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ABSTRACT 

In this paper, we present a new parallel method named 

SDFEM that enables frequent pattern mining (FPM) on 

cluster with multiple multi-core compute nodes to provide 

high performance. SDFEM is distinguished from previous 
parallel FPM works due to incorporating three advanced 

features to provide high mining performance for large-scale 

data analytic applications. First, SDFEM combines both 

shared memory and distributed memory computational 

models to leverage benefits of shared memory within a 

node in cluster. Second, it employs a multi-strategy load 

balancing approach to address the most challenging issue of 

parallel FPM to balance the mining workload among all 

cores of the cluster. Finally, its self-adaptive mining 

solution with the capability of dynamically adjusting to the 

characteristics of the database to perform efficiently on 
different data types either sparse or dense. For performance 

evaluation, we implement SDFEM using a hybrid model of 

OpenMP and MPI in which OpenMP is for the shared 

memory model and MPI is for message passing. SDFEM 

has been tested on a cluster of multiple 12-core shared 

memory compute nodes. Our experimental results on real 

databases show that performance of SDFEM is up to 

329.5% faster than the parallel FPM approach that uses 

only distributed memory model with message passing (i.e. 

using pure MPI). In addition, SDFEM can achieve up to 

45.4 – 64.8 speedup on 120 cores (i.e. 10 compute nodes 

and 12 cores per node). 

Author Keywords 
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INTRODUCTION 

Frequent pattern mining (FPM) is a crucial component of 

data mining used to find various types of relationships 

among variables in large databases such as associations [1], 

correlations  [2], causality  [3], sequential patterns  [4], 
episodes  [5] and partial periodicity  [6]. It has many 

practical applications such as market analysis, biomedical 

and computational biology, web mining, decision support, 

telecommunications alarm diagnosis and prediction, and 

network intrusion detection  [7, 8]. With growth of big data 

in numerous fields such as business, social media, life 

science, medicine, etc., applying high performance 

computing (HPC) using large cluster computers for FPM 

are essential. These machines provide massive computing 

and memory resources making them ideal for big data 

analysis. Development of high performance methods for 
FPM requires platform-specific design to efficiently 

leverage the specific platform's powerful resources. 

Motivation 

Our study of parallelizing FPM for large-scale data mining 

applications on multi-core clusters addresses three critical 

problems that have not been thoroughly investigated in 

previous studies. Solving these problems are challenging 

because parallel FPM usually involves multiple reduction 

steps, large synchronization cost and unpredictable 

workload for load balancing. 

First, most current HPC machines are clusters consisting of 

many multi-core nodes whose memory is shared among 

cores within a node but is not directly accessible from other 

nodes. Recent studies have shown that a hybrid parallel 
programming method that applies both shared and 

distributed memory programming models for cluster 

architecture delivers better performance than parallel 

methods using only distributed memory model [9–13]. 

However, most FPM methods designed for cluster use 

“shared nothing” parallel model; communication among 

parallel processes is, therefore, done by message passing [8, 

14–27]. As a result, benefits of shared memory available 

within each node are ignored. 
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Second, load balancing is highly critical for parallel FPM in 

cluster computing environment. FPM incurs high message 

passing communication cost due to large variation and 

amount of data communications; making load balancing a 

great challenge. Irregular and imbalanced computation 

loads may result in sharp degradation of the overall 
performance [19]. An efficient workload balancing solution 

is critical for FPM scalability on cluster architectures. 

Finally, in our prior study, we have developed a sequential 

frequent pattern mining method that can dynamically adjust 

to the characteristics of the database at runtime as the 

pattern mining proceeds and outperforms most well-known 

sequential methods both on sparse and dense databases [28–

31]. Applying this mining approach for parallel FPM is 

essential to provide high performance for this mining task 

on sparse and dense data. 

Contribution 

We present a novel parallel FPM algorithm, SDFEM, to 

address the above-mentioned issues. SDFEM efficiently 

adapts to the architecture of multi-core clusters and 
maximizes utilization of the available computing resources. 

SDFEM is distinguished from prior work due to the 

following features: (1) exploits the use of shared memory 

within a node of the cluster, (2) applies multi-level load 

balancing and (3) uses a self-adaptive mining approach 

based on data characteristics. Highlights of our 

contributions include: 

1) SDFEM algorithm, a hybrid parallel method utilizing 

both shared and distributed memory programming 

models that performs communication within-node via 

shared memory and between-node via message 
passing. Using shared memory inter-process 

communication cuts down the communication cost 

which is quite high for message passing 

communication among parallel processes and reduces 

load balancing overhead. SDFEM also employs the 

mining based on data characteristics approach for faster 

FPM performance on both sparse and dense data. 

2) A multi-level load balancing approach that uses four 

different strategies: dynamic job scheduling and work 

sharing for load balancing among cores within a node, 

and cyclic job scheduling and work stealing for load 

balancing among nodes in the cluster. This load 
balancing method is designed based on the data 

communication features of the hybrid mining model to 

minimize the overhead of the load balancer as well as 

to enhance the scalability of FPM. 

3) Implementation of the algorithms using MPI (message 

passing interface) and OpenMP (shared memory), and 

performance evaluation using real-world datasets to 

demonstrate the efficiency of the proposed method.  

BACKGROUND 

Problem Statement 

The FPM problem is defined as follows: Let I = {i1, i2,. . . , 

in} be the set of all distinct items in the transactional 

database D. The support of an itemset α (a set of items) is 

the percentage of transactions containing α in D. A k-

itemset α, which consists of k items from I, is frequent if α’s 

support is larger or equal to minsup, where minsup is a 

user-specified minimum support threshold. Given a 

database D and a minsup, FPM searches for the complete 

set of frequent itemsets in D. For example, given the 
database in Table 1 and minsup=20%, the frequent 1-

itemsets include a, b, c, d and e while f is infrequent 

because the support of f is only 11%.  Similarly, ab, ac, ad, 

ae, bc, bd, cd, ce, de are frequent 2-itemsets and abc, abd, 

ace, ade are the frequent 3-itemsets. 

Table 1. Sample dataset with minsup = 20% 

Transaction ID Items Sorted Frequent Items 

1 b,d,a a,b,d 
2 c,b,d b,c,d 

3 c,d,a,e a,c,d,e 
4 d,a,e a,d,e 
5 c,b,a a,b,c 
6 c,b,a a,b,c 
7 f  
8 b,d,a a,b,d 
9 c,b,a,e,f a,b,c,e 

Related Works 

A number of parallel methods have been developed for 

distributed memory systems. However, these methods do 
not take advantage of the shared memory within a node 

because they apply distributed memory computing model 

and eliminate the fact that cores within a node share same 

memory space. Most methods succeed in reducing data 

communication and increasing data independence among 

parallel processes but suffer from load imbalance since their 

load balancing strategy is heavily based on data 

partitioning. As a result, they may not scale well in cases 

like mining with small minsup which results in very large 

number of frequent patterns (the smaller the minsup, the 

larger the number of produced frequent patterns). 

Pramudiono et al.  [32] proposed a parallel shared nothing 

FPM method based on FP-growth, a well-known sequential 

FPM method. It partitions data equally among nodes to 

construct local FP-trees and deploys a model similar to 

MapReduce to map conditional pattern bases from a send 

process to a receive process. The method utilizes a 

characteristic called “path depth” to determine the size limit 

of conditional pattern bases to balance the workload among 

processes. Work balance is maintained by randomly 

selecting a process for work distribution. This approach is 

efficient when a good selection of path depth is made. The 

load balancing strategy with random selection of process is 
similar to one of load balance strategies in our proposed 

method. Yu et al. presented a parallel FPM solution for a 
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homogeneous PC cluster  [19] based on FP-growth  [25]. It 

uses a sampling technique for load balancing. However, 

they used synthetic data for experiments and reported poor 

performance.  The method proposed by Tanbeer et al. [18], 

also based on FP-growth, required a simple database scan 

using a Parallel Pattern Tree.  This study did not describe a 
load balancing strategy. 

For mining dense databases, Sucahyo et. al  [33] proposed a 

parallel method based on a sequential FPM method called 

Eclat [34].  The database is partitioned into projections, one 

for each item. Each projection, whose size depends on data 

characteristics, is stored on the local disk of a node in the 

cluster. Load balancing is done by distributing the 

projections to nodes in a round-robin fashion. All nodes 

follow the same order for deciding the destination node for 

the conditioned pattern bases, so there is a potential for 

blocking  [32]. Similar to the method by Pramudiono  [32], 

O¨zkural et al. presented a parallel solution using vertical 
data layout  [27] and applied a top-down data partitioning 

scheme in such a way that entire database could be divided 

into parts with some replications so that they could be 

mined independently. The data were partitioned to 

minimize replications and maintain storage balance and 

computational load. Similar to the FP-growth based 

methods  [18],  [25],  [32], the benefit of shared memory in 

multi-core clusters was ignored. Nevertheless, for dense 

data, they obtained good performance 

Another well-known sequential method is Apriori [1]. DPA 

(Distributed Parallel Apriori) proposed by Yu et al.  [19], is 
one of the few FPM methods that parallelize Apriori. 

Because DPA uses a breadth first mining, it is easier to 

maintain load balancing than in methods using depth first 

mining strategy. However, this approach requires multiple 

database scans and suffers from large synchronization 

overhead because of multiple iterations of the mining loop. 

Furthermore, Apriori usually has lower performance than 

most other mining methods; its parallel version (DPA) 

exhibits a similar poor performance level. 

In summary, most existing methods supply their own 

strategies for data partitioning and job scheduling to 

balance workload and minimize communication among 
parallel processes. However, none of them considers the 

situation where load balance cannot be obtained via work 

partitioning, particularly when mining with very small 

minsup. This together with the three issues described in 

previous section motivate the development of a new parallel 

FPM method. 

SDFEM ALGORITHM 

Overview 

SDFEM performs FPM by deploying a group of parallel 

processes and mapping each process to a multi-core node. 

Each process creates a group of shared memory threads, 

mapping each thread to a core. Threads of the same process 

collaborate to construct the process’s projected XFP-tree. 

The XFP-tree is a new extension of the FP-tree  [29].  The 

XFP-tree is a prefix tree storing compact mining data in 

memory.  On each process, the XFP-tree is built from 

transactions projected to a group of items assigned to its 

process.  The XFP-tree data structure uses shared memory 
and allows for some node replication but keeps the total 

count constant. This enhances parallelism among threads in 

that construction of the XFP-tree requires minimal 

synchronisation among threads and it is shared among the 

shared memory threads. Each thread uses the XFP-tree to 

generate its own frequent patterns  [29], with each thread 

applying both FP-tree and bit vectors. SDFEM finally 

aggregates frequent patterns generated by all threads for the 

final output. SDFEM combines features of both distributed 

memory and shared memory programming models where 

between-node communication is done using message 

passing and within-node communication is done using 
shared memory. Figure 1 illustrates the execution model of 

SDFEM.  

 

Figure 1: Overview execution model of SDFEM 

SDFEM model can significantly reduce the overhead of 

data communication and allow more efficient load 

balancing. We develop a multi-level load balancing method 

for SDFEM using four different techniques to increase the 

CPU utilization and enhance performance. SDFEM 

performs FPM in two stages: parallel projected XFP-tree 

construction stage and parallel frequent pattern generation 

stage. 
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Parallel Projected XFP-tree Construction Stage 

The process constructs a local projected XFP-tree from its 

data partition. In the first database scan, data is partitioned 

equally into M*N parts and each part is assigned to a thread 

where N is the number of processes and M is the number of 

threads per process. The process and its threads collaborate 

to compute the global count of all items by reducing the 

local count lists into a global one. They then identify the 

frequent items and sort them in frequency descending order. 
Figure 2 illustrates this compute task for the sample dataset 

in Table 1 with the execution model of 2 processes and 2 

threads per process. 

 

Figure 2: Computation of the global count by all processes (P = 

process; T= thread) 

SDFEM then distributes the frequent items to processes in 

cyclic fashion [35]. For example, if we have two processes, 
P1 and P2, and a list of frequent items a, b, c, d, e, then P1 

will mine all frequent patterns ending with item a, c, e and 

P2 will mine all frequent patterns ending with b, d. In the 

second database scan, each process is responsible for the 

entire database; each thread reads a 1/M of database and 

filters transactions containing the assigned frequent items to 

construct a local FP-tree (Figure 3) and connect them into 

projected XFP-tree  (Figure 4). This tree also ensures that 

each process can work independently. The cyclic 

scheduling balances the data size of each tree.  

 

Figure 3: Construction of local FP-trees by each thread of P2 

 

Figure 4: The project XFP-tree constructed by Process P2 

Parallel Frequent Pattern Generation Stage 

After the first stage, each process has a projected XFP-tree 

in its memory.  The process starts to independently generate 

frequent patterns using a multi-strategy mining approach 

inherited and improved from our prior sequential 

algorithms whose efficiency on both sparse and dense data 

has been shown in  [29]. This new multi-strategy mining 

process uses ParallelMinePattern, MineFPTree, 

MineBitVector and LoadBalancing.  The frequent pattern 

generation model for each thread of a process is illustrated 

in Figure 5. 

 

Figure 5: The mining model of SDFEM by a thread (T) within a 
process 
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ParallelMinePattern initializes the frequent pattern 

generation and manages the work distribution among 

parallel threads using dynamic job scheduling. Each thread 

uses this task to obtain a frequent item  in the header table 
of the shared projected XFP-tree. The thread invokes either 

MineFPTree or MineBitVector to generate the frequent 

patterns based on data characteristics [29]. 

MineFPTree is one of the two mining strategies in SDFEM. 
It generates frequent patterns by concatenating the suffix 

pattern of the previous step with each item  of the input 

FP-tree. Then, it constructs a child FP-tree for every item   
using a data subset that is extracted from the input FP-tree 

and consists of sets of frequent items co-occurring with the 

suffix pattern. The new tree is then used as the input of this 

recursive mining task. This mining approach has been 

shown to perform well on sparse databases [36, 37, 38]. 

MineFPTree can switch to MineBitVector when it detects 

that the current data subset is dense by using a Kij threshold 

values (one for each thread and it is computed using the 

method presented in  [29]). 

MineBitVector is the second mining strategy. It generates 

frequent patterns by concatenating the suffix pattern with 
each item of the input bit vector. It then joins pairs of bit 

vectors using a logical AND operation and computes their 

support using the weight vector to specify new frequent 

patterns. The resulting bit vectors are used as the input of 

MineBitVector to find longer frequent patterns. The mining 

process continues in a recursive manner until all frequent 

pattern are found. The efficiency of using the vertical data 

format on dense data has been shown in [8, 34, 39, 40]. 

MineBitVector is distinguished from the previous works 

because it uses a compact form of bit vectors where the 

compactness is presented in a weight vector. 

LoadBalancing is another advanced feature of SDFEM for 
efficient deployment of FPM on a cluster environment 

because the workload associated with each item or itemset 

varies depending on the minsup input value. Hence, all 

threads use LoadBalancing to maintain workload balance 

during the mining process as described in more details in 

the next section. 

 MULTI-LEVEL LOAD BALANCING OF SDFEM 

SDFEM is designed with two levels of parallelism: thread 

parallelism on shared memory multicores, and process 

parallelism on cluster nodes, which require minimizing 

communication for scalability. Therefore, load balancing in 

SDFEM also includes two levels: within-node load 

balancing for threads and between-node load balancing for 

processes. Balancing workload in a parallel task can be 
done implicitly with job scheduling and explicitly with load 

balancing techniques such as work sharing or work stealing. 

To maximize workload balance, we apply four load 

balancing techniques in SDFEM (Table 2). For simplicity, 

we implement a single data structure called load balancing 

data buffer (LBDB) used by LoadBalancing for both 

within-node and between-node load balancing purposes. 

Table 2: Load balancing techniques applied in SDFEM 

  
Within-node  

load balancing 
Between-node load 

balancing 

Implicit techniques 
Dynamic Job 
Scheduling 

Static Cyclic 
Scheduling 

Explicit techniques Work Sharing Work Stealing 

Within-node Load Balancing 

SDFEM applies dynamic job scheduling and work sharing 

to maintain the workload balance and optimal CPU 

utilization among the threads of the same process. 

Dynamic job scheduling: threads of the same process 

dynamically obtain the next available item from the header 

table of the projected XFP-tree and complete mining all 

frequent patterns ending with this item. In OpenMP, this is 

implemented by simply defining a dynamic directive for the 
parallel loop. 

Work sharing: dynamic job scheduling is efficient. It 

however does not ensure load balance for cases where 

number of frequent items is considerably small, dense 

databases for example. A load balancer is added to each 

process; it maintains a load balancing data buffer holding 

shared data subsets. Busy threads within a process share 

their workload. Available threads seek additional work 

from this buffer. Because this data structure is shared 

among threads of the same process, all threads within a 

process can easily update it by using critical section or lock 

to ensure data integrity. Figure 6 illustrates the load 
balancing using work sharing. 

 

Figure 6: Within-node load balancing with work sharing 
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During the frequent pattern generation stage, threads 

periodically check this data buffer via LoadBalancing. If it 

is empty or if the number of data subsets is smaller than a 

certain limit MaxLBDB, threads will add their newly 

generated data subsets to the buffer, which are either FP-

tree or Bit Vectors depending on the mining strategy being 
used (i.e. MineFPTree or BitVector). When a thread 

completes mining its data, it increments its counter TC by 

one where TC is a variable used to count number of threads 

completing mining assigned by the dynamic job scheduler). 

It then checks the data buffer to take a data subset and 

recursively mines this data subset. If the buffer is empty, 

the thread will wait until new data subsets are added, or 

until process status changes to terminating. This load 

balancing method ensures that threads of the same process 

remain busy until they all complete generating frequent 

patterns for the process’s data partition.  To minimize 

memory usage and the overhead of maintaining data buffer, 
we keep the number of buffer entries as small as possible. 

For example, in our experiments, the maximum number of 

buffer entries was set to the total number of threads of all 

processes. 

Between-node Load Balancing 

SDFEM applies static cyclic job scheduling and work 

stealing techniques to balance workload among the 

processes. 

Cyclic job scheduling: due to the large amount of processed 

data, dynamic job scheduling may result in huge 

communication overhead and bottleneck. We apply static 

job scheduling to distribute work among processes because 

it is simple, has practically no overhead and does not 
require communication and synchronization optimization. 

In the first stage of projected XFP-tree construction after 

the frequent items are found and sorted in frequency 

descending order, they are distributed to processes in a 

cyclic fashion as illustrated in Stage 1. Each process filters 

database using the assigned items to construct XFP-tree. 

Work stealing: in most cases when the number of frequent 

items are large, cyclic job scheduling is good for initial 

work partition among parallel processes.  We apply work 

stealing to maintain better load balance, especially for cases 

where mining workload is associated with significantly 

varied frequent items or the number of frequent patterns is 
small. Based on work stealing techniques, idle processes 

actively look for busy processes to request more work. 

Since only idle processes attempt to communicate, the 

amount of communication is reduced and the overhead is 

well tolerated compared to idle time of processes without 

work  [21]. Both work sharing and work stealing use the 

same data buffer. On starting the frequent pattern 

generation, each process keeps a process status list whose 

elements indicate the status of all processes (i.e. working: a 

process is still generating frequent patterns from its pre-

scheduled data, balancing: a process completed its work 

portion and is requesting more work from a remote process, 

terminating: a process completed its work and there is no 

working process to request for more work). A process’s 

status is initialized as working. If a process Pk completes 

generating all frequent patterns from its projected XFP-tree 

(i.e. a balancing process) it will pick up a victim process Ph 
among the working processes and sends a job request to Ph. 

Figure 7 depicts the load balancing model with work 

stealing between Pk and Ph. 

 

Figure 7: Between-node load balancing with work stealing 

Although work stealing technique requires communication 

among processes, its overhead is always small because of 

the following reasons. First, SDFEM employs the hybrid 

programming model that create fewer parallel processes 
(i.e. usually equal to the number of nodes in the cluster). 

Because the number of processes involved in load 

balancing is small and data communication is decentralized 

due to work stealing, the overhead of load balancing is 

much smaller than that of parallel programming with pure 

message passing. Second, in SDFEM, only one thread, the 

master thread, of each process participates in work stealing 

while the other threads continue its mining work. 

PERFORMANCE EVALUATION 

Experimental Setup 

Datasets: The five real datasets used for our experiments: 

two sparse, one moderate and two dense databases are 

obtained from the FIMI Repository [41], a well-known 

repository for FPM. The database features are reported in 

Table 3. 

Table 3: Experimental datasets of SDFEM 

Dataset Type 
# of  

Items 

Average  

Length 

# of  

Trans. 

Chess Dense 76 37 3196 

Pumsb Dense 2113 74 49046 

Accidents Moderate 468 33.8 340183 

Kosarak Sparse 41271 8.1 990002 
Webdocs Sparse 52676657 177.2 1623346 
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Software: In our experiments, we use OpenMP and 

OpenMPI to implement SDFEM; g++ (OpenMP) and 

mpic++ (OpenMPI) for compilation.  

Hardware: We use the cluster at http://pds.ucdenver.edu 

consisting of several Altus 1702 machines where each node 

is equipped with dual AMD Opteron 2427 processor, 
2.2GHz, 24GB memory and 160 GB hard drive. The 

interconnection among nodes is Infiniband. Benchmark 

experiments of SDFEM with up to 120 cores (i.e. 10 nodes 

of our cluster) were conducted. The operating system is 

CentOS 5.3, a Linux-based distribution. 

Execution Time 

We demonstrate the performance of SDFEM by measuring 

its execution time for various number of cores of the test 

cluster on five datasets. The sequential test mode was done 

on 1 core. The parallel test was done by running the 

program on varying number of nodes from 1 to 10, each 

node runs up to 12 cores, providing a range of 12 to 120 

threads or cores. Experimental results of SDFEM with 

varying number of cores are shown in Figure 8. 

 

Figure 8: Running time of SDFEM (from 1 to 120 cores) 

The results show significant reduction in execution time is 

obtained for all test cases. In the experiments, SDFEM 

reduces the mining time on Webdocs databases from 6460 

seconds on 1 core to 130 seconds on 120 cores which saves 

97.98% of the time required by sequential execution (i.e. 

97.98% = (6460-130)/6460*100%). The time of SDFEM 

on Kosarak database is cut down 98.4% (from 15234 

seconds on 1 core to 238 seconds on 120 cores). Similarly, 
the percentage of execution time savings for Chess, Pumsb 

and Accidents are 97.79%, 98.08%, 97.95% respectively. 

This performance improvement comes from sharing mining 

workload for large number of cores and reducing the 

amount of data that each parallel process/thread has to 

handle. Performance gains of SDFEM is consistent for both 

dense and sparse databases. 

Speedup 

To evaluate scalability of SDFEM to the size of cluster, we 

compute its speed up by dividing the sequential time of 

SDFEM by the parallel execution time (i.e. for 12, 24, 

36,…120 cores) and present the results in Figure 9.  

 

Figure 9: Speedup of SDFEM (from 1 to 120 cores) 

We can see that for most cases, speed up increases when 

the number of cores is increased. Speed up values of five 

datasets on 120 cores are 45.4 (Chess), 52.1 (Pumsb), 64.8 
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(Kosarak), 48.7 (Accidents), 49.6 (Webdocs). Many factors 

limit scalability of most parallel FPM methods like 

synchronization, load balancing and data communication 

overheads or limitations of test hardware like serial I/O. It 

is important to note that, as the number of nodes (multiples 

of 12 in plots of Figure 9) is increased, higher speedups are 
obtained which shows SDFEM scales well for lager 

machines. 

Impact of Hybrid MPI-OpenMP Programming Model 

Application of hybrid MPI-OpenMP programming model is 

an important feature of SDFEM, distinguishing it from 

related work. We study the impact of this programming 

model in comparison with the traditional pure MPI model. 

For this purpose, SDFEM has been benchmarked using 5 

compute nodes with 60 cores in total in two scenarios: 

Scenario 1- 1 process per core and total processes = 60 

Scenario 2- 12 threads per process, 1 process per node 

and total threads = 60 

In Scenario 1, SDFEM performs exactly like a traditional 

MPI program. In Scenario 2, SDFEM applies the hybrid 
programming model presented in Section 3. The 

comparison results in Table 4 shows clear evidence that 

using hybrid model can significantly improve the 

performance. Compared to pure MPI, the hybrid mode with 

12 threads per process enhances from 78.6% up to 329.5% 

of mining performance. For Kosarak, SDFEM with the 

hybrid model runs much faster than its pure MPI version 

(474 seconds vs.  2036 seconds).   

Table 4: Time comparision of pure MPI vs. hybrid MPI-

OpenMP (60 cores) 

Datasets MinSup 

Scenario 1 

Pure MPI 

Scenario 2 

Hybrid 

Performance 

Improvement 

(1) (sec.) (2) (sec.) 
(4)= 

((2)-(1))*100/(2)  

Chess 2.50% 42 11 281.8% 

Pumsb 30% 128 68 88.2% 

Accidents 1% 25 14 78.6% 

Kosarak 0.06% 2036 474 329.5% 

Webdocs 4% 436 220 98.2% 

 

Impact of Different Load Balancing Techniques 

Another important factor impacting FPM performance is 

load balancing. We evaluate the efficiency of the four load 

balancing techniques applied in SDFEM by implementing 4 

different versions of SDFEM where each integrates a 

combination of different techniques as listed in Table 5 and 

benchmarking them using 120 cores (12 threads/cores per 

process, 1 process per nodes). In Table 5, the underlined 
values indicate load-balancing techniques applied in 

SDFEM. All load balancing techniques are applied in 

SDFEM-V4 while fewer are used in the others: SDFEM-V1 

(1 technique), SDFEM-V2 (2 techniques) and SDFEM-V3 

(3 techniques). The test results presented in Table 6 show 

that SDFEM-V4 runs much faster the other three versions, 

showing clearly the importance of load balancing 

techniques. For example, for Kosarak dataset, SDFEM_V4 
runs 8.7 times faster than SDFEM_V1 (8.7=2153/248), 8.1 

times faster than SDFEM_V2 (8.1=2020/248), and 1.2 

times faster than SDFEM_V3 (1.2=304/248). 

Table 5: Four versions of SDFEM with different load balancing 
techniques 

Techniques SDFEM-V1 SDFEM-V2 SDFEM-V3 SDFEM-V4 

Within-node 

job scheduling 
Static (cyclic) Dynamic Dynamic Dynamic 

Work Sharing N/A N/A Yes Yes 

Between-node 

job scheduling 
Static (cyclic) Static (cyclic) Static (cyclic) Static (cyclic) 

Work Stealing N/A N/A N/A Yes 

 
Table 6: Running time of four versions of SDFEM 

Datasets MinSup 
SDFEM-V1 

(sec.) 
SDFEM-V2 

(sec.) 
SDFEM-V3 

(sec.) 
SDFEM-V4 

(sec.) 

Chess 2.5 % 42.2 42.3 7.5 5.2 

Pumsb 30 % 3153 3152 341 252 

Accidents 1 % 44 27 9.7 8.1 

Kosarak 0.06 % 2153 2020 304 248 

Webdocs 4 % 637 316 130 129 

CONCLUSION 

We present SDFEM, a novel parallel FPM for multi-core 

clusters, as a high performance FPM solution for large-

scale applications. SDFEM has three main features which 
have not been investigated by prior parallel FPM work. 

They include (1) use of hybrid programming model to 

leverage benefits of shared memory and enhance the 

mining performance; (2) application of multiple load 

balancing techniques to achieve high performance and 

scalability; and (3) utilization of data characteristics-based 

mining approach that we developed to perform efficiently 

on different types of data. Our performance evaluation has 

shown that in our test cases, SDFEM results in savings of  

97.79% - 98.4 % compared to sequential time. SDFEM on 

120 cores of our cluster runs 45.4 – 64.8 times faster than 
its sequential version for the test datasets. The execution 

time of SDFEM are over the complete program execution 

and includes I/O time and the cost of performing multiple 

reduction steps and balancing workload.  
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