
Parallel Processing of Irregular Workloads on the GPGPU: Adaptive
Quadrature

Derek Kern and Gita Alaghband
Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO, USA

{derek.kern, gita.alaghband}@ucdenver.edu

Abstract— This paper presents a parallel (GPGPU) ap-
proach for dealing with the turbid workload of adaptive
quadrature, called ‘parallel block-cutting adaptive quadra-
ture’ (PBCAQ). PBCAQ provides speedups as high as 211
times the performance of its sequential competitors. In ad-
dition, it has two intertwined and desirable properties: (1)
its speedups increase as the size of the workloads being
processed increase; and (2) it performs best over definite
integrals requiring larger workloads. These two properties
together make PBCAQ a valuable example of computing an
inequitable, turbid workload on the GPGPU, devices that
require workload simplicity.

Keywords: Parallel processing, GPU, CUDA, SIMT, adaptive
quadrature, numerical integration

1. Introduction
In this paper we explore an efficient implementation of

adaptive quadrature (AQ) on GPGPU architectures. This prob-
lem is selected as an example of an algorithm that exhibits
an unpredictable workload and poses challenges in equitably
dividing work. Problems with these characteristics are gen-
erally difficult to parallelize effectively for the SIMT (Single
Instruction Multiple Thread) parallel model of GPGPUs. This
computing model offers significant performance benefits for
applications with predictable, regular patterns of parallelism
and computation, where a single instruction can be applied to
many data items at the same time (within GPGPU threads).

On GPGPUs, the instruction sequences, called kernels, are
launched by the CPU onto the GPGPU forming groups of
parallel threads, called warps, that will execute concurrently
on GPGPU streaming multiprocessors [1], [2]. Losses of
GPGPU computing efficiency occur when: (1) computing
units sit idle, which happens when loads are not properly
balanced; (2) threads within warps diverge; and (3) warps
sit idle during memory accesses. The additional flexibility
that comes from the SIMT model and GPGPU architectures
cannot easily be exploited without detailed knowledge of such
facets [3].

Some workloads, as that of AQ, are intrinsically difficult to
conform with processing workloads suitable for the GPGPUs.
Often these workloads are resistant to simple or equitable
division. In some instances, it may be because the elements
of the workload are not uniform and cannot be further
divided into uniform elements. In other instances, it may
be because dependences that cannot be discovered statically

make workload division difficult; this type of workload is
known as an amorphous workload [4], [5].1

Another reason that a workload may not easily conform to
GPGPU processing is because the amount of work left to be
done cannot be simply circumscribed. In these cases, the task
of deciding upon equitable work divisions, needed for parallel
load balancing, is either too costly or not possible in principle.
In this paper, we introduce the term turbid workload to refer
to this type of unpredictable workload. Breadth-first search is
a good example of an algorithm with such a workload [6].

Adaptive quadrature (AQ) is another example of an algo-
rithm with a turbid workload. AQ is a divide and conquer
process that is used to refine the approximation of definite
integrals, the area under the curve of a function over a specific
interval [10]. It works by first estimating an approximation of
the area under the curve for the given interval; this approxi-
mation is checked for accuracy (within a given tolerance); if
the integral is not within the tolerance, the interval is divided
in half and each subinterval is approximated recursively;
accurate integrals calculated for subintervals are accumulated.
During this process, integrals are approximated using methods
like the trapezoidal rule or Simpson’s rule. Each time the
interval is divided and work preserved for later processing, it
is unclear how much work is left within each division. Thus,
throughout the processing of AQ, divisions of workload are
unlikely to be equal. These types of problems pose a serious
challenge to parallel speedup and efficiency for SIMT-type
parallelism.

AQ has many applications. Among them are holographic
interferometry [7], multilevel regression models [8], and free-
surface motion in liquids [9]. Any of these applications and
many others would greatly benefit from a GPGPU accelerated
form of adaptive quadrature.

In this paper, a parallel algorithm for GPGPU processing of
the turbid workload of adaptive quadrature will be shown. It is
called ‘parallel block-cutting adaptive quadrature’ (PBCAQ).
PBCAQ is an effective approach for parallelizing adaptive
quadrature. It provides significant speedups over sequential
competitors; on some definite integrals, these speedups can
reach as much as 211 times.

This paper is organized as follows. In Section 2, the basics

1The concept of an amorphous workload is closely tied to the concept of
amorphous data-parallelism put forward by Kulkarni et al [4], [5]. Whereas
amorphous data-parallelism refers to the pattern of parallelism exhibited by
an algorithm, an amorphous workload refers to the workload resulting from
an algorithm whose pattern of parallelism is amorphous data-parallelism.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 423

Fig. 1: Computational tree for adaptive quadrature after
values of f(x), a, b, and τ are fixed. White boxes represent
mediate computations; green circles represent immediate com-
putations; red stars represent unnecessarily fine immediate
computations.

of adaptive quadrature are described. Section 3 introduces
the continuity assumption, which is the animating principle
behind PBCAQ. Section 4 provides a detailed explication of
the PBCAQ algorithm. In Section 5, the results for PBCAQ
are presented in comparison to sequential AQ versions as
well as modified forms of the PBCAQ algorithm. This paper
concludes with Section 6.

2. Adaptive quadrature
As stated in Section 1, adaptive quadrature (AQ) is a divide

and conquer process that is used to refine the approximation
of definite integrals. Let

∫ b

a
f(x) dx be the integral being

evaluated using AQ over interval i = [a, b] for a given
approximation tolerance τ . During the integration process,
subintervals of i, defined as im = [am, bm], will be approx-
imated within tolerance τm, where τm is τ divided as many
times as the subinterval of i and a ≤ am < bm ≤ b. For
each interval im, AQ evaluates the interval using a coarse
approximation method and a fine approximation method.2 Let
sc be the approximation returned by the coarse method and
let sf be the approximation returned by the fine method. If
|sc − sf | ≤ τm, then im is approximated within tolerance
and added to the overall result; if |sc − sf | > τm, then im is
divided, typically into two halves, and AQ approximates each
of the divisions. Let the divide and conquer approach to AQ
be known as ‘common adaptive quadrature’ (CAQ).

In order to ease discussion, some new terms are needed. Let
a mediate computation be the computation of subinterval im
resulting in an approximation not within tolerance; mediate
computations are the empty, white boxes in Figure 1. Note
that a mediate computation results in its interval, im, being
further divided into smaller subintervals im1, im2, ...imn for
approximation. Let an immediate computation be the compu-
tation of subinterval im resulting in an approximation within

2All of the algorithms tested in this paper were implemented using
the trapezoidal rule for coarse approximation and Simpson’s rule for fine
approximation.

tolerance; immediate computations are the green circles in
Figure 1. Let an unnecessarily fine immediate computation
be an immediate computation of a subinterval im1 within
tolerance at length `1 when a subsuming subinterval im2 of
length `2 (where `2 = `1 ∗ 2x, x ≥ 1) exists and im2 can be
approximated within tolerance; unnecessarily fine immediate
computations are the red stars in Figure 1.

3. The Continuity Assumption
The design of PBCAQ rests upon a key assumption. This

assumption is formally stated below:
Continuity Assumption: Given some continuous function

f(x), an integral approximation method M and a tolerance τ ,
if
∫ b

a
f(x) dx is being approximated using adaptive quadrature

and if subinterval i of length l is approximated by M within
τ , then the intervals adjacent to i of length l, i+1 and i− 1,
will likely also be approximated by M within τ . Similarly,
given some continuous function f(x), an integral approxi-
mation method M and a tolerance τ , if

∫ b

a
f(x) dx is being

approximated using adaptive quadrature and if subinterval i
of length l is not approximated by M within τ , then the
intervals adjacent to i of length l, i+1 and i− 1, will likely
not be approximated by M within τ .

The continuity assumption is a useful guide to avoiding
some of the mediate computations that are normally visited
within the AQ computational tree. With the size of adjacent
intervals as starting points, much of the mediate work of
repeatedly finding correct interval sizes can be skipped.
This means that groups of adjacent intervals can be quickly
approximated.

Within Figure 2, the mediate computations that this as-
sumption eliminates can be seen. PBCAQ finds an initial in-
terval size (depth first) and then, by assuming continuity, tra-
verses the leaves of the computational tree (horizontally) until
the interval size no longer applies; at which point, it either
slightly enlarges or shrinks the interval size (and tolerance);
it then continues traverse the leaves of the computational tree
at the new interval size.3 While mediate computations are not
eliminated, their number can be mitigated by the continuity
assumption.

4. Parallel, block-cutting adaptive
quadrature for the GPGPU
4.1 Basic algorithm

PBCAQ is implemented in NVIDIA’s Compute Unit De-
vice Architecture (CUDA). As such, CUDA nomenclature
will be used throughout. Physically, an NVIDIA GPGPU
consists of some number of streaming multiprocessors (SM),
each of which has some number of cores, usually 32.4 Thus,
if an NVIDIA GPGPU has 14 SMs, then it has 448 cores.
Logically, the primary unit of computation in CUDA is the

3As will be discussed, PBCAQ works on the level of regions (of intervals).
However, the continuity assumption applies just the same.

4At times, cores will also be referred to as compute units.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

424 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Fig. 2: Comparison of computational trees for CAQ (left), SCAQ* and PBCAQ (right). In CAQ and SCAQ, squares and circles,
respectively, represent mediate and immediate computations of intervals; squares with X’s represent mediate computations not
performed by SCAQ. In PBCAQ, rectangles and ovals, respectively, represent mediate and immediate computations of (intervals
within) regions. * Note that SCAQ is described below in Section 4.3

thread such that a single thread will be run on a single core
of a single SM. Threads are organized into blocks and blocks
are organized into grids. While any thread can utilize global
memory on the device, threads within the same block will
execute on the same SM and, thus, are able to utilize shared
local memory. Finally, since the number of threads that can
be launched on a GPGPU vastly outnumber the number of
available cores, threads that are part of the same block are
organized into warps, which are groups of threads that execute
simultaneously on a SM.

AQ algorithms, like CAQ, often work on the level of
individual intervals (and subintervals). PBCAQ, on the other
hand, works by simultaneously approximating huge numbers
of intervals. Let the intervals simultaneously processed on
the GPGPU by PBCAQ be known as a region. When CAQ
approximates an interval i, it compares the error for that
approximation to the tolerance to determine whether it is
within tolerance. When PBCAQ approximates a region r,
it simultaneously approximates all intervals within r on
the GPGPU; it then compares the sum of the errors for
all intervals in r to the tolerance to determine whether
the approximation of r is within tolerance. Thus, PBCAQ
never considers whether the approximation of an individual
interval of a region is within tolerance; instead, PBCAQ
is only concerned with whether a region, as a whole, has
been approximated within tolerance. The distinction between
the individual intervals processed by CAQ and regions (of
intervals) processed by PBCAQ can be seen in Figure 2.

PBCAQ begins by setting length, which is the length of the
region being approximated, to be the entire length from lower
to upper. It approximates the first region at level log2(α ∗
β) (where α ∗ β = 2x, x ≥ 1) such that α is the number
of blocks executed on the GPGPU and β is the number of
threads per block. It continues (depth first) to shrink length
by half, summing all of the errors from all of the blocks (in
the region) approximated on the GPGPU, until it achieves an
approximation within tolerance for the entire region. After
such an approximation, it adds the region approximation to
the total approximation, doubles length and then, moving
from upper to lower, proceeds to approximate the adjacent
region, if there is one, which will continue to be the case until

function PBCAQ(f, lower, upper, τ)
Let α be the number of thread blocks;
Let β be the number of threads per block;
I ← 0.0; length← upper − lower;
Let S and E be apprxs and errs;
while upper > lower do
. Apprxs and errs are generated by thrds in next step;
Approximate length on GPGPU using (α ∗ β) thrds;
barrier;

Reduce apprxs and errs, S and E, on GPGPU;
barrier;

Transfer apprxs and errs, S and E, to host mem;

. Compare error for region to tolerance
if E ≤ τ then
I ← I + S;
upper ← lower;

length← 2 ∗ length;
τ ← τ ∗ 2;

}
. Expansion step

else
length← length/2;
τ ← τ/2;

end if
lower ← max(upper − length, lower);

end while
return I;

end function

Fig. 3: Parallel, block-cutting adaptive quadrature (PBCAQ)

it breaches lower.
Considering the approximation of regions by PBCAQ, let

the region being approximated be rm. PBCAQ (displayed in
Figure 3) breaks rm into α∗β intervals, where α is the number
of thread blocks and β is the number of threads per block.
It submits the region to the GPGPU where each thread is
assigned its own interval to approximate. Each thread will find
both an approximation and an error for its assigned interval.

After each of the α ∗ β intervals are approximated within
the region, the approximations and the corresponding errors

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 425

Table 1: Adaptive quadrature versions tested

Name Description
CAQ Sequential, queue-based, divide

and conquer
SCAQ Sequential, side-cutting
BCAQ Sequential version of PBCAQ
PSCAQ Parallel, side-cutting
PBCAQ Parallel, block-cutting
PBCAQr PBCAQ with coin-flip interval

doubling
PBCAQs PBCAQ with error-slope-based in-

terval doubling
PBCAQg PBCAQ with log of tolerance over

error-based interval doubling

Table 2: Functions and intervals integrated over for testing

f(x) Intervals
1 e2xsin(3x) 0.0–5.0, 0.0–6.0, 0.0–7.0
2 (xx)−1 0.0–1000.0, 0.0–2000.0, 0.0–

3000.0
3 (4x)cos(2x)− (x− 2)2 0.0–30.0, 0.0–50.0, 0.0–70.0
4 e4x(

√
1 + e4x)r−1 0.0–5.0, 0.0–6.0, 0.0–6.75

5 e−3xcos(5πx) 0.0–10.0, 0.0–20.0, 0.0–30.0
6 sin(10πx)(πx)−1 1e-6–10.0, 1e-6–15.0, 1e-6–

20.0

Function #1 Function #2 Function #3 Function #4 Function #5 Function #6

Fig. 4: Graphs of functions #1–#6

for these intervals must be reduced (summed) into a single
approximation and error bound for the region. This reduction
is done primarily on the GPGPU. After it is complete, two
highly reduced arrays, one containing errors and the other
containing approximations, are transferred back into main
memory for final reduction by the CPU.

The performance benefits of PBCAQ are due to several
factors. First, no mediate computation takes place for the
top part of the computational tree up to level log2(α ∗ β).
This means that approximation of the integral will start for
the first region at approximately level 19.5 Second, using the
continuity assumption, we evaluate adjacent equally divided
intervals within regions. If a region is approximated accu-
rately, the integral of the entire region is achieved and no
further evaluation is needed for this region. Adjacent regions
are then approximated accordingly and only divided further
if the desired accuracy is not achieved for the region. Third,
the abundance of dedicated parallelism in the GPGPU results
in small enough intervals within each region to achieve the
result within the desired accuracy very fast. In fact, this
method would work very well for many core MIMD plat-
forms. Finally, PBCAQ is able to simultaneously approximate
entire regions, made up of hundreds of thousands or more
intervals. It can do this efficiently because it can spread the
approximation of a region across the many threads available
on the GPGPU.

5This assumes α = 2048 and β = 256. These block and thread allocations
values were used for most of the test functions (see Table 2) in this paper.

4.2 Improving the algorithm
Aside from the speedups that come from the simultaneous

region approximation of PBCAQ, there is a means of further
improving its performance. In Figure 3, note the two brack-
eted lines colored blue and labeled “Expansion step”. The
expansion step executes each time a region is approximated
within tolerance. If the next, adjacent region of length ∗ 2
can be approximated within tolerance, then the expansion
step diminishes (unnecessarily fine) immediate computations.
However, if this is not the case, then it increases the number
of mediate computations.

What is needed is a way to execute the expansion step when
it diminishes the number of immediate computations and skip
it when it increases the number of mediate computations.
This need gives rise to three further versions of PBCAQ: (1)
PBCAQr, which executes the expansion step based upon a
random coin-flip; (2) PBCAQs, which executes the expansion
step based upon the slope of the errors returned from the
GPGPU, i.e. when errors decreased over the region; and (3)
PBCAQg, which executes the expansion step based upon the
(natural) log of the tolerance over the sum of the errors
returned from the GPGPU.

While PBCAQs and PBCAQg have obvious value in that
they provide an inductive prediction upon whether the next
region of length will be approximated within tolerance,
PBCAQr, on the surface seems to be useful only as a point
of comparison. However, it has value independent of its
comparative value. PBCAQr makes no prediction. Yet, it does
provide the means to skip the expansion step half of the time,

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

426 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Parallel Processing of Irregular Workloads on the GPGPU: Adaptive
Quadrature

Derek Kern and Gita Alaghband
Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO, USA

{derek.kern, gita.alaghband}@ucdenver.edu

Abstract— This paper presents a parallel (GPGPU) ap-
proach for dealing with the turbid workload of adaptive
quadrature, called ‘parallel block-cutting adaptive quadra-
ture’ (PBCAQ). PBCAQ provides speedups as high as 211
times the performance of its sequential competitors. In ad-
dition, it has two intertwined and desirable properties: (1)
its speedups increase as the size of the workloads being
processed increase; and (2) it performs best over definite
integrals requiring larger workloads. These two properties
together make PBCAQ a valuable example of computing an
inequitable, turbid workload on the GPGPU, devices that
require workload simplicity.

Keywords: Parallel processing, GPU, CUDA, SIMT, adaptive
quadrature, numerical integration

1. Introduction
In this paper we explore an efficient implementation of

adaptive quadrature (AQ) on GPGPU architectures. This prob-
lem is selected as an example of an algorithm that exhibits
an unpredictable workload and poses challenges in equitably
dividing work. Problems with these characteristics are gen-
erally difficult to parallelize effectively for the SIMT (Single
Instruction Multiple Thread) parallel model of GPGPUs. This
computing model offers significant performance benefits for
applications with predictable, regular patterns of parallelism
and computation, where a single instruction can be applied to
many data items at the same time (within GPGPU threads).

On GPGPUs, the instruction sequences, called kernels, are
launched by the CPU onto the GPGPU forming groups of
parallel threads, called warps, that will execute concurrently
on GPGPU streaming multiprocessors [1], [2]. Losses of
GPGPU computing efficiency occur when: (1) computing
units sit idle, which happens when loads are not properly
balanced; (2) threads within warps diverge; and (3) warps
sit idle during memory accesses. The additional flexibility
that comes from the SIMT model and GPGPU architectures
cannot easily be exploited without detailed knowledge of such
facets [3].

Some workloads, as that of AQ, are intrinsically difficult to
conform with processing workloads suitable for the GPGPUs.
Often these workloads are resistant to simple or equitable
division. In some instances, it may be because the elements
of the workload are not uniform and cannot be further
divided into uniform elements. In other instances, it may
be because dependences that cannot be discovered statically

make workload division difficult; this type of workload is
known as an amorphous workload [4], [5].1

Another reason that a workload may not easily conform to
GPGPU processing is because the amount of work left to be
done cannot be simply circumscribed. In these cases, the task
of deciding upon equitable work divisions, needed for parallel
load balancing, is either too costly or not possible in principle.
In this paper, we introduce the term turbid workload to refer
to this type of unpredictable workload. Breadth-first search is
a good example of an algorithm with such a workload [6].

Adaptive quadrature (AQ) is another example of an algo-
rithm with a turbid workload. AQ is a divide and conquer
process that is used to refine the approximation of definite
integrals, the area under the curve of a function over a specific
interval [10]. It works by first estimating an approximation of
the area under the curve for the given interval; this approxi-
mation is checked for accuracy (within a given tolerance); if
the integral is not within the tolerance, the interval is divided
in half and each subinterval is approximated recursively;
accurate integrals calculated for subintervals are accumulated.
During this process, integrals are approximated using methods
like the trapezoidal rule or Simpson’s rule. Each time the
interval is divided and work preserved for later processing, it
is unclear how much work is left within each division. Thus,
throughout the processing of AQ, divisions of workload are
unlikely to be equal. These types of problems pose a serious
challenge to parallel speedup and efficiency for SIMT-type
parallelism.

AQ has many applications. Among them are holographic
interferometry [7], multilevel regression models [8], and free-
surface motion in liquids [9]. Any of these applications and
many others would greatly benefit from a GPGPU accelerated
form of adaptive quadrature.

In this paper, a parallel algorithm for GPGPU processing of
the turbid workload of adaptive quadrature will be shown. It is
called ‘parallel block-cutting adaptive quadrature’ (PBCAQ).
PBCAQ is an effective approach for parallelizing adaptive
quadrature. It provides significant speedups over sequential
competitors; on some definite integrals, these speedups can
reach as much as 211 times.

This paper is organized as follows. In Section 2, the basics

1The concept of an amorphous workload is closely tied to the concept of
amorphous data-parallelism put forward by Kulkarni et al [4], [5]. Whereas
amorphous data-parallelism refers to the pattern of parallelism exhibited by
an algorithm, an amorphous workload refers to the workload resulting from
an algorithm whose pattern of parallelism is amorphous data-parallelism.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 423

Fig. 1: Computational tree for adaptive quadrature after
values of f(x), a, b, and τ are fixed. White boxes represent
mediate computations; green circles represent immediate com-
putations; red stars represent unnecessarily fine immediate
computations.

of adaptive quadrature are described. Section 3 introduces
the continuity assumption, which is the animating principle
behind PBCAQ. Section 4 provides a detailed explication of
the PBCAQ algorithm. In Section 5, the results for PBCAQ
are presented in comparison to sequential AQ versions as
well as modified forms of the PBCAQ algorithm. This paper
concludes with Section 6.

2. Adaptive quadrature
As stated in Section 1, adaptive quadrature (AQ) is a divide

and conquer process that is used to refine the approximation
of definite integrals. Let

∫ b

a
f(x) dx be the integral being

evaluated using AQ over interval i = [a, b] for a given
approximation tolerance τ . During the integration process,
subintervals of i, defined as im = [am, bm], will be approx-
imated within tolerance τm, where τm is τ divided as many
times as the subinterval of i and a ≤ am < bm ≤ b. For
each interval im, AQ evaluates the interval using a coarse
approximation method and a fine approximation method.2 Let
sc be the approximation returned by the coarse method and
let sf be the approximation returned by the fine method. If
|sc − sf | ≤ τm, then im is approximated within tolerance
and added to the overall result; if |sc − sf | > τm, then im is
divided, typically into two halves, and AQ approximates each
of the divisions. Let the divide and conquer approach to AQ
be known as ‘common adaptive quadrature’ (CAQ).

In order to ease discussion, some new terms are needed. Let
a mediate computation be the computation of subinterval im
resulting in an approximation not within tolerance; mediate
computations are the empty, white boxes in Figure 1. Note
that a mediate computation results in its interval, im, being
further divided into smaller subintervals im1, im2, ...imn for
approximation. Let an immediate computation be the compu-
tation of subinterval im resulting in an approximation within

2All of the algorithms tested in this paper were implemented using
the trapezoidal rule for coarse approximation and Simpson’s rule for fine
approximation.

tolerance; immediate computations are the green circles in
Figure 1. Let an unnecessarily fine immediate computation
be an immediate computation of a subinterval im1 within
tolerance at length `1 when a subsuming subinterval im2 of
length `2 (where `2 = `1 ∗ 2x, x ≥ 1) exists and im2 can be
approximated within tolerance; unnecessarily fine immediate
computations are the red stars in Figure 1.

3. The Continuity Assumption
The design of PBCAQ rests upon a key assumption. This

assumption is formally stated below:
Continuity Assumption: Given some continuous function

f(x), an integral approximation method M and a tolerance τ ,
if
∫ b

a
f(x) dx is being approximated using adaptive quadrature

and if subinterval i of length l is approximated by M within
τ , then the intervals adjacent to i of length l, i+1 and i− 1,
will likely also be approximated by M within τ . Similarly,
given some continuous function f(x), an integral approxi-
mation method M and a tolerance τ , if

∫ b

a
f(x) dx is being

approximated using adaptive quadrature and if subinterval i
of length l is not approximated by M within τ , then the
intervals adjacent to i of length l, i+1 and i− 1, will likely
not be approximated by M within τ .

The continuity assumption is a useful guide to avoiding
some of the mediate computations that are normally visited
within the AQ computational tree. With the size of adjacent
intervals as starting points, much of the mediate work of
repeatedly finding correct interval sizes can be skipped.
This means that groups of adjacent intervals can be quickly
approximated.

Within Figure 2, the mediate computations that this as-
sumption eliminates can be seen. PBCAQ finds an initial in-
terval size (depth first) and then, by assuming continuity, tra-
verses the leaves of the computational tree (horizontally) until
the interval size no longer applies; at which point, it either
slightly enlarges or shrinks the interval size (and tolerance);
it then continues traverse the leaves of the computational tree
at the new interval size.3 While mediate computations are not
eliminated, their number can be mitigated by the continuity
assumption.

4. Parallel, block-cutting adaptive
quadrature for the GPGPU
4.1 Basic algorithm

PBCAQ is implemented in NVIDIA’s Compute Unit De-
vice Architecture (CUDA). As such, CUDA nomenclature
will be used throughout. Physically, an NVIDIA GPGPU
consists of some number of streaming multiprocessors (SM),
each of which has some number of cores, usually 32.4 Thus,
if an NVIDIA GPGPU has 14 SMs, then it has 448 cores.
Logically, the primary unit of computation in CUDA is the

3As will be discussed, PBCAQ works on the level of regions (of intervals).
However, the continuity assumption applies just the same.

4At times, cores will also be referred to as compute units.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

424 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Fig. 2: Comparison of computational trees for CAQ (left), SCAQ* and PBCAQ (right). In CAQ and SCAQ, squares and circles,
respectively, represent mediate and immediate computations of intervals; squares with X’s represent mediate computations not
performed by SCAQ. In PBCAQ, rectangles and ovals, respectively, represent mediate and immediate computations of (intervals
within) regions. * Note that SCAQ is described below in Section 4.3

thread such that a single thread will be run on a single core
of a single SM. Threads are organized into blocks and blocks
are organized into grids. While any thread can utilize global
memory on the device, threads within the same block will
execute on the same SM and, thus, are able to utilize shared
local memory. Finally, since the number of threads that can
be launched on a GPGPU vastly outnumber the number of
available cores, threads that are part of the same block are
organized into warps, which are groups of threads that execute
simultaneously on a SM.

AQ algorithms, like CAQ, often work on the level of
individual intervals (and subintervals). PBCAQ, on the other
hand, works by simultaneously approximating huge numbers
of intervals. Let the intervals simultaneously processed on
the GPGPU by PBCAQ be known as a region. When CAQ
approximates an interval i, it compares the error for that
approximation to the tolerance to determine whether it is
within tolerance. When PBCAQ approximates a region r,
it simultaneously approximates all intervals within r on
the GPGPU; it then compares the sum of the errors for
all intervals in r to the tolerance to determine whether
the approximation of r is within tolerance. Thus, PBCAQ
never considers whether the approximation of an individual
interval of a region is within tolerance; instead, PBCAQ
is only concerned with whether a region, as a whole, has
been approximated within tolerance. The distinction between
the individual intervals processed by CAQ and regions (of
intervals) processed by PBCAQ can be seen in Figure 2.

PBCAQ begins by setting length, which is the length of the
region being approximated, to be the entire length from lower
to upper. It approximates the first region at level log2(α ∗
β) (where α ∗ β = 2x, x ≥ 1) such that α is the number
of blocks executed on the GPGPU and β is the number of
threads per block. It continues (depth first) to shrink length
by half, summing all of the errors from all of the blocks (in
the region) approximated on the GPGPU, until it achieves an
approximation within tolerance for the entire region. After
such an approximation, it adds the region approximation to
the total approximation, doubles length and then, moving
from upper to lower, proceeds to approximate the adjacent
region, if there is one, which will continue to be the case until

function PBCAQ(f, lower, upper, τ)
Let α be the number of thread blocks;
Let β be the number of threads per block;
I ← 0.0; length← upper − lower;
Let S and E be apprxs and errs;
while upper > lower do
. Apprxs and errs are generated by thrds in next step;
Approximate length on GPGPU using (α ∗ β) thrds;
barrier;

Reduce apprxs and errs, S and E, on GPGPU;
barrier;

Transfer apprxs and errs, S and E, to host mem;

. Compare error for region to tolerance
if E ≤ τ then
I ← I + S;
upper ← lower;

length← 2 ∗ length;
τ ← τ ∗ 2;

}
. Expansion step

else
length← length/2;
τ ← τ/2;

end if
lower ← max(upper − length, lower);

end while
return I;

end function

Fig. 3: Parallel, block-cutting adaptive quadrature (PBCAQ)

it breaches lower.
Considering the approximation of regions by PBCAQ, let

the region being approximated be rm. PBCAQ (displayed in
Figure 3) breaks rm into α∗β intervals, where α is the number
of thread blocks and β is the number of threads per block.
It submits the region to the GPGPU where each thread is
assigned its own interval to approximate. Each thread will find
both an approximation and an error for its assigned interval.

After each of the α ∗ β intervals are approximated within
the region, the approximations and the corresponding errors

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 425

