
          
 

 Abstract— Diabetic Retinopathy (DR) and Age-related 
Macular Degeneration (AMD) are two common vision 
threatening eye conditions. In a large-scale screening 
environment DR and AMD can be assessed by detecting 
specific retinal findings in fundus images. In this paper, we 
introduce a new deep learning based feature extractor for 
automatic classification of DR and AMD from fundus 
images. We used a small dataset containing 60000 images 
with four severity levels of DR and two classes of AMD to 
design and fine-tune a deep learning model called RetiNet. 
This dataset, which consisted of two publicly available 
datasets (MESSIDOR and Kaggle), was augmented and 
employed to evaluate RetiNet. RetiNet can achieve 
diagnosis performance comparable to retina experts on the 
MESSIDOR dataset with cross-dataset testing (i.e., the 
feature extractor was trained on an independent dataset 
and tested on MESSIDOR). Our algorithm obtained an 
average accuracy of 88% on the validation set.     
               
Keywords—Age-related Macular Degeneration (AMD), 

Artificial Neural Network (ANN), Convolutional Neural 
Network(CNN), Deep Learning, Diabetic Retinopathy(DR) 

I. INTRODUCTION 
 
Applying deep learning automation to medical image analysis 
such as discovering patterns of symptoms of unhealthy medical 
conditions and distinguishing these patterns from those that are 
healthy, requires domain specific and expert level 
understanding of the medical condition as well as thoughtful 
consideration of the manual procedures experts use to diagnose 
patients.  Since its conception, deep learning has received 
considerable attention from the medical community and thus far 
has been effective in several application areas such as the 
prognosis of Alzheimer’s disease and cognitive impairment, 
organ segmentation and detection [1], detecting signs of 
diabetic retinopathy [2] and age-related macular degeneration 
[3] from retinal fundus images. In this paper, we discuss our 
approach to automated diagnosis of eye conditions that utilizes 
recent advances in deep learning. Our strategy takes both the 
characteristics of domain data and the manual steps involved 

 
  

into account. We present a deep neural network that achieves 
an exceptional performance in fundus image diagnosis in an 
experimental setting. In ophthalmology, fundus photos of the 
retina can be used to make diagnoses of diabetic retinopathy 
and macular degeneration.  Although the focus of our study is 
abnormality detection in fundus images, the study was crafted 
to understand the steps required to develop a functional deep 
learning algorithm for medical use and steps highlighted here 
apply to any other medical domain in which deep learning is a 
potential solution. In addition, we present both the success and 
failures of all the approaches we took and the pros and cons of 
certain design and architectural considerations specific to 
retinal image analysis. 
The goals and contributions presented in this paper are: 

1. We present the design and analysis of a deep convolutional 
neural network (CNN, ConvNet) called RetiNet (acronym for 
retinal fundus image feature extraction network) and discuss 
the experimental results and lessons learned during the study. 
Fundus images and different disorders of the eye that manifest 
themselves in the retina make up the dataset used for the design 
and development of RetiNet. In ophthalmology, fundus photos 
of the retina can be used to make diagnosis of diabetic 
retinopathy and macular degeneration. 

2. Several research papers [2], [3] have been published 
discussing the application of deep learning to the medical 
domain mentioned above. However, many use transfer learning 
(i.e. transferring parameters from a network trained on a 
different dataset) and fine-tuning the network to the domain 
task. In this regard, the contribution of this paper is to present 
our network design approaches that enabled our network to 
achieve exceptional performance using small publicly available 
datasets as well as to present a deep learning model, fully 
trained and validated from scratch, that can be used as a feature 
extraction base for future deep learning research on retinal 
fundus image classification. 

3. We present the steps required to develop a functional deep 
learning algorithm for medical use. In addition, we present both 
the success and failures of approaches we took and the pros and 
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cons of certain design and architectural considerations specific 
to retinal image analysis.  

4. A major goal of our study is to initiate an open source 
development for deep learning solutions for eye exams without 
monopolizing the data used and without involving hospitals or 
clinics for the study. To start with, we took most of the publicly 
available datasets and defined good model images for each class 
with the help of experts. Next, we applied label preserving 
augmentation, and preprocessing techniques to enhance our 
dataset both in volume and variety. This is key since we 
considered only publicly available datasets for the initial study.  

5. Qualification of the network for clinical use is not part of this 
study but is part of our end goal which will involve not only 
more experts in the field but also validation through clinical use 
in clinical setting. In this regard, we take an uncommon 
approach to build a network that is suitable for the intended 
domain by making our development process data driven. 
Hence, another contribution of this paper is to share our 
approach to inspire deep learning researchers to consider our 
approach to relieve themselves of the burden of data when 
considering a similar research. 
This paper continues with a description of the dataset and 
targeted problem domain in Section 2. Section 3 discusses the 
architecture of the automation algorithm followed by the 
training and validation methodologies used to deploy RetiNet 
in Section 4. Section 5 presents the dataset, preprocessing, and 
augmentation techniques employed to increase the volume and 
variety of the training set. In Section 6 we present results for the 
diagnosis on the various classes of diabetic retinopathy and age-
related macular degeneration of the test set. Concluding 
remarks and discussion of future work are covered in Section 7. 

II. PROBLEM DOMAIN AND SAMPLE SET DESCRIPTION 
Ophthalmology and optometry are the two professions where 
an automation algorithm like RetiNet can expedite the 
traditional manual process experts employ to diagnose a patient. 
Since the dataset used contains retinal fundus images, the focus 
of the design and development of RetiNet is to build a common 
feature extraction base for future research involving fundus 
images and to elevate the ever-growing disadvantage of binding 
deep learning research to datasets by providing a pre-trained 
RetiNet to be used as an extraction base for our ongoing 
researches. Hence, we detail our work on characteristics of 
fundus images as the driver for the design of RetiNet.  
Deep neural networks learn robust features from large amount 
of dataset and the ability to learn distinguishing factors 
increases when there is enough volume and variety of samples 
in the dataset. The dataset we used is small compared to typical 
datasets for deep learning models. To tackle this limitation, we 
have studied the image characteristics of each class in the 
dataset and developed algorithms for augmenting and 
preprocessing the dataset that results in an exceptional 
performance. For this publication, we consider two common 
eye conditions; diabetic retinopathy (DR) and age-related 

macular degeneration (AMD) – the two leading causes of vision 
loss around the world [2] [3]. 

A. Diabetic Retinopathy 
Diabetic retinopathy (DR) is a diabetes complication that 
affects the eye [10] [11]. It causes progressive damage to the 
retina and it can be a sight-threatening complication if left 
untreated. Its primary cause is the damage to blood vessels of   
the light-sensitive tissue in the retina. In its early stages, DR 
may exhibit no symptoms or only cause mild vision problems. 
If the disease is not diagnosed early, it can eventually cause 
blindness [12]. The risk of developing retinopathy increases 
after puberty. Twenty years after the diagnosis of diabetes, 80% 
of type 2 diabetics and nearly all type 1 diabetics show some 
signs of retinopathy [13]. Thus, most guidelines recommend 
annual screening for those with no retinopathy, 9 months for 
mild diabetic retinopathy, repeat examination in 6 months for 
moderate diabetic retinopathy, and closer follow up for any 
stage more severe than moderate diabetic retinopathy or 
clinically significant macular edema. 

B. Age-related Macular Degeneration 
Age-related macular degeneration (AMD) is the leading cause 
for irreversible blindness around the world [6]. AMD is caused 
by the deterioration of the macula [8]. Macula is a region of the 
retina which is responsible for focusing central vision in the 
eye. AMD can be classified into two main categories: exudative 
(wet) AMD or non-exudative (dry) AMD based on presence or 
absence of abnormal neovascularization. Dry AMD is 
characterized by drusen or abnormalities in the retinal pigment 
epithelium.  Wet AMD is characterized by the presence of 
choroidal neovascularization (CNV), which can disrupt or 
destroy the retina or its supporting tissues. Clinically this can 
manifest as subretinal or intraretinal lipid, fluid or blood.  
Sometimes the gray-green CNV can be seen directly [9].  
 
We designed a deep learning based automated grading 
algorithm that distinguishes between different severity levels of 
DR and classes of AMD. We discuss the details of the algorithm 
and training procedure in section III and IV respectively. The 
different severity classes of DR and conditions of AMD 
included in this study are summarized in Table 1. 

 
Class Description 

0 Normal: No Diabetic Retinopathy or Macular 
Degeneration 

1 Mild Nonproflierative DR 
2 Moderate Nonproflierative DR 
3 Severe Nonproliferative DR or Proliferate 

Diabetic Retinopathy 
4 Dry AMD 
5 Wet AMD 

Table I: Percentage of clinical rating of diabetic retinopathy 
and macular degeneration 
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III. RETINAL FUNDUS IMAGE FEATURE EXTRACTION 
NETWORK (RETINET) 

The RetiNet automation algorithm is based on deep ConvNet. 
Due to space limitations, a familiarity with Deep Convolutional 
Networks is assumed. [13] [17] are excellent resources for 
detailed coverage. Deep ConvNets are a category of Deep 
Neural Networks that consist of several processing layers 
including convolutional layers. The layers consist of several 
parameters that a training algorithm tunes using training dataset 
and ground truth label of each example in the dataset. 
Convolutional layer and the associated convolution filtering are 
two core building blocks of ConvNets. Convolution filtering 
modifies the special frequency characteristics of the input at 
each layer and construct feature maps using responses from 
local regions of the input. The convolution filter consists of 
learnable parameters and is used as a feature detector that 
encodes the type of feature in a feature map – an output a 
convolutional filter. Our network applies small filters in each 
layer to extract the different abnormalities from our dataset and 
uses a fully connected layer to distinguish between 5 classes 
based on the amount and severity of these abnormalities.  Most 
deep retinal diagnosis publications have focused on transfer 
learning due to the lack of availability of big datasets. Those 
networks that rely on fine tuning use selective training 
approaches to reduce overfitting and to increase accuracy. Our 
approach attempts to characterize network relationship to data 
and we adhere to training from scratch without transfer learning 
and selective sampling.  
At the start of our study, we adopted AlexNet [16]– a deep 
convent architecture that, for the first time, outperformed 
traditional machine vision techniques at visual recognition 
tasks–as the base model for the development of RetiNet. 
AlexNet is a large deep convent trained to classify about 1.3 
million high-resolution images into 1000 different classes. In an 
annual ImageNet Large Scale Visual Recognition Challenge 
(ILSRVC), AlexNet achieved an error rate of 39.7%, which was 
considerably better than the previous top results. AlexNet has 
60 million parameters and 500000 neurons. The architecture 
consists of five convolutional layers, some of which are 
followed by max pooling layer and a fully connected layer with 
1000-way classification output.  
During the development and validation of RetiNet we modified 
AlexNet architecture to fit our dataset. RetiNet consists of about 
12.9 million parameters and 134000 neurons. 

A. Model Architecture  
RetiNet architecture consists of 5 convolutional layers followed 
by rectified linear unit (ReLU) non-linearity for response 
normalization. Each convolution layer applies a 3x3 filter to the 
input. As depicted in Fig. 6, there are two variations in how 
convolution is applied to the input data. Inspired by AlexNet 
[16], RetiNet uses Net A and B in alternation to extract features 
of interest from the input. Two stacks of nets A and B are 
employed in RetiNet for maximum classification accuracy. The 
first convolutional layer of Net A filters the 512x512 input 
image using a 3x3 filter with a stride of 1 pixels. We 

experimented with different values of stride and the most stable 
results were achieved when the stride values of all 
convolutional filters were set to 1. The second convolution 
layer takes as input a pooled and response-normalized feature 
maps of the first layer and filters them with a kernel of size 3x3. 
The outputs of the second convolution layer are then pooled and 
passed to the first convolution layer of Net B which performs 
two convolutional passes with a kernel size of 3x3 and outputs 
192 feature maps. The second convolution layer of Net B 
convolves the feature maps generated by the first layer with a 
kernel size of 3x3 at a stride 1. The final convolution layer 
outputs a pooled feature map convolved with a kernel size 3x3 
and passes the 256 feature maps to the classification network. 

 
Fig.  6. RetiNet convolutional layer stacks that serve as feature 
extraction base for DR and AMD classification 
 
The last layer of Net B is connected to a 6-way fully connected 
(FC) classification network which produced a probabilistic 
distribution over the six fundus severity classes. RetiNet 
minimizes training loss by computing the categorical cross-
entropy loss between the output of the network and the expected 
output.  
AlexNet applies a 7x7 filter to the input image and uses smaller 
filters as the input is downsized in lower layers. We attempted 
this configuration on our dataset and the network stagnated at 
error rates up to 62%. Unlike AlexNet, RetiNet is designed to 
capture small and irregular features that distinguish normal 
retina image from the other classes. For this reason, we used 
filters of size 3x3 in all convolutional layers with minimal 
downsizing of the input. 

IV. TRAINING AND VALIDATION 
RetiNet was trained using stochastic gradient descent 
(Algorithm 2) with a minimum batch size of 16 examples. The 
momentum used was equal to 0.9 while weight decay of 
0.00005. A small amount of weight decay is important to 
regularize the network and as well as to reduce training errors. 
For every training iteration, learning rate, and momentum, 
RetiNet applies the following update rule for each weight.  

       (2) 
                                                    (3) 

where   is the average over the ith training batch of 
the derivative of the objective function with respect to , 
evaluated at  [16]. 
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V. DATASET 
Deep learning methods are generally effective when trained on 
large datasets. Due to the lack of publicly available datasets for 
diagnosing retinal fundus image we have employed several 
augmentation techniques to increase the amount and variety of 
learned features for better generalization. A total of 62578 
images were used to train and validate the model. The number 
of images in each set are listed in Table II. The severity 
classification of each image in the data set is provided in Table 
I. Since the images were collected from various sources, the 
dataset contained resolutions of varying degrees which required 
preprocessing for normalization. 

A. Dataset Sources 
1) Kaggle 
The Kaggle dataset consist of 35,126 training images graded 
into five DR stages and 53,576 test images with undisclosed DR 
stage. Images were acquired using multiple fundus cameras and 
different field of view. Details about image acquisition, such as 
camera type and field of view, are not revealed. More 
information about the data can be found in the Kaggle 
Retinopathy challenge website. 
2) Messidor 
The publicly available Messidor database consists of 1200 
images acquired at three different sites. Images were acquired 
using a color video 3CCD camera on a Topcon TRC NW6 non-
mydriatic retinograph with a 45-degree field of view. The 
images have resolutions of 1440 960, 2240 1488 or 2304 1536 
pixels. The Messidor set was exclusively used as an 
independent set for validating RetiNet performance on DR. 
3) UCH-AMD 
This dataset was obtained from the Ophthalmology Department 
at Anschutz Medical Campus. The set consists of 197 images 
of Wet and Dry AMD as well as fundus images with vein 
occlusions. Only the AMD samples were used for this study.  
This study received approval from the Colorado Multiple 
Institutional Review Board (COMRBB).  

Grade Number of Samples 
0 10784 
1 10886 
2 10584 
3 10162 
4 10042 
5 10120 

Total 62578 
Table II: Grade distribution in training and validation 

samples 

B. Preprocessing 
To increase the number of features to be learned, the images in 
the data set were preprocessed for noise reduction, to increase 
contrast between background and retina, and to increase 
illumination by equalizing color distribution. The techniques 
for preprocessing include resizing each image to 512x512, 
applying a digital filter to enhance the image quality by 

reducing noise and histogram equalization. In addition, to make 
the resolution of the retinal fundus image consistent across all 
examples and to increase the number of samples to avoid 
overfitting, we employed a subsampling algorithm and 
augmentation technique discussed below. 
1) Histogram Equalization 
Histogram Equalization was a preprocessing step taken to 
adjust the contrast using each channel’s intensity distribution. 
Because of this preprocessing the dark area in the input retina 
image with low illumination becomes brighter, while the 
brighter areas are normalized to maintain consistent contrast 
across the entire region of the image. 

 
Fig. 7.  a) Original sample and b) the sample after histogram normalization 

C. Subsampling 
As a measure to battle overfitting, both left and right retinal 
fundus model images were defined to allow filtering of 
redundant and defective samples that do not fall within a certain 
threshold. This is a form of in-training selective sampling used 
in [16] but we perform the subsampling as a preprocessing step. 
The iterative algorithm for selecting samples follows these 
steps: 

Require: Input dataset  
1. Choose a sample x from Dataset 
2. If x is left   dif = comp(x,model_left) 
3. If x is right  dif = comp(x,model_right) 
4. If dif < threshold  include sample 
5. If dif > threshold  exclude sample 

Algorithm 2: Selective sampling procedure to clean and normalize 
dataset 

The function, comp, computes the percentage difference 
between a sample and the model images. Images having more 
than 20% diff value were excluded from training set. This 
preprocessing step ensures consistency in size and resolution of 
the retinal fundus relative to the background across all samples 
in training and test sets. 

 
Fig. 8: a) right lateral retinal fundus model image and b) left lateral retinal 
model fundus image 
In addition, to minimize the number of parameters and to avoid 
unnecessary input to our network from the background of the 
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images, we cropped a rectangle containing the large patch of 
the retina. The cropping was performed in four regions of the 
original image. We made each crop differ from the previous by 
3 pixels horizontally and vertically to generate four samples per 
each sample. This increased the test accuracy of the network by 
10% and the volume of the dataset by a factor of four.  

D. Augmentation 
Performance of RetiNet was poor when trained on our original 
small dataset which also contained a non-normal distribution of 
sample labels. The network learned enough features from the 
normal retinal fundus images which constituted 60% of the 
dataset and the learning curve stagnated at 60%. We knew the 
amount of data used was not enough since deep networks need 
to be trained on a vast number of training images to avoid 
getting stuck in local minima. To achieve a satisfactory training 
performance, we applied label-preserving data augmentation 
techniques. These techniques exploited special invariance of 
the samples. The techniques – rotation, cropping, and zooming 
and color perturbation – allow transformed images to be 
produced from each original sample with very little deviation 
from the original but with enough distinguishable factors. With 
this RetiNet could overcome overfitting. 

VI. RESULTS 
The training and validation of RetiNet was performed on a 
machine with an Intel Xeon® CPU. It also consisted of one 
NVIDIA GeForce GTX 1080 with 3840 cores, 320 GB/s 
memory bandwidths and a core clock of 1126 MHz which was 
heavily utilized for training and validation. Microsoft’s deep 
learning framework, Cognitive Toolkit (CNTK) was chosen for 
the design, training and validation of RetiNet. We used the C# 
API to evaluate RetiNet’s performance on all Messidor and 
AMD samples. The dataset containing samples across all DR 
and AMD conditions is summarized below. 
 

Grade Number of Samples 
0 479 
1 133 
2 219 
3 169 
4 30 
5 30 

Total 1060 
Table III: Grade distribution in test set 

A. RetiNet Training Performance 
During training, performance was measured on the monitoring 
set during the CNN training process. Fig. 9 shows the accuracy 
values measured on image level as function of the number of 
training epochs. An epoch is single forward and backward pass 
of the network on all training samples [13]. The performance of 
increased over time and finally converged to a stable maximum 
accuracy of 99.875%. This maximum performance was 
achieved after 60 training epochs.  

 
Fig.  9.  Training performance of RetiNet 

B. Retinopathy Grading Performance 
RetiNet model trained for 112 epochs was used to test the 
prediction performance. Two performance metrics were used to 
assess the ability of RetiNet to correctly classify retinal fundus 
images into grades listed in Table I. We computed the 
sensitivity and accuracy of the network. The sensitivity and 
accuracy can be computed as: 

                       (4) 

              (5) 

where  is the number of abnormal retinal fundus images 
classified as abnormal,  is the number of normal fundus 
images found as normal,  is the number of normal images 
classified as abnormal and  is the number of abnormal 
images classified as normal. In addition, the confusion matrix 
of the network over the entire dataset is presented in Table IV.   
The sensitivity values also correspond with what is known 
clinically.  Categories 0-4 performed with similar sensitivities.  
This is consistent with the idea that these diagnoses can be made 
with fundus photography alone.  However, category 5, or wet 
macular degeneration has a lower sensitivity than the other 
categories.  This can be explained because wet AMD can have 
subtle findings on fundus photography that can be difficult to 
see because the 3-dimensional picture of the retina can be hard 
to see from a fundus photograph.  In clinical practice, 
adjunctive testing with fluorescein angiography or optical 
coherence tomography are often used to help make the 
diagnosis by imaging CNV or visualizing the 3D structure of 
the retina.  

 
Output Grades Total 

  0 1 2 3 4 5   

Positive  450 110 189 150 25 16 940 

Negative 29 23 30 19 5 14 120 

Total 479 133 219 169 30 30 1060 
Table IV: Prediction performance of RetiNet 
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2 12 18 189 0 0 0

3 14 0 2 150 3 0

4 5 0 0 0 25 0

5 11 5 0 0 0 16

Table V: Confusion matrix of RetiNet on hold out dataset. The total 
number of samples are N = 1060 

 

 
Fig.  10.  RetiNet grade sensitivity on test samples. 

VII. CONCLUSION 
Diabetic Retinopathy and Age Relate Macular Degeneration are 
two diseases which can cause vision loss rapidly. In this paper, 
we presented the design and development of a network which 
achieved training performance of 43% error rate when trained 
using of the shelf publicly available datasets. To increase the 
performance, we improved the quality of the dataset by 
applying preprocessing techniques such as histogram 
normalization, cropping, and subsampling. The preprocessing 
techniques alone were not enough to achieve reasonable 
performance; thus, the set was augmented to increase in volume 
and variety. The augmentation techniques included mirroring 
and other label-preserving image processing techniques. After 
adding a considerable number of additional samples to the 
dataset, features were then extracted using deep convolutional 
network called RetiNet, consisting 5 convolutional filters with 
3x3 kernel size. Extracted feature were then used to fine tune a 
fully connected classification network that minimized a loss 
function. To measure its effectiveness, we applied RetiNet to a 
set of unseen DR and AMD samples and achieved 88% correct 
prediction rate. 
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