
A Load Balancing Parallel Method
for Frequent Pattern Mining on Multi-core Cluster

Lan Vu, Gita Alaghband

University of Colorado Denver,

{lan.vu, gita.alaghband}@ucdenver.edu

ABSTRACT

In this paper, we present a new parallel method named

SDFEM that enables frequent pattern mining (FPM) on

cluster with multiple multi-core compute nodes to provide

high performance. SDFEM is distinguished from previous
parallel FPM works due to incorporating three advanced

features to provide high mining performance for large-scale

data analytic applications. First, SDFEM combines both

shared memory and distributed memory computational

models to leverage benefits of shared memory within a

node in cluster. Second, it employs a multi-strategy load

balancing approach to address the most challenging issue of

parallel FPM to balance the mining workload among all

cores of the cluster. Finally, its self-adaptive mining

solution with the capability of dynamically adjusting to the

characteristics of the database to perform efficiently on
different data types either sparse or dense. For performance

evaluation, we implement SDFEM using a hybrid model of

OpenMP and MPI in which OpenMP is for the shared

memory model and MPI is for message passing. SDFEM

has been tested on a cluster of multiple 12-core shared

memory compute nodes. Our experimental results on real

databases show that performance of SDFEM is up to

329.5% faster than the parallel FPM approach that uses

only distributed memory model with message passing (i.e.

using pure MPI). In addition, SDFEM can achieve up to

45.4 – 64.8 speedup on 120 cores (i.e. 10 compute nodes

and 12 cores per node).

Author Keywords

Frequent pattern mining; multi-core cluster; high
performance computing; load balancing; database.

INTRODUCTION

Frequent pattern mining (FPM) is a crucial component of

data mining used to find various types of relationships

among variables in large databases such as associations [1],

correlations [2], causality [3], sequential patterns [4],
episodes [5] and partial periodicity [6]. It has many

practical applications such as market analysis, biomedical

and computational biology, web mining, decision support,

telecommunications alarm diagnosis and prediction, and

network intrusion detection [7, 8]. With growth of big data

in numerous fields such as business, social media, life

science, medicine, etc., applying high performance

computing (HPC) using large cluster computers for FPM

are essential. These machines provide massive computing

and memory resources making them ideal for big data

analysis. Development of high performance methods for
FPM requires platform-specific design to efficiently

leverage the specific platform's powerful resources.

Motivation

Our study of parallelizing FPM for large-scale data mining

applications on multi-core clusters addresses three critical

problems that have not been thoroughly investigated in

previous studies. Solving these problems are challenging

because parallel FPM usually involves multiple reduction

steps, large synchronization cost and unpredictable

workload for load balancing.

First, most current HPC machines are clusters consisting of

many multi-core nodes whose memory is shared among

cores within a node but is not directly accessible from other

nodes. Recent studies have shown that a hybrid parallel
programming method that applies both shared and

distributed memory programming models for cluster

architecture delivers better performance than parallel

methods using only distributed memory model [9–13].

However, most FPM methods designed for cluster use

“shared nothing” parallel model; communication among

parallel processes is, therefore, done by message passing [8,

14–27]. As a result, benefits of shared memory available

within each node are ignored.

HPC 2015, April 12 - 15, 2015, Alexandria, VA, USA

© 2015 Society for Modeling & Simulation International (SCS)

49

Second, load balancing is highly critical for parallel FPM in

cluster computing environment. FPM incurs high message

passing communication cost due to large variation and

amount of data communications; making load balancing a

great challenge. Irregular and imbalanced computation

loads may result in sharp degradation of the overall
performance [19]. An efficient workload balancing solution

is critical for FPM scalability on cluster architectures.

Finally, in our prior study, we have developed a sequential

frequent pattern mining method that can dynamically adjust

to the characteristics of the database at runtime as the

pattern mining proceeds and outperforms most well-known

sequential methods both on sparse and dense databases [28–

31]. Applying this mining approach for parallel FPM is

essential to provide high performance for this mining task

on sparse and dense data.

Contribution

We present a novel parallel FPM algorithm, SDFEM, to

address the above-mentioned issues. SDFEM efficiently

adapts to the architecture of multi-core clusters and
maximizes utilization of the available computing resources.

SDFEM is distinguished from prior work due to the

following features: (1) exploits the use of shared memory

within a node of the cluster, (2) applies multi-level load

balancing and (3) uses a self-adaptive mining approach

based on data characteristics. Highlights of our

contributions include:

1) SDFEM algorithm, a hybrid parallel method utilizing

both shared and distributed memory programming

models that performs communication within-node via

shared memory and between-node via message
passing. Using shared memory inter-process

communication cuts down the communication cost

which is quite high for message passing

communication among parallel processes and reduces

load balancing overhead. SDFEM also employs the

mining based on data characteristics approach for faster

FPM performance on both sparse and dense data.

2) A multi-level load balancing approach that uses four

different strategies: dynamic job scheduling and work

sharing for load balancing among cores within a node,

and cyclic job scheduling and work stealing for load

balancing among nodes in the cluster. This load
balancing method is designed based on the data

communication features of the hybrid mining model to

minimize the overhead of the load balancer as well as

to enhance the scalability of FPM.

3) Implementation of the algorithms using MPI (message

passing interface) and OpenMP (shared memory), and

performance evaluation using real-world datasets to

demonstrate the efficiency of the proposed method.

BACKGROUND

Problem Statement

The FPM problem is defined as follows: Let I = {i1, i2,. . . ,

in} be the set of all distinct items in the transactional

database D. The support of an itemset α (a set of items) is

the percentage of transactions containing α in D. A k-

itemset α, which consists of k items from I, is frequent if α’s

support is larger or equal to minsup, where minsup is a

user-specified minimum support threshold. Given a

database D and a minsup, FPM searches for the complete

set of frequent itemsets in D. For example, given the
database in Table 1 and minsup=20%, the frequent 1-

itemsets include a, b, c, d and e while f is infrequent

because the support of f is only 11%. Similarly, ab, ac, ad,

ae, bc, bd, cd, ce, de are frequent 2-itemsets and abc, abd,

ace, ade are the frequent 3-itemsets.

Table 1. Sample dataset with minsup = 20%

Transaction ID Items Sorted Frequent Items

1 b,d,a a,b,d
2 c,b,d b,c,d

3 c,d,a,e a,c,d,e
4 d,a,e a,d,e
5 c,b,a a,b,c
6 c,b,a a,b,c
7 f
8 b,d,a a,b,d
9 c,b,a,e,f a,b,c,e

Related Works

A number of parallel methods have been developed for

distributed memory systems. However, these methods do
not take advantage of the shared memory within a node

because they apply distributed memory computing model

and eliminate the fact that cores within a node share same

memory space. Most methods succeed in reducing data

communication and increasing data independence among

parallel processes but suffer from load imbalance since their

load balancing strategy is heavily based on data

partitioning. As a result, they may not scale well in cases

like mining with small minsup which results in very large

number of frequent patterns (the smaller the minsup, the

larger the number of produced frequent patterns).

Pramudiono et al. [32] proposed a parallel shared nothing

FPM method based on FP-growth, a well-known sequential

FPM method. It partitions data equally among nodes to

construct local FP-trees and deploys a model similar to

MapReduce to map conditional pattern bases from a send

process to a receive process. The method utilizes a

characteristic called “path depth” to determine the size limit

of conditional pattern bases to balance the workload among

processes. Work balance is maintained by randomly

selecting a process for work distribution. This approach is

efficient when a good selection of path depth is made. The

load balancing strategy with random selection of process is
similar to one of load balance strategies in our proposed

method. Yu et al. presented a parallel FPM solution for a

50

homogeneous PC cluster [19] based on FP-growth [25]. It

uses a sampling technique for load balancing. However,

they used synthetic data for experiments and reported poor

performance. The method proposed by Tanbeer et al. [18],

also based on FP-growth, required a simple database scan

using a Parallel Pattern Tree. This study did not describe a
load balancing strategy.

For mining dense databases, Sucahyo et. al [33] proposed a

parallel method based on a sequential FPM method called

Eclat [34]. The database is partitioned into projections, one

for each item. Each projection, whose size depends on data

characteristics, is stored on the local disk of a node in the

cluster. Load balancing is done by distributing the

projections to nodes in a round-robin fashion. All nodes

follow the same order for deciding the destination node for

the conditioned pattern bases, so there is a potential for

blocking [32]. Similar to the method by Pramudiono [32],

O¨zkural et al. presented a parallel solution using vertical
data layout [27] and applied a top-down data partitioning

scheme in such a way that entire database could be divided

into parts with some replications so that they could be

mined independently. The data were partitioned to

minimize replications and maintain storage balance and

computational load. Similar to the FP-growth based

methods [18], [25], [32], the benefit of shared memory in

multi-core clusters was ignored. Nevertheless, for dense

data, they obtained good performance

Another well-known sequential method is Apriori [1]. DPA

(Distributed Parallel Apriori) proposed by Yu et al. [19], is
one of the few FPM methods that parallelize Apriori.

Because DPA uses a breadth first mining, it is easier to

maintain load balancing than in methods using depth first

mining strategy. However, this approach requires multiple

database scans and suffers from large synchronization

overhead because of multiple iterations of the mining loop.

Furthermore, Apriori usually has lower performance than

most other mining methods; its parallel version (DPA)

exhibits a similar poor performance level.

In summary, most existing methods supply their own

strategies for data partitioning and job scheduling to

balance workload and minimize communication among
parallel processes. However, none of them considers the

situation where load balance cannot be obtained via work

partitioning, particularly when mining with very small

minsup. This together with the three issues described in

previous section motivate the development of a new parallel

FPM method.

SDFEM ALGORITHM

Overview

SDFEM performs FPM by deploying a group of parallel

processes and mapping each process to a multi-core node.

Each process creates a group of shared memory threads,

mapping each thread to a core. Threads of the same process

collaborate to construct the process’s projected XFP-tree.

The XFP-tree is a new extension of the FP-tree [29]. The

XFP-tree is a prefix tree storing compact mining data in

memory. On each process, the XFP-tree is built from

transactions projected to a group of items assigned to its

process. The XFP-tree data structure uses shared memory
and allows for some node replication but keeps the total

count constant. This enhances parallelism among threads in

that construction of the XFP-tree requires minimal

synchronisation among threads and it is shared among the

shared memory threads. Each thread uses the XFP-tree to

generate its own frequent patterns [29], with each thread

applying both FP-tree and bit vectors. SDFEM finally

aggregates frequent patterns generated by all threads for the

final output. SDFEM combines features of both distributed

memory and shared memory programming models where

between-node communication is done using message

passing and within-node communication is done using
shared memory. Figure 1 illustrates the execution model of

SDFEM.

Figure 1: Overview execution model of SDFEM

SDFEM model can significantly reduce the overhead of

data communication and allow more efficient load

balancing. We develop a multi-level load balancing method

for SDFEM using four different techniques to increase the

CPU utilization and enhance performance. SDFEM

performs FPM in two stages: parallel projected XFP-tree

construction stage and parallel frequent pattern generation

stage.

…

Input Database

Output

…

…

Node 1

Process P1

…

Thread 1

Thread M

Memory

… Core 1 Core M

Projected XFP-tree

FP-trees

Bit Vectors

Node N

Process P
N

 …

Thread 1

Thread M

Memory

…

Core 1 Core M

Projected XFP-tree

FP-trees

Bit Vectors

51

Parallel Projected XFP-tree Construction Stage

The process constructs a local projected XFP-tree from its

data partition. In the first database scan, data is partitioned

equally into M*N parts and each part is assigned to a thread

where N is the number of processes and M is the number of

threads per process. The process and its threads collaborate

to compute the global count of all items by reducing the

local count lists into a global one. They then identify the

frequent items and sort them in frequency descending order.
Figure 2 illustrates this compute task for the sample dataset

in Table 1 with the execution model of 2 processes and 2

threads per process.

Figure 2: Computation of the global count by all processes (P =

process; T= thread)

SDFEM then distributes the frequent items to processes in

cyclic fashion [35]. For example, if we have two processes,
P1 and P2, and a list of frequent items a, b, c, d, e, then P1

will mine all frequent patterns ending with item a, c, e and

P2 will mine all frequent patterns ending with b, d. In the

second database scan, each process is responsible for the

entire database; each thread reads a 1/M of database and

filters transactions containing the assigned frequent items to

construct a local FP-tree (Figure 3) and connect them into

projected XFP-tree (Figure 4). This tree also ensures that

each process can work independently. The cyclic

scheduling balances the data size of each tree.

Figure 3: Construction of local FP-trees by each thread of P2

Figure 4: The project XFP-tree constructed by Process P2

Parallel Frequent Pattern Generation Stage

After the first stage, each process has a projected XFP-tree

in its memory. The process starts to independently generate

frequent patterns using a multi-strategy mining approach

inherited and improved from our prior sequential

algorithms whose efficiency on both sparse and dense data

has been shown in [29]. This new multi-strategy mining

process uses ParallelMinePattern, MineFPTree,

MineBitVector and LoadBalancing. The frequent pattern

generation model for each thread of a process is illustrated

in Figure 5.

Figure 5: The mining model of SDFEM by a thread (T) within a
process

a:4

b:4

d:1

a:3

Header

table
a:7
b:6
c:2
d:5

b:1

d:1

c:1

d:1 d:1

b:1

c:1

d:1

MineBitVectorr MineFPTree

ParallelMinePattern

Projected XFP-tree

local FP-tree local Bit Vectors

 TM

T1

recursively
mine

Size of the

frequent

 pattern base >Kij?

recursively
mine

Yes

No

…

LoadBalancing

Load Balancing
Data Buffer

52

ParallelMinePattern initializes the frequent pattern

generation and manages the work distribution among

parallel threads using dynamic job scheduling. Each thread

uses this task to obtain a frequent item  in the header table
of the shared projected XFP-tree. The thread invokes either

MineFPTree or MineBitVector to generate the frequent

patterns based on data characteristics [29].

MineFPTree is one of the two mining strategies in SDFEM.
It generates frequent patterns by concatenating the suffix

pattern of the previous step with each item  of the input

FP-tree. Then, it constructs a child FP-tree for every item 
using a data subset that is extracted from the input FP-tree

and consists of sets of frequent items co-occurring with the

suffix pattern. The new tree is then used as the input of this

recursive mining task. This mining approach has been

shown to perform well on sparse databases [36, 37, 38].

MineFPTree can switch to MineBitVector when it detects

that the current data subset is dense by using a Kij threshold

values (one for each thread and it is computed using the

method presented in [29]).

MineBitVector is the second mining strategy. It generates

frequent patterns by concatenating the suffix pattern with
each item of the input bit vector. It then joins pairs of bit

vectors using a logical AND operation and computes their

support using the weight vector to specify new frequent

patterns. The resulting bit vectors are used as the input of

MineBitVector to find longer frequent patterns. The mining

process continues in a recursive manner until all frequent

pattern are found. The efficiency of using the vertical data

format on dense data has been shown in [8, 34, 39, 40].

MineBitVector is distinguished from the previous works

because it uses a compact form of bit vectors where the

compactness is presented in a weight vector.

LoadBalancing is another advanced feature of SDFEM for
efficient deployment of FPM on a cluster environment

because the workload associated with each item or itemset

varies depending on the minsup input value. Hence, all

threads use LoadBalancing to maintain workload balance

during the mining process as described in more details in

the next section.

 MULTI-LEVEL LOAD BALANCING OF SDFEM

SDFEM is designed with two levels of parallelism: thread

parallelism on shared memory multicores, and process

parallelism on cluster nodes, which require minimizing

communication for scalability. Therefore, load balancing in

SDFEM also includes two levels: within-node load

balancing for threads and between-node load balancing for

processes. Balancing workload in a parallel task can be
done implicitly with job scheduling and explicitly with load

balancing techniques such as work sharing or work stealing.

To maximize workload balance, we apply four load

balancing techniques in SDFEM (Table 2). For simplicity,

we implement a single data structure called load balancing

data buffer (LBDB) used by LoadBalancing for both

within-node and between-node load balancing purposes.

Table 2: Load balancing techniques applied in SDFEM

Within-node

load balancing
Between-node load

balancing

Implicit techniques
Dynamic Job
Scheduling

Static Cyclic
Scheduling

Explicit techniques Work Sharing Work Stealing

Within-node Load Balancing

SDFEM applies dynamic job scheduling and work sharing

to maintain the workload balance and optimal CPU

utilization among the threads of the same process.

Dynamic job scheduling: threads of the same process

dynamically obtain the next available item from the header

table of the projected XFP-tree and complete mining all

frequent patterns ending with this item. In OpenMP, this is

implemented by simply defining a dynamic directive for the
parallel loop.

Work sharing: dynamic job scheduling is efficient. It

however does not ensure load balance for cases where

number of frequent items is considerably small, dense

databases for example. A load balancer is added to each

process; it maintains a load balancing data buffer holding

shared data subsets. Busy threads within a process share

their workload. Available threads seek additional work

from this buffer. Because this data structure is shared

among threads of the same process, all threads within a

process can easily update it by using critical section or lock

to ensure data integrity. Figure 6 illustrates the load
balancing using work sharing.

Figure 6: Within-node load balancing with work sharing

Projected
XFP-tree

Process Pi

ParallelMinePattern

LoadBalancing

Load Balancing

Data Buffer

…

Thread 1 Thread M

Data
subset

Data
subset

53

During the frequent pattern generation stage, threads

periodically check this data buffer via LoadBalancing. If it

is empty or if the number of data subsets is smaller than a

certain limit MaxLBDB, threads will add their newly

generated data subsets to the buffer, which are either FP-

tree or Bit Vectors depending on the mining strategy being
used (i.e. MineFPTree or BitVector). When a thread

completes mining its data, it increments its counter TC by

one where TC is a variable used to count number of threads

completing mining assigned by the dynamic job scheduler).

It then checks the data buffer to take a data subset and

recursively mines this data subset. If the buffer is empty,

the thread will wait until new data subsets are added, or

until process status changes to terminating. This load

balancing method ensures that threads of the same process

remain busy until they all complete generating frequent

patterns for the process’s data partition. To minimize

memory usage and the overhead of maintaining data buffer,
we keep the number of buffer entries as small as possible.

For example, in our experiments, the maximum number of

buffer entries was set to the total number of threads of all

processes.

Between-node Load Balancing

SDFEM applies static cyclic job scheduling and work

stealing techniques to balance workload among the

processes.

Cyclic job scheduling: due to the large amount of processed

data, dynamic job scheduling may result in huge

communication overhead and bottleneck. We apply static

job scheduling to distribute work among processes because

it is simple, has practically no overhead and does not
require communication and synchronization optimization.

In the first stage of projected XFP-tree construction after

the frequent items are found and sorted in frequency

descending order, they are distributed to processes in a

cyclic fashion as illustrated in Stage 1. Each process filters

database using the assigned items to construct XFP-tree.

Work stealing: in most cases when the number of frequent

items are large, cyclic job scheduling is good for initial

work partition among parallel processes. We apply work

stealing to maintain better load balance, especially for cases

where mining workload is associated with significantly

varied frequent items or the number of frequent patterns is
small. Based on work stealing techniques, idle processes

actively look for busy processes to request more work.

Since only idle processes attempt to communicate, the

amount of communication is reduced and the overhead is

well tolerated compared to idle time of processes without

work [21]. Both work sharing and work stealing use the

same data buffer. On starting the frequent pattern

generation, each process keeps a process status list whose

elements indicate the status of all processes (i.e. working: a

process is still generating frequent patterns from its pre-

scheduled data, balancing: a process completed its work

portion and is requesting more work from a remote process,

terminating: a process completed its work and there is no

working process to request for more work). A process’s

status is initialized as working. If a process Pk completes

generating all frequent patterns from its projected XFP-tree

(i.e. a balancing process) it will pick up a victim process Ph
among the working processes and sends a job request to Ph.

Figure 7 depicts the load balancing model with work

stealing between Pk and Ph.

Figure 7: Between-node load balancing with work stealing

Although work stealing technique requires communication

among processes, its overhead is always small because of

the following reasons. First, SDFEM employs the hybrid

programming model that create fewer parallel processes
(i.e. usually equal to the number of nodes in the cluster).

Because the number of processes involved in load

balancing is small and data communication is decentralized

due to work stealing, the overhead of load balancing is

much smaller than that of parallel programming with pure

message passing. Second, in SDFEM, only one thread, the

master thread, of each process participates in work stealing

while the other threads continue its mining work.

PERFORMANCE EVALUATION

Experimental Setup

Datasets: The five real datasets used for our experiments:

two sparse, one moderate and two dense databases are

obtained from the FIMI Repository [41], a well-known

repository for FPM. The database features are reported in

Table 3.

Table 3: Experimental datasets of SDFEM

Dataset Type
of

Items

Average

Length

of

Trans.

Chess Dense 76 37 3196

Pumsb Dense 2113 74 49046

Accidents Moderate 468 33.8 340183

Kosarak Sparse 41271 8.1 990002
Webdocs Sparse 52676657 177.2 1623346

Process P
k

ParallelMinePattern

 LoadBalancing

Load Balancing

Data Buffer

Process Ph
ParallelMinePattern

 LoadBalancing

Load Balancing
Data Buffer

Data Subsets

Job Request

Accept/Deny

54

Software: In our experiments, we use OpenMP and

OpenMPI to implement SDFEM; g++ (OpenMP) and

mpic++ (OpenMPI) for compilation.

Hardware: We use the cluster at http://pds.ucdenver.edu

consisting of several Altus 1702 machines where each node

is equipped with dual AMD Opteron 2427 processor,
2.2GHz, 24GB memory and 160 GB hard drive. The

interconnection among nodes is Infiniband. Benchmark

experiments of SDFEM with up to 120 cores (i.e. 10 nodes

of our cluster) were conducted. The operating system is

CentOS 5.3, a Linux-based distribution.

Execution Time

We demonstrate the performance of SDFEM by measuring

its execution time for various number of cores of the test

cluster on five datasets. The sequential test mode was done

on 1 core. The parallel test was done by running the

program on varying number of nodes from 1 to 10, each

node runs up to 12 cores, providing a range of 12 to 120

threads or cores. Experimental results of SDFEM with

varying number of cores are shown in Figure 8.

Figure 8: Running time of SDFEM (from 1 to 120 cores)

The results show significant reduction in execution time is

obtained for all test cases. In the experiments, SDFEM

reduces the mining time on Webdocs databases from 6460

seconds on 1 core to 130 seconds on 120 cores which saves

97.98% of the time required by sequential execution (i.e.

97.98% = (6460-130)/6460*100%). The time of SDFEM

on Kosarak database is cut down 98.4% (from 15234

seconds on 1 core to 238 seconds on 120 cores). Similarly,
the percentage of execution time savings for Chess, Pumsb

and Accidents are 97.79%, 98.08%, 97.95% respectively.

This performance improvement comes from sharing mining

workload for large number of cores and reducing the

amount of data that each parallel process/thread has to

handle. Performance gains of SDFEM is consistent for both

dense and sparse databases.

Speedup

To evaluate scalability of SDFEM to the size of cluster, we

compute its speed up by dividing the sequential time of

SDFEM by the parallel execution time (i.e. for 12, 24,

36,…120 cores) and present the results in Figure 9.

Figure 9: Speedup of SDFEM (from 1 to 120 cores)

We can see that for most cases, speed up increases when

the number of cores is increased. Speed up values of five

datasets on 120 cores are 45.4 (Chess), 52.1 (Pumsb), 64.8

1

10

100

1000

1 24 48 72 96 120R
u

n
n

in
g

ti
m

e
 (

se
co

n
d

s)

cores

Chess (dense,minsup=2.5%)

1

10

100

1000

10000

100000

1 24 48 72 96 120
cores

Pumsb(dense,minsup=3%)

1

10

100

1000

1 24 48 72 96 120R
u

n
n

in
g

ti
m

e
 (

se
co

n
d

s)

cores

Accidents(minsup=1%)

1

10

100

1000

10000

100000

1 24 48 72 96 120
cores

Kosarak(sparse,minsup=0.06)

1

10

100

1000

10000

1 24 48 72 96 120

R
u

n
n

in
g

ti
m

e
 (

se
co

n
d

s)

cores

Webdocs (sparse , minsup=4%)

0

20

40

60

80

100

120

1 24 48 72 96 120

S
p
ee

d
u

p

cores

Chess (minsup=2.5%)

0

20

40

60

80

100

120

1 24 48 72 96 120

S
p
ee

d
u

p

cores

Pumsb (minsup=30%)

0

20

40

60

80

100

120

1 24 48 72 96 120

S
p
ee

d
u

p

cores

Accidents (minsup=1%)

0

20

40

60

80

100

120

1 24 48 72 96 120

S
p
ee

d
u

p

cores

Kosarak (minsup=0.06%)

0

20

40

60

80

100

120

1 24 48 72 96 120

S
p
ee

d
u

p

cores

Webdocs (minsup=4%)

55

(Kosarak), 48.7 (Accidents), 49.6 (Webdocs). Many factors

limit scalability of most parallel FPM methods like

synchronization, load balancing and data communication

overheads or limitations of test hardware like serial I/O. It

is important to note that, as the number of nodes (multiples

of 12 in plots of Figure 9) is increased, higher speedups are
obtained which shows SDFEM scales well for lager

machines.

Impact of Hybrid MPI-OpenMP Programming Model

Application of hybrid MPI-OpenMP programming model is

an important feature of SDFEM, distinguishing it from

related work. We study the impact of this programming

model in comparison with the traditional pure MPI model.

For this purpose, SDFEM has been benchmarked using 5

compute nodes with 60 cores in total in two scenarios:

Scenario 1- 1 process per core and total processes = 60

Scenario 2- 12 threads per process, 1 process per node

and total threads = 60

In Scenario 1, SDFEM performs exactly like a traditional

MPI program. In Scenario 2, SDFEM applies the hybrid
programming model presented in Section 3. The

comparison results in Table 4 shows clear evidence that

using hybrid model can significantly improve the

performance. Compared to pure MPI, the hybrid mode with

12 threads per process enhances from 78.6% up to 329.5%

of mining performance. For Kosarak, SDFEM with the

hybrid model runs much faster than its pure MPI version

(474 seconds vs. 2036 seconds).

Table 4: Time comparision of pure MPI vs. hybrid MPI-

OpenMP (60 cores)

Datasets MinSup

Scenario 1

Pure MPI

Scenario 2

Hybrid

Performance

Improvement

(1) (sec.) (2) (sec.)
(4)=

((2)-(1))*100/(2)

Chess 2.50% 42 11 281.8%

Pumsb 30% 128 68 88.2%

Accidents 1% 25 14 78.6%

Kosarak 0.06% 2036 474 329.5%

Webdocs 4% 436 220 98.2%

Impact of Different Load Balancing Techniques

Another important factor impacting FPM performance is

load balancing. We evaluate the efficiency of the four load

balancing techniques applied in SDFEM by implementing 4

different versions of SDFEM where each integrates a

combination of different techniques as listed in Table 5 and

benchmarking them using 120 cores (12 threads/cores per

process, 1 process per nodes). In Table 5, the underlined
values indicate load-balancing techniques applied in

SDFEM. All load balancing techniques are applied in

SDFEM-V4 while fewer are used in the others: SDFEM-V1

(1 technique), SDFEM-V2 (2 techniques) and SDFEM-V3

(3 techniques). The test results presented in Table 6 show

that SDFEM-V4 runs much faster the other three versions,

showing clearly the importance of load balancing

techniques. For example, for Kosarak dataset, SDFEM_V4
runs 8.7 times faster than SDFEM_V1 (8.7=2153/248), 8.1

times faster than SDFEM_V2 (8.1=2020/248), and 1.2

times faster than SDFEM_V3 (1.2=304/248).

Table 5: Four versions of SDFEM with different load balancing
techniques

Techniques SDFEM-V1 SDFEM-V2 SDFEM-V3 SDFEM-V4

Within-node

job scheduling
Static (cyclic) Dynamic Dynamic Dynamic

Work Sharing N/A N/A Yes Yes

Between-node

job scheduling
Static (cyclic) Static (cyclic) Static (cyclic) Static (cyclic)

Work Stealing N/A N/A N/A Yes

Table 6: Running time of four versions of SDFEM

Datasets MinSup
SDFEM-V1

(sec.)
SDFEM-V2

(sec.)
SDFEM-V3

(sec.)
SDFEM-V4

(sec.)

Chess 2.5 % 42.2 42.3 7.5 5.2

Pumsb 30 % 3153 3152 341 252

Accidents 1 % 44 27 9.7 8.1

Kosarak 0.06 % 2153 2020 304 248

Webdocs 4 % 637 316 130 129

CONCLUSION

We present SDFEM, a novel parallel FPM for multi-core

clusters, as a high performance FPM solution for large-

scale applications. SDFEM has three main features which
have not been investigated by prior parallel FPM work.

They include (1) use of hybrid programming model to

leverage benefits of shared memory and enhance the

mining performance; (2) application of multiple load

balancing techniques to achieve high performance and

scalability; and (3) utilization of data characteristics-based

mining approach that we developed to perform efficiently

on different types of data. Our performance evaluation has

shown that in our test cases, SDFEM results in savings of

97.79% - 98.4 % compared to sequential time. SDFEM on

120 cores of our cluster runs 45.4 – 64.8 times faster than
its sequential version for the test datasets. The execution

time of SDFEM are over the complete program execution

and includes I/O time and the cost of performing multiple

reduction steps and balancing workload.

56

REFERENCES

1. Agrawal, R. and Srikant, R. Fast Algorithms For

Mining Association Rules In Large Databases. In Proc.

20th International Conference on Very Large Data

Bases (1994), 487-499.

2. Brin, S., Motwani, R. and Silverstein, C. Beyond

Market Baskets: Generalizing Association Rules To

Correlations. In Proc. the 1997 ACM SIGMOD

international conference on Management of data

(1997), 265-276.

3. Silverstein, C., Brin, S., Motwani, R. and Ullman, J.

Scalable Techniques for Mining Causal Structures.

Data Mining and Knowledge Discovery (2000), vol. 4,

no. 2-3, 163-192.

4. Agrawal, R. and Srikant, R. Mining Sequential

Patterns. In Proc. the Eleventh International

Conference on Data Engineering (1995), 3-14.

5. Mannila, H., Toivonen, H. and Verkamo, A. Inkeri.

Discovery of Frequent Episodes in Event Sequences.

Data Mining and Knowledge Discovery (1997), vol. 1,

no. 3, 259-289.

6. Han, J., Dong, G. and Yin, Y. Efficient Mining of

Partial Periodic Patterns in Time Series Database. In

Proc. the 15th International Conference on Data

Engineering (1999), 106-115.

7. Han, J., Cheng, H., Xin, D. and Yan, X. Frequent

Pattern Mining: Current Status And Future Directions.

Data Mining and Knowledge Discovery (2007), vol.

15, no. 1, 55-86.

8. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J. and

Yiu, T. MAFIA: A Maximal Frequent Itemset

Algorithm. IEEE Transactions on Knowledge and Data

Engineering (2005), vol. 17, no. 11, 1490-1504.

9. Chorley, M. J. and Walker, D. W. Performance

Analysis of a Hybrid MPI/OpenMP Application on

Multi-core Clusters. Journal of Computational Science

(2010), vol. 1, no. 3, 168-174.

10. Rabenseifner,R., Hager, G. and Jost, G. Hybrid

MPI/OpenMP Parallel Programming on Clusters of

Multi-Core SMP Nodes. in Proc. the 2009 17th

Euromicro International Conference on Parallel,

Distributed and Network-based Processing (2009),

427-436.

11. He, Y. and Ding, C. H. MPI and OpenMP Paradigms

on Cluster of SMP Architectures: the Vacancy

Tracking Algorithm for Multi-Dimensional Array

Transposition. Supercomputing, ACM/IEEE 2002

Conference (2002), 1-14.

12. Wu, X. and Taylor, V. Performance Characteristics of

Hybrid MPI/OpenMP Implementations of NAS

Parallel Benchmarks SP and BT on Large-scale

Multicore Supercomputers. SIGMETRICS Perform.

Eval. Rev. (2011), vol. 38, no. 4, 56-62.
13. Hager, G., Jost, G. and Rabenseifner, R.

Communication Characteristics And Hybrid

MPI/OpenMP Parallel Programming On Clusters Of

Multi-Core SMP Nodes. in Proc. Cray User Group

Conference (2009), p.5455.

14. Liu, L., Li, E., Zhang, Y. and Tang, Z. Optimization of

Frequent Itemset Mining on Multiple-Core Processor.

in Proc. the 33rd international conference on Very

large data bases (2007), 1275-1285.

15. Zaki, M. Parallel and Distributed Association Mining:

A Survey. IEEE Concurrency (1999), vol. 7, no. 4, 14-

25.

16. Garg, R. and Mishra, P. K. Some Observations of

Sequential, Parallel and Distributed Association Rule

Mining Algorithms. in Proc. the 2009 International
Conference on Computer and Automation Engineering

(2009), 336-342.

17. Moonesinghe, H. D. K., Chung, M. and Tan, P. Fast

Parallel Mining of Frequent Itemsets. in Michigan

State University.

18. Tanbeer, S. K., Ahmed, C. F. and Jeong, B.-S. Parallel

and Distributed Frequent Pattern Mining in Large

Databases. in Proc. the 2009 11th IEEE International

Conference on High Performance Computing and

Communications (2009),407-414.

19. Yu, K.-M., Zhou, J., Hong, T.-P., and Zhou, J.-L. A

Load-Balanced Distributed Parallel Mining Algorithm.

Expert Systems with Applications (2010), vol. 37, no. 3,

2459-2464.

20. El-hajj, M. and Zaïane, O. R. Parallel Leap: Large-

scale Maximal Pattern Mining In A Distributed

Environment. in Proc. 12th International Conference

on Parallel and Distributed Systems (2006).

21. Dinan, J., Olivier, S., Sabin, Prins, G. J., Sadayappan,

P., and Tseng, C.-W. Dynamic Load Balancing of

Unbalanced Computations Using Message Passing.

Parallel and Distributed Processing Symposium,

International (2007), vol. 0, p. 391.

22. Yu, K.-M., Zhou, J. and Hsiao, W. Load Balancing

Approach Parallel Algorithm for Frequent Pattern

Mining. Parallel Computing Technologies (2007), vol.

4671, V. Malyshkin, Ed., Springer Berlin Heidelberg,

623-631.

23. Manaskasemsak, B., Benjamas, N., Rungsawang, A.,

Surarerks, A. and Uthayopas, P. Parallel Association

Rule Mining Based On FI-Growth Algorithm. in Proc.

2007 International Conference on Parallel and

Distributed Systems (2007), 1-8.

24. Ramaiah, B. Janaki, Reddy, A. Rama Mohan, and

57

Kumari, M. Kamala. Parallel Privacy Preserving

Association Rule Mining on PC Clusters. IEEE

International Advance Computing Conference (2009),

1538-1542.

25. Yu, K.-M., and Zhou, J. Parallel TID-based Frequent

Pattern Mining Algorithm on a PC Cluster and Grid

Computing System. Expert Syst. Appl. (2010), vol. 37,

no. 3, 2486-2494.

26. Tseng, F. S., Kuo, Y.-H., and Huang, Y.-M. Toward
Boosting Distributed Association Rule Mining By Data

De-clustering. Information Sciences (2010), vol. 180,

no. 22, 4263-4289.

27. Ozkural, E., Ucar, B., and Aykanat, C. Parallel

Frequent Item Set Mining with Selective Item

Replication. IEEE Transactions on Parallel and
Distributed Systems (2011), vol. 22, no. 10, 1632-1640.

28. Vu, L. and Alaghband, G. A Fast Algorithm

Combining FP-Tree and TID-List for Frequent Pattern

Mining. In Proc. the 2011 International Conference on

Information and Knowledge Engineering (2011).

29. Vu, L. and Alaghband, G. Mining Frequent Patterns

Based on Data Characteristics. In Proc. the 2012

International Conference on Information and

Knowledge Engineering (2012).

30. Vu, L. and Alaghband, G. An Efficient Approach for

Mining Association Rules from Sparse and Dense

Databases. In Proc. the 2014 International Conference

on Information and Knowledge Management, IEEE,,

(2014).

31. Vu, L. and Alaghband, G. Efficient Algorithms for

Mining Frequent Patterns from Sparse and Dense

Databases. Intelligent Systems (2014).

32. Pramudiono, I., and Kitsuregawa, M. Parallel FP-

growth on PC Cluster. in Proc. the 7th Pacific-Asia

Conference on Advances in Knowledge Discovery and

Data Mining (2003).

33. Sucahyo, Y., Gopalan, R. and Rudra, A. Efficiently

Mining Frequent Patterns from Dense Datasets Using a

Cluster of Computers. in AI 2003: Advances in

Artificial Intelligence, vol. 2903, T. Gedeon and L.

Fung, Eds., Springer Berlin Heidelberg,(2003), 233-

244.

34. Zaki, M., Parthasarathy, S., Ogihara, M. and Li, W.

New Algorithms for Fast Discovery of Association

Rules. in Proc. the 3rd International conference on

Knowledge Discovery and Data Mining (1997).

35. Jordan, L. E. and Alaghband, G. Fundamentals of

Parallel Processing, Prentice Hall Professional

Technical Reference (2002).

36. Han, J. Pei, J. and Yin, Y. Mining Frequent Patterns

Without Candidate Generation. in Proc. the 2000 ACM

SIGMOD international conference on Management of

data (2000).

37. Grahne, G. and Zhu, J. Efficiently Using Prefix-trees in

Mining Frequent Itemsets. In Proc. the 2003 Workshop

on Frequent Pattern Mining Implementations (2003).

38. Racz, B. nonordfp: An FP-Growth Variation without

Rebuilding the FP-Tree. In Proc. the 2004 Workshop

on Frequent Pattern Mining Implementations (2004).

39. Shporer, S. AIM2: Improved Implementation of AIM,"

in Proc. the 2004 Workshop on Frequent Itemset

Mining Implementations (2004).

40. Schmidt-Thieme, L. Algorithmic Features of Eclat. In

Proceedings of the 2004 Workshop on Frequent

Itemset Mining Implementations (2004).

41. Frequent Itemset Mining Implementations Repository.

In Workshop on Frequent Itemset Mining

Implementation, 2003-2004.

58

