
Parallel Computing 40 (2014) 768–785
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
Novel parallel method for association rule mining on multi-core
shared memory systems
http://dx.doi.org/10.1016/j.parco.2014.08.003
0167-8191/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Lan.Vu@ucdenver.edu (L. Vu), Gita.Alaghband@ucdenver.edu (G. Alaghband).
Lan Vu ⇑, Gita Alaghband
Dept. of Computer Science and Engineering, University of Colorado Denver, Denver, CO 80204, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 11 October 2014

Keywords:
Frequent pattern mining
Multi-core
Shared memory
Association rule mining
Parallel algorithm
Databases
Association rule mining (ARM) is an important task in data mining with many practical
applications. Current methods for association rule mining have shown unstable perfor-
mance for different database types and under-utilize the benefits of multi-core shared
memory machines. In this paper, we address these issues by presenting a novel parallel
method for finding frequent patterns, the most computational intensive phase of ARM.
Our proposed method, named ShaFEM, combines two mining strategies and applies the
most appropriate one to each data subset of the database to efficiently adapt to the data
characteristics and run fast on both sparse and dense databases. In addition, our new-
lock-free design minimizes the synchronization needs and maximizes the data indepen-
dence to enhance the scalability. The new structure lends itself well to dynamic job
scheduling resulting in a well-balanced load on the new multi-core shared memory archi-
tectures. We have evaluated ShaFEM on 12-core multi-socket servers and found that our
method run up to 5.8 times faster and consumes memory up to 7.1 times less than the
state-of-the-art parallel method. For some test cases, ShaFEM can save up to 4.9 days of
execution time over the compared method.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Association rule mining (ARM) is one of the fundamental tasks in data mining. Since its first application for the analysis of
sales or basket data which was introduced by Agrawal et al. [1], ARM has been applied broadly in many fields with an
increasing number of applications such as market analysis, biomedical and computational biology research, web mining,
decision support, telecommunications alarm diagnosis and prediction, and network intrusion detection [2,4,7,8,13,14,46].
Because of the importance of this mining task, ARM has become an essential mining component of most popular database
systems like Oracle Database (RDBMS), Microsoft SQL Server, IBM DBS2 Database and IBM DBS2 and statistical software like
R, SAS and SPSS Clementine [24–26,43–45]. The increasing need to analyze big data has led to the development of new ARM
method that can leverage the computing power of emerging platforms to support this mining task. Furthermore, widening
the applicable areas of ARM requires algorithms that can perform efficiently on different data types.

1.1. Motivation

Several studies have shown that ARM methods typically worked well for certain types of databases. Most methods
performed efficiently on either sparse or dense databases but poorly on the other [11,15,17–22,28,30]. Table 1 presents

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.08.003&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.08.003
mailto:Lan.Vu@ucdenver.edu
mailto:Gita.Alaghband@ucdenver.edu
http://dx.doi.org/10.1016/j.parco.2014.08.003
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

Table 1
Running time on sparse and dense database.

Databases Type Minsup (%) Apriori Eclat FP-growth

Chess Dense 20 1924 77 89

Connect Dense 30 522 366 403

Retail Sparse 0.003 18 59 10
Kosarak Sparse 0.08 4332 385 144

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 769
the execution time of three well-known sequential algorithms Apriori [1], Eclat [10] and FP-growth [11] on sparse and dense
databases. It shows Eclat performs best on dense data while FP-growth runs fastest on the sparse ones (underline numbers
indicate the best execution times among the three algorithms).

Furthermore, the large data size and the amount of computation involved lead to the crucial need of applying parallel
computing for this mining task to speed up the large-scale data mining application. Most existing works have proposed par-
allel solutions for distributed-memory systems [9,34,35,37,38,40]. Some surveys [34,35] show that very few studies were
conducted on parallel frequent pattern mining algorithms for the shared memory multi-core platforms. Most of them have
based on Apriori that is far less efficient than the other algorithms (shown in Table 1). None of previous parallel work took
into consideration the data characteristics to improve the mining performance on different database types.

1.2. Contributions

We present a novel parallel ARM method named ShaFEM for the new multi-core shared memory platforms to solve the
above issues. The proposed method uses a new data structure named XFP-tree that is shared among processes to compact
data in memory. Then, each parallel process independently mines rules and based on the density of mining data being pro-
cessed dynamically selects and switches between two mining strategies where one is suitable for sparse data and the other
works well on dense data. The main contributions of our study include:

(1) A novel parallel mining method that can dynamically switch between its two mining strategies to adapt to the char-
acteristics of the database and run fast on both sparse and dense databases. This original contribution is based on the
recognition for the need to apply different data mining strategies as mining proceeds and the fact that the dataset
characteristics change during this processing, and therefore the need for runtime detection of when this should occur.

(2) A new efficient parallel lock free approach that applies new data structures to enhance the independence of parallel
processes, minimize the synchronization cost and improve the cache utilization. Additionally, its dynamic job sched-
uling for load balancing helps increase the scalability on multi-core shared memory systems. This is an important con-
tribution as ARM is a challenging problem for high performance computing. It has many dependent subtasks,
unpredictable workload and complex data structures and requires many reduction steps.

(3) We demonstrate the efficiency of our approach by conducting intensive experiments to benchmark ShaFEM and other
state-of-the arts mining approaches. We present an in-depth analysis of the impact of each technique employed and
the contributions made to the final performance of ShaFEM.

1.3. Paper organization

The rest of the paper is organized as follows. Section 2 introduces the problem statement and related works. The parallel
frequent pattern mining algorithm, ShaFEM, is presented in Section 3. The first mining stage to construct the XFP-tree is
demonstrated in Section 4. Section 5 details the second mining stage and describes the dynamic decision making process
to switch between the two mining strategies. We evaluate the scalability and analyze the performance merits of ShaFEM
in Section 6. The final section is our conclusion.

2. Background

2.1. The problem statement

Association rule mining (ARM) aims at discovering rules that specify the frequency co-occurrence of groups of itemsets,
subsequences, or substructures in a database. For example, an association rule of retail database can be of the form ‘‘70% of
customers who buy milk and butter also buy bread with confidence 90%’’. Detection of these interesting rules contributes to
the knowledge base used to build intelligence systems such as product recommendation, gene function prediction, network
intrusion detection, search engine ranking, etc. Google uses this mining task for their query recommendation system [9].

The association rule mining problem can be stated as follows: Let I = {i1, i2, . . ., in} be the set of n distinct items in the trans-
actional database D. Each transaction T in D contains a set of items called itemset; a k-itemset is an itemset with k items. The
count of an itemset x is the number of occurrences of x in D and the support of x is the percentage of transactions containing x.

770 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
Given a database D, the ARM problem is to find all strong association rules with the form: X ? Y|X, Y � I, and X \ Y = Ø whose
support and confidence satisfy a minimum support threshold (minsup) and a minimum confidence threshold (minconf), two
user-specified inputs. The confidence of a rule is the percentage of transactions in D that contain X also contain Y. It is spec-
ified by the formula: confidence (X ? Y) = support(X [Y)/support(X). In other words, the confidence of a rule is the conditional
probability that a transaction contains Y, given that it contains X. The association rule mining consists of two separate steps:
(1) mining all frequent patterns (or frequent itemsets) from the original databases that are highly compute and memory
intensive and (2) generating rules from these frequent patterns.

For example, given the database in Table 2 and minsup = 20%, the frequent 1-itemsets include a, b, c, d and e while f is
infrequent because the support of f is only 11%. Similarly, ab, ac, ad, ae, bc, bd, cd, ce, de are frequent 2-itemsets and abc,
abd, ace, ade are the frequent 3-itemset. If minconf = 80%, some association rules include b ? a, c ? a, d ? a, e ? a, and
c ? b because their confidences are larger or equal to 80%. In this paper, we use the terms pattern and itemset; database
and dataset interchangeably.

While the first stage is computationally quite intensive and requires efficient methods to make mining task feasible, the
second stage is a trivial task. Hence, we focus on solving the computing issue of the first stage of finding all frequent patterns
in D whose support is larger or equal to minsup. The following stage of rule generation can be performed easily as in [1].
2.2. Sequential association rule mining

Most current approaches [1,5–11] for finding association rules utilize the property that a k-itemset is frequent only if its
sub-itemsets are frequent to significantly reduce the search space of frequent itemsets.

First, the database D is scanned to specify all frequent items (or 1-itemsets) in D based on the minsup value. After this step,
only data of frequent items (e.g. the third column in Table 2) are used to determine the frequent itemsets as well as to gen-
erate the association rules. This considerably reduces the memory usage and computation by avoiding a large amount of
infrequent data from loading into memory.

In next steps, the frequent (k + 1)-itemsets are discovered using frequent k-itemsets X of the previous step. To do this, the
datasets DX which are subsets of D and contain frequent items Y co-occurring with X (X \ Y = Ø) are retrieved and used to
determine the frequency of (k + 1)-itemsets. Depending on the mining method, DX can be presented in memory using various
data structures such as TID-list [5], Bitmap Vectors [3], FP-tree [6], FP-array [12], diffset [16] or even be obtained by re-scan-
ning the original database D from disks as in the Apriori method [1].

The characteristics of these data structures and the behaviors of their mining methods are quite different and will result
in different performance for a given database [31,32]. For example, algorithms like Apriori [1], FP-growth [6], H-mine [8],
nonordfp [9] and those making use of FP-array data structure [12] exploit horizontal format of data and perform efficiently
on sparse databases (e.g. web document data or retail data) while Eclat [5], Mafia [3], AIM2 [10] present data in a vertical
format and run faster on the dense ones (e.g. biological sequence data). These mining methods perform unstably on different
data types as demonstrated in Table 1. Furthermore, the characteristics of data subsets DX used to mine (k + 1)-itemsets can
change from very sparse to very dense as mining proceeds. Hence, applying a suitable mining strategy for each DX is essential
to improve the performance of ARM. It leads to the introduction of our parallel mining approach employing two mining
strategies based on the characteristics of DX that could change dynamically during execution.
2.3. Parallel association rule mining

For large-scale transactional databases, applying parallel computing to speed up the mining process is essential. Majority
of the existing parallel association rule mining algorithms have been proposed using the distributed memory computing
model with message passing [9,34,35,37,38,40]. In the current trend of computer architecture, most computers are equipped
with one or many shared-memory multi-core processors. For this type of machines and the memory intensive problems like
the association rule mining in this paper, efficient utilization of shared memory MIMD parallelism is essential to improve the
overall performance [23] as the large data movement and communication requirements of parallel association rule mining
Table 2
Sample dataset with minsup = 20%.

Transaction ID (TID) Items Sorted frequent items

1 b, d, a a, b, d
2 c, b, d b, c, d
3 c, d, a, e a, c, d, e
4 d, a, e a, d, e
5 c, b, a a, b, c
6 c, b, a a, b, c
7 f
8 b, d, a a, b, d
9 c, b, a, e a, b, c, e

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 771
can be performed seamlessly exploiting the underlying shared memory [33]. The work presented in this paper focuses on
exploiting the shared memory platform which could also be a compute node of a larger cluster machine.

FP-growth is usually a selection for large-scale mining applications due to its performance merits [9]. In addition, the
divide-and-conquer approach of FP-growth naturally lends itself to parallelism. Several parallel methods inspired by FP-
growth have been proposed for shared memory multi-core systems. In the traditional FP-growth-based parallel approach,
parallel processes cooperatively build a shared global FP-tree resulting in extensive use of costly synchronization locks to
access each node of the tree [35]. A different approach called Tree Projection partitions the FP-tree into subsections with
small portions shared among processes. Only access to the small shared sections would require locks for synchronization
[36]. Although this approach reduces the synchronization cost considerably, it adds the overhead of extra partitioning of
the workload and is harder to load balance. Moreover, updating of the shared portion constitutes a considerable workload
of the FP-tree construction that can reduce the scalability of the algorithm as the number of processes increases.

Multiple Local Parallel Trees (MLPT) approach is the first algorithm not requiring locks by constructing local trees sepa-
rately and mining the frequent patterns from these trees [41]. This approach has shown good scalability on shared-memory
multi-core machine. The parallel version of FP-array is another efficient algorithm that uses locks for FP-tree construction. It
then converted this data structure into arrays for better cache optimization. This method improves performance significantly
compared to the previous parallel methods and has been integrated into the PARSEC Benchmark [39]. In the later stage, fre-
quent patterns are generated by recursive construction of child FP-trees from the parent FP-tree. Because of the divide-and-
conquer approach of FP-growth, the mining workload can be partitioned and distributed to parallel processes without data
dependence conflicts.

Due to inheriting the mining characteristic of FP-growth, the above parallel methods suffered from poor performance on
dense databases. In our study, we will focus on solving this issue and propose a parallel solution that works efficiently on
shared memory multi-core machine architecture.
3. ShaFEM: a novel parallel association rule mining method

3.1. The overview of ShaFEM

Presentation and manipulation of data in memory are two key elements that decide the performance of the parallel fre-
quent pattern mining algorithm. It is essential for commercial database systems such as Oracle RDBMS, MS. SQL Server and
IBM DBS2 and statistical software like R, SAS and SPSS Clementine [24–26,43,44] and other applications to be equipped with
a parallel frequent pattern mining method that runs fast and efficient on all types of databases: large, dense, sparse and not
have to worry about their size and characteristics as they vary depending on their real applications.

ShaFEM implements a new parallel lock-free approach that uses two different mining strategies (one suited to sparse and
one to dense databases) and dynamically adapts its mining behavior at run time for efficient performance on both database
types. Our algorithmic design leads to optimized use of shared memory and enhances the data independence among parallel
processes for better cache utilization. In an overview, ShaFEM performs its mining task in the following two stages that are
presented in detail in Sections 4 and 5:

� The XFP-tree construction stage: ShaFEM applies the FP-tree based approach to compact all data in memory to avoid the
high I/O cost of multiple database scans. The database is divided into equal parts; each parallel process reads its portion of
data to construct its local FP-Tree which is private to the process. The local FP-Trees are then merged into a global XFP-
Tree which is shared among the processes. The trees are implemented and constructed without using locks to minimize
the synchronization cost and enhance the scalability.
� The frequent pattern generation stage: all frequent patterns are found using the divide-and-conquer approach. The fre-

quent items in the header table of the XFP-tree are dynamically obtained by the parallel processes as they become avail-
able in order to balance the workload. Each parallel process recursively and independently generates all frequent patterns
ending with one item being assigned and continues with the next item, Fig. 5. ShaFEM uses two mining strategies for its
frequent pattern generation: FP-tree that uses a horizontal data format, and bit vector that uses a vertical data format. A
process will dynamically switch between the two strategies in the course of mining for frequent patterns depending on
detecting the density of the remaining data to be mined.

3.2. The data structures

FP-tree is a prefix tree storing all sets of ordered frequent items [11]. This tree presents data in a horizontal format and
consists of a header table storing the frequent items with their count, a root node and a set of prefix sub-trees. Each node of
the tree includes an item name, a count indicating the number of transactions that contain all items in the path from the root
node to the current node, and a link to its parent node. Each linked list starting from the header table links all nodes of the
same frequent item. If two itemsets share a common prefix, the shared part can be merged as long as the count properly
reflects the frequency of each itemset in the database. Fig. 1 illustrates an FP-tree constructed from the dataset in Table 2
where a pair hx:yi indicates item name and its count.

Fig. 1. FP-tree constructed from the database in Table 2.

Fig. 2. Bit vectors constructed from the dataset in Table 2.

772 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
XFP-tree is an extension of FP-tree newly introduced in ShaFEM. This data structure stores all sets of frequent items
retrieved from the database and differs from the FP-tree because some degree of node duplication is allowed. It is con-
structed by combining several FP-trees into a single tree described in detail in Section 4.

An XFP-tree (Fig. 5) is purposely designed so that it is not as compact as a FP-tree (Fig. 1) to achieve higher degree of par-
allelism and scalability. This data structure is customized for parallel access and does not require using locks during concur-
rent construction of the XFP-tree.

Bit Vector is a new data structure used in ShaFEM. It includes item name, count and vector of binary bits associating with
an item or a pattern. It is used to present the data of a database in memory in the vertical format. The ith bit of this vector
indicates if the ith transaction in the database contains that item or pattern (1: exist, 0: does not exist). For example, the
dataset in Table 2 can be presented in five bit vectors as in Fig. 2. The bit vector of the item f is removed because this item
is infrequent. This structure does not only save memory but also enables low-cost bitwise operations for computations.

4. XFP-tree construction

In the first stage of ShaFEM, the global XFP-tree, shared among all cores, is built. This process involves three main steps:

� Step 1 – finding the frequent items:
(1) The database is evenly divided into horizontal partitions with same data size and is distributed to parallel processes.

For example, the dataset in Table 1 is partitioned into 3 parts (Fig. 3a).
(2) Each process reads its data partition and computes a local count list of all items in its portion of the database (Fig. 3b).

Data is read in parallel by all processes without any synchronization because the database is equally partitioned and
each process can determine its data partition using its process ID. Data are read and processed in blocks to reduce I/O
overhead.

(3) A parallel summation is performed to reduce the local count lists (private to parallel processes) into a shared global
count list. Each process Pi is responsible for a separate set of items in the global count list to compute their count
(Fig. 3c). Hence, no implementation of locks is required.

(4) The frequent items are identified and sorted in the descending order using their count and the user-supplied minsup
(Fig. 3c).

� Step 2 – constructing the local FP-trees:
(1) Each process creates a local header table (private to the process) consisting of the sorted frequent items and their local

counts using the local count lists created in the previous step.

Fig. 3. Parallel construction of the global count list.

Fig. 4. Local FP-tree construction.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 773
(2) Each process reads the transactions from its data portion for the second time to get frequent items of each transaction
and inserts them into an FP-tree in their frequency descending order. This is the most time consuming step of the first
stage and in our design, all processes work independently to build their local FP-trees. Fig. 4 presents three local FP-
trees created concurrently from the dataset in Table 2.

� Step 3 – merging local FP-trees into a global XFP-tree:
(1) The construction of the global XFP-tree is initialized by converting the header table of one local FP-tree into the header

table of the global XFP-tree. The frequent items in this table are divided into even subsets and assigned to the parallel
processes. For example, a, b are assigned for P1; c, d for P2 and e for P3. Each Pi updates items of this table with the
global count using the global count list of Step 1.

(2) Each process Pi then joins the local linked lists of their assigned items in the local FP-trees in into the global ones by
starting from the existing linked list of the global header table. When all processes complete their work, the XFP-tree is
created as in Fig. 5. The time to perform this step is negligible because the manipulation of linked lists can be per-
formed in parallel without changing the local FP-trees. Because the next pattern mining stage uses this XFP-tree by
traveling in bottom-up direction, the root node of XFP-tree is not needed and not created.

5. Frequent pattern generation

5.1. Parallel frequent pattern generation based on data characteristics

In this section, we introduce a novel parallel approach for frequent pattern generation which can efficiently perform on
both sparse and dense databases. ShaFEM generates all frequent patterns by exploring a very large number of data subsets

Fig. 5. The global shared XFP-tree.

774 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
extracted from the database. Studying many real databases in the well-known FIMI Repository [29], we found that most dat-
abases consist of a group of items occurring much more frequently than the others. The more frequent items create subsets
of data with the characteristic of dense data while the less frequent items create ones with the characteristic of sparse data.
For example, Fig. 6 shows the data subsets with itemsets occurring and ending with c, e and ed which are extracted from
Table 2. It can be seen that these data subsets have different characteristics. The data subset of c is considered dense because
it has two of the most frequent items a, b while the one of de is less dense because it contains some infrequent items like c, d
(items with low frequency value). In ShaFEM, we are able to compute an estimation of the intensity of occurrence of frequent
patters at various stages of the execution, Ki, and based on this representative characteristic select the most appropriate min-
ing strategy for a data subset being processed.

The FP-tree based mining strategy named MineFPTree is applied for the sparse data portions and the Bit Vector based min-
ing strategy named MineBitVector is used for the dense ones. This approach is distinct to the prior related parallel works
[35,36,39,41] which applied a single mining strategy and its performance efficiency will be demonstrated in Section 6.

Fig. 7 presents the overview of the parallel frequent pattern generation process. After the global XFP-tree is constructed,
parallel processes independently start searching for all frequent patterns using three tasks ParallelMinePattern, MineFPTree
and MineBitVector as described below in more details.

ParallelMinePattern initializes the frequent pattern generation stage and manages the mining workload of parallel pro-
cesses using dynamic job scheduling. Each parallel process Pi is assigned a frequent item a in the header table of the XFP-
tree. It then traverses the XFP-tree in a bottom up direction starting from the nodes in the linked list of the assigned item
to retrieve its conditional pattern base C. A conditional pattern base is a ‘‘sub-database’’ consisting of sets of frequent items
co-occurring with a suffix pattern, item a in this case (Fig. 9a). The dynamic decision making to switch between the two min-
ing strategies, MineFPTree and MineBitVector, is based the size of the conditional pattern bases in comparison with a thresh-
old value, Ki, which is estimated and updated at run time using the number of frequent patterns found by the two mining
strategies (Section 5.2). If MineFPTree is invoked, the parallel process will build the private conditional FP-tree of item a,
which is an FP-tree, constructed from the conditional pattern base C instead of the whole database. Otherwise, private bit
vectors are generated using the base C and the MineBitVector strategy is called. A weight vector w whose elements indicate
the frequency of sets in the base C is added as the input of MineBitVector; this vector is used to compute the count of can-
didate patterns. Each parallel process Pi maintains its own threshold Ki which reflects the characteristics of the local data
being processed. All parallel cores work independently until the mining process is complete. The ParallelMinePattern algo-
rithm is presented in Fig. 8.

Fig. 9 illustrates an example. The conditional pattern base of item d in the XFP-tree of Fig. 5 consists of the four sets
{a:2,b:2}, {a:1, c:1}, {a:1} and {b:1, c:1} in which {a, b} occurs twice (Fig. 9a). This base is equivalent to the dataset
Fig. 6. The data subsets with itemsets occurring and ending with c, e and de (marked in black).

Fig. 7. The frequent pattern generation model of each parallel process.

Fig. 8. The ParallelMinePattern algorithm.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 775
represented in Fig. 9b. If MineFPTree is selected for mining this base, the conditional FP-tree of item d is constructed as in
Fig. 9c. Otherwise, the bit vectors a, b, c and the weight vector w are created instead to generate the frequent patterns using
MineBitVector.

MineFPTree generates frequent patterns by concatenating the suffix pattern of the previous steps with each item a in the
header table of the input FP-tree. It then constructs the conditional FP-tree of each item in the input FP-tree and recursively
mines new frequent patterns from the new tree. Fig. 10 shows the algorithmic details of MineFPTree. This mining approach
which uses the horizontal data format does not require generating a large number of candidate patterns and has been shown
to perform well on sparse databases [11,18–20]. In addition, MineFPTree can switch to the second mining strategy of ShaFEM

Fig. 9. Illustration of FP-tree and bit vector construction.

776 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
when the size of a current conditional pattern base is small enough and suitable to be mined using vertical data layout. In
this case, the bit vectors and a weight vector are constructed from that conditional pattern base and mining process switches
to MineBitVector. The value of Ki is updated at runtime using the method in Section 5.2.

MineBitVector applies the mining strategy that utilizes the vertical data format to generate frequent patterns. The effi-
ciency of this approach on dense data has been shown in [10,15,21,22]. MineBitVector is different from previous works
because it uses a new bit vector structure and does not mine the whole database but only the subsets of data with the dense
characteristic. Each subset of data is a frequent pattern base retrieved from the XFP-tree or FP-tree (Fig. 9a and d). The Mine-
BitVector algorithm in Fig. 11 generates the frequent patterns by concatenating the suffix pattern with each item in the input
data. MineBitVector then joins pairs of bit vectors using logical AND operation and computes their support using the weight
vector to specify new frequent patterns. The bit vectors of these patterns are collected and used as the input to MineBitVector
in its recursive loop.

5.2. Switching between two mining strategies

Effective determination of how and when to switch between the two mining strategies, is key for ShaFEM to perform effi-
ciently on different database types. We present here the heuristics of how the switching decision is made dynamically.

During the mining process using FP-tree, a very large number of conditional pattern bases are processed to construct new
FP-trees from their parent trees. A FP-tree is organized in such a way that the nodes of the most frequent items are closer to
the top. The newly generated trees are much smaller than their parents because the less frequent items whose nodes are at
bottom of the parent trees are removed. The size of the conditional pattern bases retrieved from these trees also reduces to a
level where the bases contain mostly the most frequent items in the database. In these cases, the conditional pattern bases
have the characteristic of dense datasets. Therefore, only small conditional pattern bases can be considered for transforming
Fig. 10. The MineFPTree algorithm.

Fig. 11. The MineBitVector algorithm.

Fig. 12. The UpdateK algorithm.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 777
into bit vectors and weight vector. The size of a conditional pattern base is specified by the number of sets in that base which
is similar to the number of transactions in a dataset. If this size is less than or equal to a threshold Ki, bit vectors and a weight
vector are constructed and ShaFEM switches to the mining strategy using bit vectors. Otherwise, MineFPTree continues its
recursive loop to generate the frequent patterns.

In this context, we use a given K to be the size limit of the bit vectors. The value of K is obtained based on an estimation of
the density of database using the UpdateK algorithm in Fig. 12. The efficiency of this approach was shown in our prior study
[27] of sequential mining. For parallel mining, each parallel process Pi maintains its own Ki and measures its value based on
local data processed by that process. This localization leads to not only more parallelism but also a more accurate estimated
value of Ki because the data characteristics of local data may vary for each process Pi. This algorithm requires less compu-
tational need in comparison to the one we presented in [46].

In UpdateK algorithm, a good value of K is determined by examining different Ki using the algorithm in Fig. 12 where Ki is
multiples of 32, i.e., j ⁄ Step, 0 6 j 6 N, Step = 32. Instead of computing each Ki = 0, 1,2,3,. . .N, we check Ki = 0,32,64, . . .N for
two reasons: (1) to reduce the number of computations and (2) to have a good match with most machine’s word and cache
block sizes because the bit vectors of MineBitVector are presented as arrays of 32 bit words. In Fig. 12, NumNewPatterns and size
indicate the number of new frequent patterns and the size of a conditional pattern base consecutively. The number of fre-
quent patterns generated for different values of K is maintained in the array X that will be used to determine the best cut-off
point to switch from FP-tree to bit vector.

6. Performance evaluation

In this section, we evaluate the performance of ShaFEM and compare it with prior works.

6.1. Experimental setup

Datasets: Six real datasets with various characteristics and domains were selected for our experiments. They included
three sparse, one moderate and two dense databases all obtained from the FIMI repository [29], a well-known repository
for frequent pattern mining and association rule mining. The dataset features are reported in Table 3.

Table 3
Experimental datasets.

Dataset Type # of Items Average length # of Trans.

Chess Dense 76 37 3196
Connect Dense 129 43 67,557
Accidents Moderate 468 33.8 340,183
Retail Sparse 16,470 10.3 88,126
Kosarak Sparse 41,271 8.1 990,002
Webdocs Sparse 52,676,657 177.2 1,623,346

778 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
Hardware: We evaluate ShaFEM on two 12-core shared memory dual-socket servers: one with Intel Xeon processors and
the other with AMD Opteron processors. Their specifications are listed in Table 4. Because the experimental results on both
machines are consistent, for simplification and due to our AMD cluster being dedicated to parallel processing without inter-
ference from other jobs, we mostly present the results collected from the machine with AMD processors. Section 6.2 also has
a performance comparison of ShaFEM on the two machines to show the performance consistency of our algorithm for dif-
ferent hardware.

Software: ShaFEM has been implemented using our computational method presented in Sections 4 and 5. Furthermore,
we have applied some optimization techniques in [27] to improve the input and output processing: (1) the input transac-
tions are preloaded and sorted before they are used to construct the XFP-tree; (2) the most frequent output values are pre-
processed and stored in an indexed table; the similar part of two frequent patterns outputted consecutively is processed only
once to reduce the computation of output reporting. In addition, we benchmarked ShaFEM, with other methods for mining
association rule including FP-array [23], Apriori [1], Eclat [10], FP-growth [11] and FP-growth⁄ [18] whose implementations
are available at [29,30,39]. The algorithms were implemented using C/C++. ShaFEM and FP-array were parallelized using
OpenMP. We used g++ 4.1.2 for compilation. The reported running time reflects the entire mining process including the data
preprocessing time when they are read from the disk as well as the index table generation for output reporting.

6.1.1. Execution time
To demonstrate the efficiency of our proposed method, we study the performance of ShaFEM and compare it with FP-

array which is one of the best parallel ARM methods for multi-core shared memory architectures developed by Intel [23].
This method is a component of the PARSEC Benchmark Suite [39]. FP-array inherited the mining features of FP-growth
and was shown to run much faster than many mining methods including FP-growth [11], nonordfp [20], AIM2 [21], kDCI
[42] and LCM2 [43] on sparse databases. Unlike ShaFEM that constructs a new data structure named XFP-tree, FP-array con-
structs the FP-tree in parallel and distributes its data to parallel processes using a tiling technique. Then, it converts the glo-
bal FP-tree to arrays and mines frequent patterns from this data structure. We present in Fig. 13 the running time of ShaFEM
and FP-array for the six test datasets. ShaFEM outperforms FP-array for all test cases with different number of cores and dif-
ferent datasets. ShaFEM runs 2.1–5.8 times faster than FP-array for the same number of parallel processes in most test cases.
It is important to note that for large datasets such as Kosarak, this speedup of 2.8 for 12 cores translates to a saving of
12.8 hours. Sequentially, ShaFEM runs faster by 117.3 hours or 4.9 days. Although the size of Kosarak is smaller than Web-
docs, this dataset was benchmarked with very low minsup. Therefore, its execution time was longer the one for Webdocs.

Table 5 shows the result of running ShaFEM and FP-array on two machines with Intel and AMD processors described in
Table 4 using 12 cores. The results show that ShaFEM performs better than FP-array for all datasets on both machines.

6.1.2. Speedup
Fig. 14 shows the speedup on 12 cores of ShaFEM and FP-array compared with the sequential running time of FP-array.

These results show that ShaFEM has run significantly faster than both sequential and parallel FP-array. Compared to the exe-
cution time of FP-array on one core, ShaFEM on 12 cores has performed 13–31.3 times faster while FP-array on 12 cores has
been only 5.6–10.0 times faster than its sequential execution time.
Table 4
Test machines.

Name Machine 1 Machine 2

Total cores 12 12
Num. of sockets 2 2
Cores/socket 6 6
Processor model AMD Opteron 2747 Intel Xeon E5-2640
Architecture Istanbul Sandy Bridge-EP
Clock rate 2.2 Ghz 2.5 Ghz
LLC/socket 6 MB 15 MB
Memory 24 GB 128 GB
OS Cent OS 5.8 (Linux) CentOS 6.4 (Linux)

Fig. 13. Running time comparison of ShaFEM and FP-array.

Fig. 14. Speedup of ShaFEM and FP-array on 12 cores relative to FP-array one core.

Table 5
Time comparison (seconds) of ShaFEM vs. FP-array on different hardware when 12 cores were used.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 779
Fig. 15 shows the speedup of ShaFEM for different number of cores compared to its sequential time on one core. When all
12 cores were used, ShaFEM runs 6.1–10.6 times faster than it did on a single core. ShaFEM scales better for sparse datasets
and its scalability is nearly linear for the Accidents, Retail and Kosarak. For the dense datasets Chess and Connect, the

Fig. 15. Speedup of ShaFEM compared to its sequential time on 1 core.

780 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
speedup increases slower when 8–12 cores are used. This is due to the nature of the dense (compact) data structure used
which make achieving good load balance for higher number of cores difficult. This feature is common for other parallel meth-
ods as well. For example, FP-array suffers from similar situation as can be seen from its speedup of 5.6 on 12 cores for dense
dataset Connect.

6.1.3. Memory usage
In order to evaluate the memory usage of ShaFEM, we measure the peak memory usage in comparison to FP-array for the

six datasets by using the memusage command of Linux. Fig. 16 shows their memory usage (megabytes) for different number
of cores. As the figure shows, in most test cases ShaFEM consumes much less memory than FP-array. Specifically, the peak
memory usage of ShaFEM was 1.5–7.1 times less than FP-array for Chess, Connect, Retails, Kosarak and Webdocs. For Web-
docs dataset using 12 cores, ShaFEM used 7 GB of memory less than FP-array. The only case that ShaFEM used more memory
than FP-array was for Accidents dataset; their memory usage difference was 23–39%.

Although the memory usage of ShaFEM is 23–39% higher than FP-array in this case, ShaFEM run faster than FP-array. The
way in which the allocated memory is accessed and processed has a higher impact in the execution time than the memory
usage. The new XFP data structure allows for more lock free parallel access and less memory contention and better cache
locality, the bit vector data structure allows for better memory/cache alignment. Our profiling information for Accidents
using the Code Analyst tool [47] shows that compared to FP-array, ShaFEM had 61% less data cache access, 59% less miss
alignment access, 40% fewer branches and 21% less branch miss predictions.

The memory usage of both ShaFEM and FP-array increased as more parallel cores were employed, but the memory
increasing level of ShaFEM was smaller than the FP-array. For the memory intensive problems like association rule mining,
efficient utilization of memory can have significant impact on the execution time. Our implementation of ShaFEM minimizes
the usage of memory, uses the bit vector structure to save memory and arranges data elements to increase data locality for
cache optimization.

6.2. Sequential performance evaluation

6.2.1. Execution time
ShaFEM outperforms other well-known sequential algorithms for mining association for sparse and dense databases as

well. This is demonstrated by benchmarking ShaFEM with other sequential algorithms including Apriori [1], Eclat [10],
FP-growth [11], FP-growth⁄ [18], FP-array [23]. Apriori, which is the most well known and most widely used method for
association rule mining, explores the horizontal data format for its candidate generate-and-test mining strategy. Eclat uses

Fig. 16. Peak memory usage of ShaFEM and FP-array.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 781
TID-list, a vertical data structure. FP-growth, FP-growth⁄ and FP-array apply the mining without candidate generation strat-
egy with FP-tree and arrays, horizontal data structures. ShaFEM is distinguished from other algorithms because it deploys
two dynamic mining strategies compared to the single strategy of the other methods. In this experiment, all algorithms
run on a single core; the test cases use a range of minimum support input values (minsup).

Results show that ShaFEM out performs the compared methods for all test cases. Also we can observe the unstable per-
formance of the other methods for different database characteristics. Fig. 17 presents some results on Chess (dense) and
Kosarak (sparse) datasets. ShaFEM is the best performing method in all cases. Apriori runs slowest on both datasets. FP-
growth, FP-growth⁄ and FP-array performed better than Eclat on the sparse dataset but worst on the dense ones.

6.2.2. Speedup
In order to observe how well ShaFEM performed compared to the other sequential algorithms, we computed the speedup

of ShaFEM compared to Apriori, Eclat, FP-growth, FP-growth, FP-array by dividing their sequential execution times d by the
sequential time of ShaFEM. Fig. 18 presents the speedup values for Chess (dense) and Kosarak (sparse) datasets. Even
Fig. 17. Comparison of sequential execution time of different algorithms on sparse and dense datasets.

Fig. 18. Speedup of ShaFEM on one core compared to sequential algorithms.

782 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
sequentially, ShaFEM runs much faster than the compared methods on both dense and sparse dataset for various minsup
inputs. For example, in our test cases, ShaFEM runs 43.8–323.4 times faster than Apriori; 2.2–19.9 times faster than Eclat;
2.0–9.0 times faster than FP growth, 2.6–17.4 times faster than FP-growth⁄ and 1–18 times faster than FP-array for the range
of minsup values indicated in Fig. 18.

6.3. Analyzing performance merits of ShaFEM

The above results have shown the efficiency of ShaFEM for different data types on both sequential and parallel systems. In
this section, we analyze the key elements that play important roles in performance enhancement of ShaFEM including (1)
the application of two mining strategies in ShaFEM helps the algorithm to adapt better to data characteristics; (2) the
dynamic scheduling method of ShaFEM helps to obtain better load balance; (3) adoption of a new lock free approach in
the construction of XFP-tree.

6.3.1. The impact of combining two mining strategies
To study the benefits of applying the two mining strategies in ShaFEM, we measured the mining time of ShaFEM in three

separated cases: (1) using MineFPTree only, (2) using MineBitVector only and (3) using both MineFPTree and MineBitVector (i.e.,
our approach). From the experimental results (Fig. 19), we observe how and where the combination of the two mining strat-
egies help to significantly improve the overall mining performance on sparse and dense databases compared to the cases that
a single mining strategy has been used. It is important to note that note that a database itself may be considered sparse (or
dense), but also that given a database its data subsets may have dense and sparse characteristics. For example, by applying
both MineFPTree and MineBitVector, ShaFEM runs 2.1–8.9 times faster for Chess dataset and 4.7–6.4 times faster for Kosarak
when compared with the cases of using single mining strategy, Fig. 19. This is explained by the ability of ShaFEM to select the
suitable strategy (i.e. either MineFPTree or MineBitVector) for each subset of data being mined based on their characteristics.
Fig. 19. Impact of combining two mining strategies of ShaFEM compared to using single strategy.

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 783
In Case 1, MineFPTree is applied to mine all data subsets although it is only suitable for the sparse ones. Performance loss
occurs when MineFPTree mines the dense data subsets. In Case 2, all data subsets are mined using MineBitVector which is
more suitable for dense data subsets. As a result, the performance loss occurs when it mines the sparse data portions. Sha-
FEM applies both mining strategies; it selects MineFPTree for the sparse and MineBitVector for the dense portions to improve
the overall performance. Additionally, data characteristics of mining data also vary as minsup changes. For both Chess and
Kosarak, Case 1 runs faster than Case 2 for the larger minsup values but slower for smaller minsup. This is because when min-
sup value reduces, more frequent patterns are generated and the number of small dense data subsets to be processed will be
larger than the number of sparse data subsets making MineBitVector a more suitable option. In such a case, using MineFPTree
only (Case1) not only result in a large performance loss but also it will perform worse than using MineBitVector only (Case 2).
ShaFEM can detect the change of data characteristics to balance the use of its two mining strategies and hence run faster and
stably for various minsup values.

For in-depth understanding of self-adaptive ability of ShaFEM to data characteristics, we measure the amount of time that
ShaFEM spends on each of its two mining strategies separately when both strategies have been applied. Fig. 20 presents their
percentage of time distribution for the six test datasets. The results show that both mining strategies of ShaFEM contributed
to generate the frequent patterns. However, their percentage of contributions varied depending on the data characteristics of
each dataset. The mining strategy using Bit Vector was utilized mostly for the dense datasets. However, the time percentage
of this strategy reduces when the data were sparse. This workload distribution has been done automatically because our
approach dynamical switches between the two mining strategies. The mining strategy using Bit Vector is more suitable
for dense data because the low cost bitwise operations are used to generate the large number of frequent patterns which
are usually found from this type of data. In addition, the bit vector data structure, which is more cache friendly and saves
memory usage, can boost the mining performance. For the sparse portions of the datasets, the number of frequent patterns
is less. Therefore, the mining strategy using FP-tree is a better choice because its mining approach does not require
generating the very large number of infrequent candidate patterns.
6.3.2. The impact of dynamic scheduling
In two mining stages of ShaFEM, the second stage of generating frequent patterns usually accounts for most of the exe-

cution time. In this stage, load balancing is a critical issue. We use the divide and conquer approach for this stage to enhance
parallelism by enabling parallel processes to work independently and select small work portions one at a time (Section 5.1).
Because the workload of each portion varies, dynamic scheduling has been used for load balance. In order to study the
Table 6
Performance of ShaFEM using dynamic scheduling vs. static scheduling on 12 cores.

Fig. 20. Time distribution for two mining strategies of ShaFEM.

Table 7
Performance of ShaFEM using lock vs. lock-free on 12 cores.

784 L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785
efficiency of this scheduling method, we measured ShaFEM in two cases: (1) using static scheduling and (2) using dynamic
scheduling and report the results in 6. Applying dynamic scheduling can increase the mining performance 114–489% in our
test cases (see Table 6).

6.3.3. The impact of constructing XFP-tree
ShaFEM applies a lock-free approach to construct XFP-tree, a new data structure derived from FP-tree to reduce the syn-

chronization need and enhance the parallelism. In order to evaluate the performance benefits of this approach, we imple-
ment a variant of ShaFEM in which parallel processes construct a single shared FP-tree (instead of XFP-tree) by using a
lock for each node of the tree. When a node is updated, the lock of that node will be activated until the updating is complete.
Table 7 presents the execution time of ShaFEM in two cases: (1) build FP-tree with lock; (2) build XFP-tree without lock (i.e.
our proposed solution). The results show that the application of XFP-tree helps increase the mining performance up 22.2%.

7. Conclusion

We have presented ShaFEM, a novel parallel method for association rule mining on multi-core share memory machine,
and its efficiency on different database types via a number of experimental results on a 12-core machine. This dynamic par-
allel method that combines two mining strategies runs faster and consumes less memory than the state-of-the-art methods.
It performs stably on both sparse and dense databases. This method can be used to implement the association rule mining
component of databases management systems and statistical software like Oracle RDBMS, MS. SQL Server, IBM DBS2, R, SAS,
SPSS Clementine, etc. as well as various applications to help the mining task self-adapt to the data characteristics and utilize
the benefits of shared memory in multi-core computers. We will integrate ShaFEM into a mining framework that will exploit
a combination of distributed memory and shared memory computational models to enable this mining task on very large
computer cluster systems.

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Databases, 1994,
pp. 487–499.

[2] S. Brin, R. Motwani, C. Silverstein, Beyond market basket: generalizing association rules to correlations, in: Proceedings of ACM SIGMOD International
Conference on Management of Data (Jun. 1997), vol. 26, no. 2, 1997, pp. 265–276.

[3] C. Silverstein, S. Brin, R. Motwani, J. Ullman, Scalable techniques for mining causal structures, J. Data Min. Knowl. Discovery 4 (2-3) (2000) 163–192.
[4] R. Agrawal, R. Srikant, Mining sequential patterns, Proc. Data Eng. 1995 (1995) 3–14.
[5] H. Mannila, H. Toivonen, A.I. Verkamo, Discovery of frequent episodes in event sequences, J. Data Min. Knowl. Discovery 1 (3) (1997) 259–289.
[6] J. Han, G. Dong, Y. Yin, Efficient mining of partial periodic patterns in time series database, in: Proceedings of IEEE Data Engineering (Mar. 1999), 1999,

pp. 106–115.
[7] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status and future directions, J. Data Min. Knowl. Discovery 15 (1) (2007) 55–86.
[8] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, T. Yiu, MAFIA: a maximal frequent itemset algorithm, IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1490–

1504.
[9] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, PFP: parallel FP-growth for query recommendation, in: Proceedings of the 2008 ACM Conference on

Recommender systems, 2008, pp. 107–114.
[10] M. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New algorithms for fast discovery of association rules, Proc. Knowl. Discovery Data Min. 1997 (1997) 283–

286.
[11] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data (Jun. 2000), vol. 29, no. 2, 2000, pp. 1–12.
[12] J.S. Park, M.S. Chen, P. Yu, An effective hash-based algorithm for mining association rules, in: Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data (May 1995), vol. 24, no. 2, 1995, pp. 175–186.
[13] H. Toivonen, Sampling large databases for association rules, in: Proceedings of the 1996 International Conference on Very Large Data Bases, 1996, pp.

134–145.
[14] S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and implication rules for market basket analysis, in: Proceedings of the 1997 ACM

SIGMOD International Conference on Management of Data, vol. 26, no. 2, 1997, pp. 255–264.
[15] A. Fiat, S. Shporer, AIM: another itemset miner, in: Proceedings of the 2003 Workshop on Frequent Itemset Mining Implementations, 2003.
[16] M.J. Zaki, K. Gouda, Fast vertical mining using diffsets, in: Proceedings of the 2003 ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2003, pp. 326–335.
[17] C. Borgelt, An implementation of the FP-growth algorithm, in: Proceedings of the 1st Workshop on OSDM: Frequent Pattern Mining Implementations,

Aug. 2005, pp. 1–5.

http://refhub.elsevier.com/S0167-8191(14)00112-4/h0240
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0020
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0245
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0250
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0255
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0255
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0050
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0050

L. Vu, G. Alaghband / Parallel Computing 40 (2014) 768–785 785
[18] G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, in: Proceedings of the 2003 Workshop on Frequent Pattern Mining
Implementations, 2003, pp. 123–132.

[19] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang, Hmine: hyper-structure mining of frequent patterns in large databases, in: Proceedings of the IEEE
International Conference on Data Mining (Nov. 2001), 2001, pp. 441–448.

[20] B. Racz, Nonordfp: An FP-growth variation without Rebuilding the FP-tree, in: Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations (Nov. 2004), 2004.

[21] S. Shporer, AIM2: improved implementation of AIM, in: Proceedings of the IEEE Workshop on Frequent Itemset Mining Implementations (Nov. 2004),
2004.

[22] L. Schmidt-Thieme, Algorithmic features of eclat, in: Proceedings of the IEEE Workshop on Frequent Itemset Mining Implementations (Nov. 2004),
2004.

[23] L. Liu, E. Li, Y. Zhang, Z. Tang, Optimization of frequent itemset mining on multiple-core processor, in: Proceedings of the 33rd International Conference
on Very Large Databases, 2007, pp. 1275–1285.

[24] W. Li, A. Mozes, Computing frequent itemsets inside oracle 10g, in: Proceedings of the 30th International Conference on Very Large Databases, 2004,
pp. 1253–1256.

[25] C. Utley, Introduction to SQL server 2005 data mining, Microsoft SQL Server 9.0 technical articles, Jun. 2005. Available at: <http://
technet.microsoft.com/en-us/library/ms345131.aspx>.

[26] T. Yoshizawa, I. Pramudiono, M. Kitsuregawa, SQL based association rule mining using commercial RDBMS (IBM db2 UBD EEE), in: Proceedings of the
2nd International Conference on Data Warehousing and Knowledge Discovery, 2000, pp. 301–306.

[27] L. Vu, G. Alaghband, A fast algorithm combining FP-tree and TID-list for frequent pattern mining, in: Proceedings of the 2011 International Conference
on Information and Knowledge Engineering (Jul. 2011), 2011, pp. 472–477.

[28] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data (Jun. 1993), vol. 22, no. 2, 1993, 207–216.

[29] Frequent Itemset Mining Implementations Repository, Workshop on frequent itemset mining implementation, 2003–2004. Available at: <http://
fimi.ua.ac.be>.

[30] C. Borgelt, Frequent pattern mining implementations. Available at: <http://www.borgelt.net>.
[31] L. Vu, G. Alaghband, Mining frequent patterns based on data characteristics, in: Proceedings of the 2012 International Conference on Information and

Knowledge Engineering (Jul. 2012), 2012, pp. 369–375.
[32] L. Vu, G. Alaghband, High performance frequent pattern mining on multi-core cluster, in: Proceedings of the 2012 IEEE International Conference on

Collaboration Technologies and Systems (May 2012), 2012, pp. 630–633.
[33] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP parallel programming on clusters of multi-core SMP nodes, in: Proceeding of the 17th

Euromicro International Conference on Parallel, Distributed and Network-based Processing (Feb. 2009), 2009, pp. 427–436.
[34] M.J. Zaki, Parallel and Distributed Association Mining: A Survey, IEEE Concurr. J. 7 (4) (Oct.–Dec. 1999) 14–45.
[35] R. Garg, P.K. Mishra, Some observations of sequential, parallel and distributed association rule mining algorithms, In: IEEE Proceeding of the 2009

International Conference on Computer and Automation Engineering (March 2009), 2009, pp. 336–342.
[36] D. Chen, C. Lai, W. Hu, W. Chen, Y. Zhang, W. Zheng, Tree partition based parallel frequent pattern mining on shared memory systems, in: Proceeding of

the 20th International Conference on Parallel and Distributed Processing, 2006, pp. 313–320.
[37] H.D.K. Moonesinghe, M.J. Chung, P.N. Tan, Fast Parallel Mining of Frequent Itemsets, Michigan State University.
[38] S.K. Tanbeer, C.F. Ahmed, B.S. Jeong, Parallel and distributed frequent pattern mining in large databases, in: Proceeding of the 11th IEEE International

Conference on High Performance Computing and Communications, 2009, pp. 407–414.
[39] C. Bienia, The PARSEC Benchmark Suite: Characterization and Architectural Implications (PARSEC – freqmine), Princeton University Technical Report TR-

811-08, Jan. 2008, Available at: <http://parsec.cs.princeton.edu>.
[40] J. Li, Y. Liu, W. Liao, A. Choudhary, Parallel Data Mining Algorithms for Association Rules and Clustering, CRC Press, 2006. pp. 3–5.
[41] O.R. Zaiane, M. El-Hajj, P. Lu, Fast parallel association rule mining without candidacy generation, in: Proceedings of the IEEE 2001 International

Conference on Data Mining (ICDM, 2001), 2001, pp. 665–668.
[42] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, F. Silvestri, KDCI: a multi-strategy algorithm for mining frequent sets, in: Proceedings of ICDM

Workshop on Frequent Itemset Mining Implementations, 2003.
[43] T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets, in: Proceedings of ICDM Workshop on

Frequent Itemset Mining Implementations, 2004.
[44] M. Hahsler, B. Grün, K. Hornik, C. Buchta, arules – A computational environment for mining association rules and frequent item sets, J. Stat. Softw. 14

(15) (Oct. 2005).
[45] L.E. Hen, S.P. Lee, Performance analysis of data mining tools cumulating with a proposed data mining middleware, J. Comput. Sci. 4 (2008) 826–833.
[46] L. Vu, G. Alaghband, Novel parallel method for mining frequent patterns on multi-core shared memory systems, in: Proceedings of the 2nd

International Workshop on Data-Intensive Scalable Computing Systems, Nov. 2013, pp. 49–54.
[47] Code Analyst, AMD. Available at: <http://developer.amd.com/tools-and-sdks/archive/amd-codeanalyst-performance-analyzer/>.

http://technet.microsoft.com/en-us/library/ms345131.aspx
http://technet.microsoft.com/en-us/library/ms345131.aspx
http://fimi.ua.ac.be
http://fimi.ua.ac.be
http://www.borgelt.net
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0260
http://parsec.cs.princeton.edu
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0265
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0265
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0270
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0270
http://refhub.elsevier.com/S0167-8191(14)00112-4/h0275
http://developer.amd.com/tools-and-sdks/archive/amd-codeanalyst-performance-analyzer/

	Novel parallel method for association rule mining on multi-core shared memory systems
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Paper organization

	2 Background
	2.1 The problem statement
	2.2 Sequential association rule mining
	2.3 Parallel association rule mining

	3 ShaFEM: a novel parallel association rule mining method
	3.1 The overview of ShaFEM
	3.2 The data structures

	4 XFP-tree construction
	5 Frequent pattern generation
	5.1 Parallel frequent pattern generation based on data characteristics
	5.2 Switching between two mining strategies

	6 Performance evaluation
	6.1 Experimental setup
	6.1.1 Execution time
	6.1.2 Speedup
	6.1.3 Memory usage

	6.2 Sequential performance evaluation
	6.2.1 Execution time
	6.2.2 Speedup

	6.3 Analyzing performance merits of ShaFEM
	6.3.1 The impact of combining two mining strategies
	6.3.2 The impact of dynamic scheduling
	6.3.3 The impact of constructing XFP-tree

	7 Conclusion
	References

