same weight vector, we 
store this data in a separate list called Weight Vector List 

and add a reference in Frequent Pattern Set to its weight 

vector in the list to avoid duplication, save memory. 

Algorithmic Descriptions 

During the execution of CPUBasedMining, small data 

subsets that meet the condition to be mined using 

GPUBasedMining are converted to Frequent Pattern Sets 
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and added into the Frequent Pattern Set List. When the 

number of items in this list reaches a predefined limit, 

GPUBasedMining is invoked by CPUBasedMining to start 

generating all new frequent patterns using Frequent Pattern 

Sets in the list. We present experiments showing the impact 

of different size limits on the performance of CGMM in 
next Section. The discovery of new frequent patterns from 

the Frequent Pattern Set List involves the following steps; 

note that Steps 2 and 3, which comprise the most 

computational intensive phases of the program, are being 

executed using GPU:  

1. Extract a group of Frequent Pattern Sets from the list 

2. Generate frequent pattern candidates using Frequent 

Pattern Sets  

3. Compute the supports of candidates using Frequent 

Pattern Sets and Weight Vectors  

4. Identify new frequent patterns from the candidates. 

5. Add new Frequent Pattern Sets created from the new 
frequent patterns and repeat step 1 until no more 

Frequent Pattern Set is found from the list. 

GPUBasedMining algorithm 

Input: Frequent Pattern Set List LS , 

                Weight Vector List LW, minsup 

Output: Set of frequent patterns  

1:  M = Available memory on GPU 

2:  Copy  LW  to the GPU 

3:  While LS  is not empty 

4:        Specify S  Ls where m ≤ M 

5:                       m = memory need of S and candidates of S 

6:        Copy S to memory of GPU  

7:        Generate candidates on GPU using S                 

8:        Compute support of candidates on GPU using S 

9:        Copy support of candidates back to CPU 

10:      FP = new frequent patterns with support ≥ minsup 

11:      Output FP  

12:      Snew = new Frequent Pattern Sets created using FP 

13:      Consolidate bit vectors of FP on GPU using Snew 

14:      Remove S from Ls 

15:      Add Snew into Ls 

16: End While 

Figure 7: GPUBasedMining algorithm 

GPUBasedMining processes a group of Frequent Pattern 

Sets at a time by extracting multiple Frequent Pattern Sets 

from the list as long as their total memory size of newly 

generated candidates, their bit vectors and Frequent Pattern 

Sets used to generate them do not exceed the available 

memory on GPU. This workload computation helps 

CGMM flexibly scale to the memory size of physical 

device which is a major challenge in GPU computing. In 

addition, applying the data list structure allows 
GPUBasedMining working without recursion (recursive 

procedures do not generally yield high performance on 

GPUs). Figure 7 presents the algorithmic description of 

GPUBasedMining. In this figure, the computation steps 

involving the GPU include lines 1, 6 – 9 and 13 

respectively and are detailed in the following section. 

Generating Frequent Pattern Candidates and Computing 
Their Supports on GPU 

 

Figure 8: Generating pattern candidates and computing their 
counts on GPU 

Unlike the related works that use GPU for the support 

counting phase only, GPUBasedMining performs both the 

frequent pattern candidate generation (step 2) and support 

counting (step 3) phases on GPU to reduce the computation 

handled by CPU; it better utilizes the GPU and therefore 

improves the efficiency of GPUBasedMining as well as the 

overall performance of CGMM. The Frequent Pattern Sets 

and the Weight Vectors are copied to GPU and distributed 

among the thread blocks. Each concurrent thread in a 

thread block, based on the information of Frequent Pattern 

Sets assigned to its block, will identify the candidates it 
needs to work on and specify all the necessary information 

of these candidates such as the two parent frequent patterns, 

their input bit vectors, its output bit vector to store the result 

of ANDing the parent’s bit vectors. Candidates are then 

generated in parallel by concurrent threads on GPU and 

their supports are computed. Each thread is responsible for 

the support of one or more candidates independently. 

Figure 8 illustrates the computations on GPU to generate 

the frequent pattern candidates and computation of the 

supports using the Frequent Pattern Sets and Weight 

Vectors in Figure 6. 
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Data Transfer Optimization: an important feature of 

GPUBasedMining is that the output bit vectors of bitwise 

operation on GPU are not copied back to the main memory. 

Instead, the bit vectors belonging to the new frequent 

patterns are consolidated and used as the inputs in the next 

iteration. For this reason, the new Frequent Pattern Sets 
(Snew in line 12 of Figure 7) which are stored in main 

memory do not include bit vector data. This technique 

minimizes the communication cost between CPU and GPU, 

saves memory on the CPU side and enhances the 

performance of CGMM. For example, for minsup=20%, 

the new frequent patterns are abc, ace, ade, bce because 

their supports > 20%. Among those, abc, ade are used to 

create a new Frequent Pattern Set to add to the Frequent 

Pattern Set List because they can be used to create the 

candidates acde in the next iteration. Therefore, the bit 

vectors of abc, ade are kept and unified in the memory of 

GPU.  

PERFORMANCE EVALUATION 

Experimental Setup 

Datasets: They represent various characteristics and 
domains of interest for our experiments: three sparse, one 

moderate and two dense databases all obtained from the 

FIMI Repository [32], a well-known repository for FPM. 

The database features are reported in Table 2 

Table 2: Experimental datasets of CGMM 

Dataset Type 
# of  

Items 

Average  

Length 

# of  

Trans. 

Chess Dense 76 37 3196 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Retail Sparse 16470 10.3 88126 

Kosarak Sparse 41271 8.1 990002 
Webdocs Sparse 52676657 177.2 1623346 

 

Software: CGMM can be implemented using different 

programming platforms like CUDA [3] or OpenCL [4]. In 

our experiments, we choose CUDA to implement CGMM 

because CUDA delivers better performance for the Nvidia 

GPUs used in our experiments. We have carefully tested 

our implementation and have verified that it generates 

correct outputs in every case; this is often a challenge for 

complex applications developed on GPUs. 

Hardware: We use an Altus 1702 machine with dual AMD 

Opteron 2427 processor, 2.2GHz, 24GB memory and 160 

GB hard drive. This machine is equipped with NVIDIA 
Tesla Fermi C2050 GPU that has 3GB memory, 14 

multiprocessors and each multiprocessor consists of 32 

CUDA cores 1.5GHz. The operating system is CentOS 5.3, 

a Linux-based distribution. 

Performance Evaluation 

To evaluate performance of CGMM, we benchmarked it 

with six state-of-the-art FPM algorithms Apriori [5], Eclat 

[23], FP-growth [24], FP-growth* [27], AIM2 [33] and 

DFEM [26]. Unlike CGMM with multi-strategy approach 

using both CPU (sequential execution) and GPU (parallel 

execution), these algorithms apply only one mining 

strategy and use CPU as the only computing engine. The 

running time of the seven methods on six datasets with 

various minsups are given in Figure 9. The experimental   
results show that CGMM outperforms the other algorithms 

including Apriori, Eclat, FP-growth, FP-growth* and AIM2 

on both dense and sparse datasets for most test cases. 

Please note that the y-axis of the graphs is in logarithmic 

scale. CGMM does not run as well as DFEM for larger 

minsup values but it outperforms DFEM when minsup 

reduces. Hence, we recommend to apply CGMM for 

applications that uses low minsup values. For test cases 

with low minsup values, CGMM runs 1.0 – 229 times 

faster five compared algorithms except DFEM on test 

datasets (Table 3). It runs faster than DFEM 1.0 – 1.8 times 
on Chess, Pumsb, Accidents, Kosarak and Webdocs 

datasets. For Retail, DFEM performs better than CGMM. 

However, their time difference reduces as minsup is set to 

smaller values. When minsup is set to smaller values, the 

number of data subsets mined by GPUBasedMining of 

CGMM is large and GPU is more efficiently utilized. 

When minsup is larger, the amount of work delegated to 

GPU is small and this device is under-utilized. In such 

cases, the highly optimized DFEM is a better FPM 

solution.  

 
Table 3: Speedup of CGMM vs. other sequential algorithms 

Datasets Minsup vs. Apriori vs. Eclat 
vs.  

FP-growth 
vs.  

FP-growth* 
vs. 

AIM2 
vs. 

DFEM 

Chess 20% 78.4 3.1 3.5 19.2 1.9 1.1 

Pumsb 50% 229.2 2.0 2.5 13.3 5.7 1.3 

Accidents 3% N/A 1.3 1.6 6.8 7.2 1.0 

Retail 0.003% 3.7 12.2 2.0 7.8 11.7 0.7 

Kosarak 0.08% 15.8 14.6 6.7 12.3 1.0 1.8 

Webdocs 4% 45.5 1.1 1.3 2.4 3.3 1.1 
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We compare CGMM with GPApriori, a GPU based FPM 

algorithm [20]. Figure 10 shows CGMM runs 7.2-13.9 

times faster than GPApriori on Retail dataset. In this test 

case, GPApriori uses GPU for entire dataset while CGMM 

uses GPU for only mining dense data subsets. GPApriori 

failed to run on other datasets because of the internal errors 

of this program.  

  
Figure 10: Time and speedup of CGMM vs. GPApriori  

Upon the results on Retail, we find that for FPM problem, 

benefits of GPU is only obtained when we use it with 

suitable data structure and mining solution that can best 

leverage the computing power of GPU and adapt well to its 

limitation of memory and large data communication (e.g. 

mining dense data subset and low minsup values).  

Impact of Using Multi-Strategy Approach in CGMM 

To study the benefits of applying the two mining strategies, 

we measured the time of CGMM in three separate cases: (1) 

using CPUBasedMining only, (2) using GPUBasedMining 

only and (3) using the combination of CPUBasedMining 

and GPUBasedMining as intended. The experimental 

results in Table 4 show that combining the two mining 

strategies significantly reduces the running times for both 
sparse and dense databases compared to the cases where 

only one of the mining strategies were used. For example, 

CGMM with only CPUBasedMining took 1160 seconds to 

mine the Chess dataset while CGMM with both strategies 

ran in only 107 seconds which is 10.8 times faster. 

Similarly, for Accidents dataset, CGMM with both 

strategies performed 39.4 times faster than CGMM with 

only GPUBasedMining (i.e. 419 seconds vs. 16503 

seconds). This performance gain comes from the ability to 

select the suitable strategy for each subset of data being 

mined to optimize the mining performance.  

Additionally, we find that utilizing GPU for FPM does not 
always bring better performance for all types of data. 

Although the computing throughput of GPU is hundred 
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Figure 9: Running Time of CGMM vs. other sequential algorithms 
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times larger than one CPU, using GPU can sometimes 

downgrade the overall performance of a FPM task 

compared to using CPU because of GPU’s memory 

limitations. It explains why for Accidents and Webdocs 

with very large memory requirements, running only 

GPUBasedMining performs much slower than running only 
CPUBasedMining. Combining the two and dynamic 

switching between them however results in improved 

overall performance. 

Table 4: Runining time in seconds of CGMM using two mining 
strategy vs. using only one strategy 

Dataset CPUBasedMining GPUBasedMining CGMM 

Chess 1160 180 107 

Pumsb 2310 664 377 

Accidents 547 16503 419 

Retail 226 19 18 

Kosarak 2773 841 680 
Webdocs 6736 56017 6496 

CONCLUSION 

We have presented CGMM, a new CPU-GPU hybrid 

method for FPM. CGMM uses GPUBasedMining strategy 
for dense data subsets of database and CPUBasedMining 

for sparse ones. Our experimental results show that CGMM 

runs up to 229 times faster than six sequential algorithms on 

six real datasets and 7.2-13.9 times faster than GPApriori, a 

GPU based algorithm for FPM. Additionally, CGMM has 

the ability to self-balance the workload between its two 

mining strategies based on the characteristics of the 

database to execute significantly faster than using one 

mining strategy. 
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