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Abstract
We describe a quantitative and practical framework to integrate curriculum learning (CL) into deep learning training pipeline 
to improve feature learning in deep feed-forward networks. The framework has several unique characteristics: (1) dynamic-
ity—it proposes a set of batch-level training strategies (syllabi or curricula) that are sensitive to data complexity (2) adap-
tivity—it dynamically estimates the effectiveness of a given strategy and performs objective comparison with alternative 
strategies making the method suitable both for practical and research purposes. (3) Employs replace–retrain mechanism 
when a strategy is unfit to the task at hand. In addition to these traits, the framework can combine CL with several variants 
of gradient descent (GD) algorithms and has been used to generate efficient batch-specific or data-set specific strategies. 
Comparative studies of various current state-of-the-art vision models, such as FixEfficentNet and BiT-L (ResNet), on several 
benchmark datasets including CIFAR10 demonstrate the effectiveness of the proposed method. We present results that show 
training loss reduction by as much as a factor 5. Additionally, we present a set of practical curriculum strategies to improve 
the generalization performance of select networks on various datasets.

Keywords Curriculum learning optimization · Convolutional neural network · Deep learning · Information theory · 
Syllabus · Curriculum strategy

Introduction

Curriculum learning, which initially, in the context of 
machine learning, was formalized by Bengio et al. has in 
recent years gained some traction as a potential technique 
to further improve deep learning [1–5]. The general ques-
tion CL attempts to answer is the question of how to find 
ordering of samples in which to supply and effectively train a 
model for a given task. Most curriculum learning techniques 
get their inspiration from human learning where training is 
highly organized, based on education system and a curricu-
lum which usually enables learning concepts in gradually 

increasing levels of difficulty while considering previously 
learned concepts [1]. In machine learning, CL attempts to 
find some optimal sequence of training input (or training 
tasks for transfer learning) in which to present to the learn-
ing system to optimize the learning process compared to 
no-curriculum training.

In this text, we extend curriculum learning based on rank-
ing or weighing (as defined by Bengio et al.) of individual 
samples with dependency ranks that relate two or more sam-
ples. The core idea as described in Ghebrechristos et al. is to 
present training sample to the system with samples such that 
adjacent samples have higher dependency rank than those 
that are not adjacent. Ranking may be based on a metric 
that measures the information content, overlap or statistical 
dependency between samples.

The main challenge and the reason why CL remains in 
the fringes of practical machine learning research, is partly 
due to our inability to efficiently determine the ‘presumed 
difficulty’ of training sample, or effectiveness of a syllabus, 
without supervision. Moreover, even when such a sequence 
is provided by a human teacher, it may not reflect the true 
difficulty in the perspective of the learning system. For 
example, in visual object recognition using feed-forward 
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networks, it has been demonstrated that what makes an 
image difficult to a human observer may not always match 
whatever makes it difficult to a neural network classifier 
[6, 7]. This observation has been taken advantage of in the 
recent work on adversarial examples [8] and improved fea-
ture extraction [9] and is potentially why handcrafting an 
optimal training syllabus is impractical.

In the second part of this text, we explore the practical-
ity of curriculum learning using a framework designed to 
automatically rank samples, propose and evaluate the effec-
tiveness of an input sequence (syllabus) all by dynamically 
analyzing training samples, without supervision. This also 
alleviates the need for a human teacher to provide a reliable 
difficulty score (i.e. handcrafted syllabus), or when obtaining 
such a score by human teachers or transfer learning is too 
costly. The framework is also adaptive, in that it dynami-
cally detects and updates a syllabus that is unfit for the task 
at hand.

In contrast to previous work, our method adopts image 
processing and information theory techniques to discover 
optimal input paths in the optimization landscape by assess-
ing content of individual samples and their relationship to 
other samples in the dataset. Why is this a promising idea? 
There are two reasons. First, let us again consider human 
learning via curriculum. Two concepts that are close to each 
other (i.e. one concept depends on the other) are typically 
adjacent to each other in the syllabus. For instance, take 
a syllabus for Algebra course, where it is only sensible to 
present relations and functions after presenting multi-step 
equations and inequalities which in turn depend on basic 
concepts, such as arithmetic. For the learning to be effective, 
a concept or related concepts are presented after their pre-
requisites have been presented. Hence, in human learning, 
a syllabus ensures presentation of concepts that minimize 
confusion or maximize the chances of the student grasping 
and applying the concepts. This idea can directly be trans-
lated to machine learning language where a training syl-
labus presents samples such that their ordering ensures the 
minimization of training loss at each iteration while improv-
ing generalization performance. Although, this is the main 
motivation behind the design and implementation of our 
framework, we also consider two unique properties of deep 
neural networks that informed our methodology, namely the 
fact that most feed-forward networks behave like univer-
sal approximators [10] and their ability to learn and make 
relevant predictions when trained with noise-only data [6]. 
Intuitively, we believe these characteristics are reminiscent 
of their ability to discover complex functions that map indi-
vidual training samples in a dataset to a corresponding label 
regardless of the features present in each sample. That is to 
say, the networks will find the most approximate function 
based solely on the dataset. With this observation, we can 
safely hypothesize that deep neural networks, when trained 

using deep learning techniques, are universal pattern extrac-
tors, not only the human recognizable pattern ones, but also 
patterns not visible to a human observer (noise-only dataset). 
This in turn allows us to venture out to explore weighting or 
raking strategies that do not rely on neither the network itself 
nor human but rather the dataset and its characteristics. Sec-
tion 2 describes a framework, Deep-CLO, which by design 
exploits these observations for non-convex optimization.

To quantify our approach, we perform empirical evalua-
tion and compare the performance of various models when 
using a curriculum which is based on different ranking 
options, and one control condition where low-ranked exam-
ples are presented first. The main results of this empirical 
study can be summarized as follows: (1) Convergence is 
always faster with curriculum learning. That is, models 
trained using curriculum learning achieve similar loss as 
no-curriculum training in a smaller number of iterations. 
(2) CLO has favorable impact on generalization, especially 
when the conditions for learning are hard: the task is dif-
ficult, a number of classes are significant, etc. (3) Networks 
training using curriculum sometimes achieve better gener-
alization results in a smaller number of iterations compared 
to baseline, no-curriculum, training.

The contribution of this work is twofold: (1) we present 
the design and implementation of Deep-CLO that enables 
in-depth experiments of CL strategies while simplifying 
the experimentation process involving curriculum learning, 
(2) subsequently, we use this framework to identify train-
ing strategies that improve training and generalization per-
formance of convolutional neural network (CNN) on select 
classification tasks.

The following section presents the theoretical merit of 
our extended definition, termed curriculum learning opti-
mization (CLO), in the context of gradient descent (GD) 
algorithms and non-convex objective functions. We first 
define the effectiveness metric of a curricula for a given 
task as the aggregated loss with respect to the optimal clas-
sifier over a fixed number of training steps. We then prove 
that curriculum learning combined with various optimizers 
under different setups can significantly alter the optimization 
landscape in favor of convergence speed. This is supported 
by empirical evidence obtained by training several past and 
present state-of-the-art convolutional network architectures. 
We also show an improved generalization performance of 
networks trained using CLO.

Deep‑CLO: Deep Curriculum Learning 
Optimization

We consider supervised learning tasks, such as 
classification [11, 12], comprising a training set 
T =

{(
x�, y�

)
,
(
x�, y�

)
,… ,

(
xn, yn

)}
 consisting n pairs of 
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feature-label vectors, where the feature vector xi ∈ ℝ
d2x 

and the corresponding label vector yi ∈ ℝ
d2y are of dimen-

sions dx and dy , respectively. A classification model can 
then be represented as mapping F(;�) ∶ X → Y  , where X 
and Y  denote the feature and label spaces, respectively, 
and � denotes the variable vector (candidate network 
weights) involved in the mapping [13]. Given a feature 
vector xi ∈ X  , we represented the output of the model 
as ŷi = F

(
xi;𝜃

)
 and the error or loss of the model rela-

tive to the true label yi as e
(
ŷi, yi

)
 . Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Hinges Loss and 
Cross-Entropy Loss are amongst the loss functions used 
to measure errors introduced bythe model [14]. In this 
text, we emphasize the error function commonly used in 
classification tasks, the cross-entropy loss:

Depending on the number of classes involved as well 
as the activation functions being used for the model, the 
cross-entropy function can be specified as sigmoid cross 
entropy [13] which is great for binary classification tasks 
with sigmoid function as the activation function for the 
output layer or softmax cross entropy [14] used for multi-
class classification tasks with softmax function as the 
activation function. Given a loss function, the error of the 
model on the task can be represented as the sum of the 
errors on individual examples:

The purpose of curriculum learning optimization (CLO) 
is then to minimize the total loss introduced on the training 
set to achieve the most optimal set of weights � . Formally, 
the objective function or criterion of deep learning model 
training can be represented as follows:

where Θ = ℝ
d2� denotes the variable domain or weight space 

of the model and d� denotes the dimension of variable vec-
tor �.

CLO achieves E∗ by proposing training input sequence 
(syllabus) for training via curriculum and by employing 
gradient decent (GD) to iteratively move in the direction 
of the steepest decent using directional derivative and 
negative gradient [15]. In other words, since the negative 
gradient −∇�E points directly opposite to E, we can mini-
mize E by moving in the direction of the negative gradient 
using an input sequence that favors the global minima, i.e. 
at every iteration, gradient decent proposes a new value 

(1)e��
(
ŷi, yi

)
= −

dy∑

j=�

yi(j)���ŷi(j).

(2)E(𝜃 ∶ T) =
∑

(xi,yi)∈T

e
(
ŷi, yi

)
=

∑

(xi,yi)∈T

e
(
F
(
xi;𝜃

)
, yi

)
.

(3)E∗ = min
�∈Θ

E(� ∶ T),

E� = E − �∇�E(�), where � is the learning rate, a positive 
scalar determining the size of the update step. CLO is said 
to have converged when every element of the gradient is 
close to zero.

Deep curriculum learning optimization (Deep-CLO) is 
an umbrella term we use to describe our framework which 
can be used for training by combining CL with conventional 
deep learning techniques. As stated above, the loss functions 
used in deep learning usually have highly non-convex shape 
with many local minima, so the order in which training sam-
ples are presented have impact on learning. In contrast to 
conventional training, which only shuffles batches of training 
samples at most to achieve decent local minima, Deep-CLO 
uses an informed and deterministic ordering of samples to 
a similar end.

As described in Ghebrechristos et  al., a curriculum 
strategy (or a syllabus) is decoupled from the core opti-
mization algorithm as well as the model architecture. This 
choice is also inspired by how curriculum is employed in 
human learning (Sect. 1). A curriculum in human learning 
is applied to several students whose learning abilities may 
vary. Similarly, Deep-CLO is designed to enable optimiza-
tion of various models having different architectures. This 
alleviates the need for the cumbersome task of modifying 
the native objective function of every model to capture the 
impact of a strategy. In our framework, a curriculum cor-
responds to the training examples. At an abstract level, it 
is a sequence of training criteria. Each training criterion in 
the sequence is associated with a separate set of weights 
or ranks of the straining examples. Formally, a syllabus 
S =

(
x�, x�,… , x�

)
∈ T  of a training set containing M ≪ n 

samples is a computationally found order set such that 
�x1 ≤ �x2 ≤ ⋯ ≤ �xM where �xi corresponds to the rank of 
the i th sample as measure by a metric m taken from Table 1. 
A syllabus S for a given training set and model is considered 
effective if it outperforms a no-curriculum training of the 
same model after a fixed number of training updates.

Deep-CLO is built using a three-stage processing pipe-
line depicted in Fig. 1. In stage I, all samples of a batch are 
assessed and ranked using a prespecified metric m (Table 1). 
In stage II, the batch is ordered according to the rank of each 
sample. The ordered batch, or syllabus, is then supplied to 
the network for training. In stage III, the effectiveness of the 
syllabus is determined using the network’s native loss func-
tion after training for a fixed number of batches. The number 
of batches used to control how often the syllabus is evalu-
ated is a configurable hyperparameter. Below we discuss 
each stage in detail. The full recipe in an end-to-end training 
pipeline is presented in Table (Algorithm) 2.
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Assessing and Raking Training Samples

Feed-forward networks learn patterns of features from train-
ing and use layer-wise superposition of the features to gener-
alize to unseen samples. To enable robust feature extraction 
and ease the pattern discovery, we are interested in generat-
ing curricula based on how samples are related to each other. 
This is not considered when employing conventional, batch 
shuffling-based training. We consider two types of metrics 
to measure these relationships: statistical and information-
theoretic measures. These measures are further categorized 
into standalone and distance depending on the input(s) to 
the measure. If a measure takes two samples as input and 
returns a single value that relates the two samples, it is con-
sidered a distance measure. Otherwise, the measure is stan-
dalone and takes a single sample as input and returns a value 
that captures a certain characteristic of the sample.

To use information-theoretic measures, we model all sam-
ples as 2D random variables where each pixel is an inde-
pendent and identically distributed random variable (i.i.d) 

Table 1  List of measures used in this study

Metric Category Implementation—given samples x, x1, x2 ∈ T  where b
x
 is normalized histogram of pixel 

intensities and i is an index of a pixel value in a sample

Entropy Standalone E(x) =
∑

i∈� ,x∈T

b
x(i)���

N

bx(i)

Joint entropy (JE) Distance ��
�
x�, x�

�
=
∑
i

b
x(i)���bx(i)

Mutual information (MI) Distance ��
(
x�, x�

)
= E

(
x�

)
+ E

(
x�

)
− ��

(
x�, x�

)

K–L divergence (K–L) Distance
D����

�
x�, x�

�
=
∑
i

x�i
���

bx�
(i)

bx�
(i)

Information variation (IV) Distance ��
(
x�, x�

)
= E

(
x�

)
+ E

(
x�

)
−��

(
x�, x�

)

Conditional entropy (CE) Distance ��
(
x�|x�

)
= E

(
x�, x�

)
− E

(
x�

)
, where E

(
x�, x�

)
 is the sum entropies of x� and x�

Structural Similarity index (SSIM) Distance ����
(
x�, x�

)
=

(2�x�
�x�

+C�)(2�x�x�
+C�)

(��
x�
+��

x�
+C�)(�

�
x�
+��

x�
+C�)

Select training batch 

Train
with

Syllabus
Loss

Fitness signal(Update metric m If unfit syllabus) 

Hyperparameters:  Π, m, 
β

Training batch B of size 
M

Fig. 1  (Ghebrechristos et al.). Processing stages of Deep-CLO. From 
left to right given batch B and hyperparameters read once at start: I. 
Rank each sample. II. Generate syllabus by ordering B according to 

rank of each sample which is then used to train a network. III. Evalu-
ate syllabus using network loss

Table 2  (Algorithm 2) Curriculum training of a CNN network η 

Here, at least two m values, a primary measure and backup measures, 
from Table 2 are pre-specified. If no m is prespecified, deep-clo picks 
a primary and backup measures randomly from the set of measures 
listed in Table 1
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realization. With this model, we utilize information-theoretic 
measures, such as entropy, to quantify information content 
of training samples. Below we discuss few measures. A com-
plete list is presented in Table 1.

Information‑Theoretic Measures

Information theory provides a theoretical foundation to 
quantify information content, or the uncertainty, of a random 
variable represented as a distribution [16, 17]. Information-
theoretic measures of content can be extended to image 
processing and computer vision [18]. One such measure is 
entropy. Intuitively, entropy measures how much relevant 
information is contained within an image when represent-
ing an image as a discrete information source that is ran-
dom [17]. Formally, let X be a discrete random variable 
with alphabet �  and a probability distribution function 
p(x), x ∈ � . The Shannon entropy [19] of � is defined as

where 0 log∞ = 0 and the base of the logarithm determines 
the unit, e.g. if base 2, the measure is in bits [20]. The term 
− log p(x) can be viewed as the amount of information gained 
by observing the outcome p(x) . Entropy is usually meant 
to measure the uncertainty of a continuous random vari-
able. However, when applied to discrete images, this meas-
ures how much relevant information is contained within an 
image when representing the image as a discrete informa-
tion source [17]. Here, we construct probability distribution 
associated with each image by binning the pixel values into 
histograms. The normalized histogram can then be used as 
an estimate of the underlying probability of pixel intensities, 
i.e., p(i) = bx(i)∕N, where bi(x) denotes the histogram entry 
of intensity value i in x, and N is the total number of pixels 
of x . With this representation, the entropy of an image x can 
be computed as:

where T  is the training set and �(s) represents the image as 
a vector of pixel values. While individual entropy is used 
to measure the standalone rank of a sample, we also used 
metrics that relate training samples. These include joint 
entropy (JE), K–L divergence (K–L), mutual information 
(MI), information variation (IV), and conditional entropy  
(CE). A complete list of the metrics used for this study is 
listed in Table 2. Readers are encouraged to refer to [16, 17, 
21] for detailed treatment of these metrics and others.

(4)H(X) =
∑

x∈�

p(x) log
1

p(x)
,

(5)E(x) =
∑

i∈� ,x∈T

bx(i) log
N

bx(i)
,

Joint Entropy

By considering two random variables (X, Y) as a single vec-
tor-valued random variable, we can define the joint entropy 
JE(X, Y) with joint distribution p(x, y) as follows:

When we model images as random variables, the joint 
entropy is computed by gathering joint histogram between 
the two images. For two samples, x1, x2 ∈ T  , the joint 
entropy is given by:

where bx(i) is the i th value in the joint histogram.

Kullback–Leibler (K–L) Divergence

K–L divergence [17] is another measure we use to assess 
similarity of adjacent training samples. It is a natural dis-
tance measure from the pixel distribution of a sample x1 to 
another distribution x2 and is defined as:

where i the index of a pixel value taken from the distribution.

Mutual Information

Mutual information (MI) is the measure of the statistical 
dependency between two or more random variables [16]. 
The mutual information of samples x1, x2 ∈ T can be defined 
in terms of the individual entropies of both x1 and x2 and the 
joint entropy of the two samples JE

(
x1, x2

)
:

As noted in [18], maximizing the mutual information 
between samples seems to try and find the most complex 
overlapping regions by maximizing the individual entropies 
such that they explain each other well by minimizing the 
joint entropy. As image similarity measure, MI has been 
found to be successful in many application domains [22].

Statistical Measures

Statistical metrics, on the other hand, measure the similarity 
(dissimilarity) of samples and typically use statistical meas-
urements, such as mean 2� and standard deviation 2� . Few 
of the statistical measures used in this study are discussed 

(6)JE(Y ,X) = −
∑

x

∑

y

p(x, y) log p(x, y).

(7)JE
(
x1, x2

)
=
∑

i

bx(i) log bx(i),

(8)DK||L
(
x1, x2

)
=
∑

i

x1i log
x1i

x2i
,

(9)MI
(
x1, x2

)
= E

(
x1
)
+ E

(
x2
)
− JE

(
x1, x2

)
.
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below. Readers interested in further detail of these metrics 
are welcome to refer to [21].

Structural Similarity Index (SSIM)

SSIM is often used for predicting image quality using a ref-
erence image. Given two samples x1 and x2 , the SSIM index 
[21] is given by:

where the terms � and � are the mean and variances of the 
two vectors and �x1x2 is the covariance of x1 and x2 . The con-
stant terms C1 and C2 are used to avoid a null denominator.

Peak Signal‑to‑Noise Ratio (PSNR)

PSNR [21] is another objective metric widely used in 
CODECs to assess picture quality. PSNR can be defined in 
terms of the mean squared error (MSE). The MSE of two 
samples having the same size N is defined as:

The PSNR measure can then be expressed as:

where MAX is the maximum possible pixel value of a refer-
ence image.

Sorting Batches of Samples

In contrast to traditional training approach, our proposed 
method does not shuffle individual batches. Instead it reor-
ganizes then based on a concrete measure of each sample in 
the batch. The approach works as follows: a batch of train-
ing samples B =

{
x1, x2,… , xM

}
⊂ T  is selected from the 

training set. Each sample xk ∈ B is assigned a rank by ana-
lysing its pixel distribution using the specified metric m . 
We use two types of metrics: distance and standalone. If 
m is a distance metric, a reference sample xr ∈ B is used to 
rank a moving sample xm ∈ B . Initially, the reference sample 
is chosen at random. For instance, consider the following 
setup: let m be the mutual information (MI) measure, the 
algorithm first selects an initial reference sample, xr = x1 
and computes the MI-index or rank (�) of every other sam-
ple, x2,… , xM, in the batch against xr . If asc ordering is 
used, the sample with the smallest � value is promoted to 
become a reference sample. This is repeated until the last 

(10)SSIM
(
x1, x2

)
=

(2�x1
�x2

+ C1)(2�x1x2 + C2)
(
�2
x1
+ �2

x2
+ C1

)(
�2
x1
+ �2

x2
+ C2

) ,

(11)MSE
(
x�, x�

)
=

1

N2

N∑

i

N∑

j

(
x�ij − x�ij

)2
.

(12)PSNR = 20 log10

�
MAX
√
MSE

�
,

sample is promoted and a syllabus is proposed. Note here, 
the syllabus,SB , is an ordering of the samples according to 
their mutual information index. Given a proposed syllabus 
SB = {x�

1
, x�

2
,… x�

M
} , the network first sees the initial refer-

ence sample, then the sample having the smallest depend-
ency rank, � value is fed to the network. The overall behav-
iour is that adjacent samples are closer to each other than 
those that are not adjacent. Closeness in this context is meas-
ured by the metric in use. The smaller the value � , the closer 
the two samples are. When using a standalone metric, such 
as entropy, each sample is ranked. The entire batch is then 
sorted based on the specified ordering and the rank of each 
sample. m selected from a set of metrics is pre-specified as 
a learning parameter and can be updated during training if 
corresponding syllabus is deemed unfit. We experimented 
with several metrics and asc sorting order to observe the 
impact on training.

Syllabus Fitness Evaluation

We use the network’s native loss function to determine the 
fitness of a given syllabus. The syllabus is evaluated after 
training for a fixed number of iterations. Fitness of a syllabus 
for a given network and training set T  is determined using 
two configurable hyperparameters: number of iterations (can 
also be number of batches) π and the baseline performance 
β of the network on T  averaged over π. β is the threshold by 
which the syllabus’s fitness is determined and is chosen to 
be the average baseline loss of the network over π number 
of iterations. Baseline performance of a network is the net-
work’s training performance without curriculum.

Syllabus fitness criteria: Once the network is trained on T  
for π number of iterations using a syllabus S , the losses are 
aggregated and the average loss,

where loss (i) is the i th iteration training loss, of the network 
associated with S is computed. The syllabus-to-baseline loss 
ratio, � = ��→S

/
�, is then used as the sole criterion to deter-

mine the fitness of the syllabus. Depending on the value of 
� , a fitness signal f� , that can take on one of three forms: 
continue, stop, or replace–rerun, and is propagated to the 
image analysis submodule. A syllabus is deemed fit if the 
ratio is less than or equal to 1 and f� is set to continue. Oth-
erwise f� is set to stop or replace and the syllabus is consid-
ered unfit and discarded. If replace–rerun is propagated, 
then Deep-CLO adaptively proposes a new syllabus using a 
prespecified backup metric. Here, we make a naive assump-
tion that the syllabus’s training performance is as good as 
the baseline if the ratio is close to 1.

(13)��→S =

∑�

i=0
����(i)

�
,
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Experiments

Implementation detail and datasets—Our method is imple-
mented with the TensorFlow library1 [23] and training was 
done using a system optimized for deep learning research 
and developments. We present training and classification 
results obtained by training state-of-the-art image classifica-
tion networks using different curriculum strategies described 
in Sect. 2 on CATSvsDOGS [24], CIFAR10, CIFAR100 
[25].

Training—We trained several past and current state-of-
the-art CNNs using open-source TensorFlow implementa-
tions.2 Each network is first evaluated on the corresponding 
datasets to create baseline reference performance metrics for 
comparison. For each network, we used stochastic gradient 
descent (SGD) optimizer and its variant, Adaptive moment 
estimation (Adam) [26], a fixed momentum of 0.9, batch size 
of 8, and an exponentially decaying learning rate with factor 
0.94 starting at 0.01. For the rest of training, we used rec-
ommended configurations by respective authors. We report 
empirical results gathered by training each network for at 
least 1 million iterations. We ensure all learning parameters 
and environment are identical, with varying networks, learn-
ing methods (curriculum vs no-curriculum) and optimizers, 
to rule out other factors of influence.

Networks—Variants of EfficientNet [27] and FixEfficient-
Net-L2 [28] are among the networks evaluated in this study. 
EfficientNet is a family of architectures generated using 
a novel model scaling method that uses simple yet highly 
effective compound coefficients to scale up CNNs in a more 
structured manner [27]. We experimented with EfficientNet-
L2 [29] which surpassed state-of-the-art accuracy in 2019. 
FixEfficientNet-L2 is another iteration over EfficientNet 
which uses a new weight update procedure, FixRes [30] dur-
ing training. This model currently holds the state-of-the-art 
in the ImageNet ILSVRC 2012 benchmark [31]. In addition 
to these models, we also experimented with various notable 
models including variants of the ResNet architecture [32], 
BiT-L [33] and ResNeXt [34] as well as one variant, Incep-
tion v2, of the GoogleNet (Inception) model family as well 
as MobileNet v3 [35]—a model architecture high optimized 
for mobile and embedded devices. To observe the training 
trends, we use curriculum settings or syllabi with varying 
measure m, π = 100,000, o = asc and β value that is unique 
to each network and training set.

Testing scenarios—The standard testing scenario of a 
classification task is to train the models using a portion of 
the dataset and then test it in previously unseen, held-out test 
set. There is no prior exploration on the test set. This setting 

is preferred and able to clearly measure the generalizabil-
ity of the networks with and without the proposed method, 
so we evaluate our Deep-CLO approach under the standard 
testing scenario.

Evaluation metrics—In a typical data classification 
problem, evaluation metrics are employed into two stages: 
training stage (learning) and testing stage. In training stage, 
the evaluation metric was used to optimize the classifica-
tion algorithm. In other words, the evaluation metric was 
employed as the discriminator to discriminate and to select 
the optimal solution which can produce a more accurate pre-
diction of future evaluation of a particular classifier. Mean-
while, in the testing stage, the evaluation metric was used 
as the evaluator to measure the effectiveness of produced 
classifier when tested with the unseen data. There are vari-
ous types of evaluation metrics that can be used to evaluate 
the quality of classifiers with different aims. We report sev-
eral metrics that show the impact of our method on train-
ing and generalization performance: Training Trends—the 
training loss over a period of training updates and trends 
in Test Accuracy—the ratio of correct predictions over the 
total number of test samples. In addition to these standard 
metrics, we also report metrics that are suited for opera-
tional models. Metrics that capture the tradeoff between cor-
rect classifications and misclassification, which are tuned 
to imbalance classifications and address the asymmetry of 
real-world costs associated with each class [36]. These met-
rics include:

• Precision (p) [37]—is used to measure the patterns of a 
given category that are correctly predicted from the total 
predicted patterns in that category. For instance, if we 
consider a cat category in a cat vs dog classification task 
to be a positive class (and dog a negative class), precision 
is used to measure the overall accuracy of the model on 
a cat from the total predicted patterns of a cat category, 
including false alarms. Formally, it is defined as the ratio 
of true positives and the sum of true positives and false 
positives. Precision value takes on values in the range 
0–1 with values close to 1 indicating a classifier with 
high degree of precision.

• Recall (r) [37]—on the other hand captures the fraction 
of cat predictions that are correct. It is defined as the 
ration of true positive to the sum of true positive and true 
negative. It is used to assess model’s ability to accurately 
predict (recall) a given category from a bucket of samples 
containing all categories. Similarly, recall takes value on 
the scale 0–1.

• F1-Score [37]—is the harmonic mean between recall and 
precision values. i.e. 2rp

r+p
.

• Receiver operator characteristic (ROC) curve [38]—
another effective method commonly used for assessing 1 https ://githu b.com/h3nok /curri culum _learn ing_optim izati on.

2 https ://githu b.com/tenso rflow /model s/tree/maste r/resea rch/slim.

https://github.com/h3nok/curriculum_learning_optimization
https://github.com/tensorflow/models/tree/master/research/slim
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the performance of a diagnostic test tools for medical 
applications. ROC considers the true positive, true nega-
tive, false positive and false negative predictions of the 
model. It is a plot that depicts the trade-off between sen-
sitivity and 1-specificity where sensitivity is the frac-
tion of positive patterns that are correctly classified, and 
specificity is the fraction of negative patterns that are 
correctly classified. The area under a ROC curve (AUC) 
is a single and most commonly used index for measuring 
the performance of a test. Unlike the threshold metrics 
above, the AUC value reflects the overall prediction per-
formance of a classifier. The closer the AUC value is to 
1, the better the performance of the models is on a real-
world data.

Results and Analysis

Training

First, we evaluated training performance of all models using 
various curriculum strategies and compare the results to the 
baseline, state-of-the-art performance of each model on 
the corresponding dataset. We use the total loss, the sum 
of cross-entropy and regularization losses, as the primary 
evaluation criteria of the impact of each strategy on training. 
The results are depicted in Fig. 2.

With most curriculum strategies, we observe large 
improvement in training performance over the baseline. 
This shows that the proposed method accelerates training 
in agreement with prior theoretical investigation [1, 4]. For 
instance, we notice 15.6% absolute percentage improvement 
in reducing the training loss when training EfficientNet-B7 
using MI syllabus on CIFAR10 dataset. The improvement 
is consistently observed on the other curriculum strate-
gies. As can be seen in Fig. 3 left column plots, similar 
trends are observed with the ResNeXt and FixEfficientNet. 
Moreover, we notice that almost all curriculum strategies 
outperform the baseline and the improvements are statisti-
cally significant.

Whilst these results are interesting, to rule out other 
factors of influence and ensure repeatability across data-
sets, we whitelisted the best performing strategy in our 
CIFAR10 experiment and performed similar experiments 
on CIFAR100. The results are depicted in Fig. 3.

We noticed the test accuracy and training loss follow their 
usual course observed during CIFAR10 training. The results 
on both datasets show that CL has favorable impact on train-
ing performance. CL-trained models achieve the same level 
of loss but only require 2/3 of the steps compared to conven-
tional training. These results also are in line with the results 
on ImageNet presented in Ghebrechristos et al.

Results on test set (standard scenario)—another observa-
tion from this experiment is that some curriculum strate-
gies produce models that generalize better to unseen sam-
ples compared with the baseline (Fig. 3, right column). For 
instance, if we look at the test performance of Inception 
V2 trained using MI on CIFAR10 (Fig. 3, top right), the 
improvement on the test set is close to 15%. However, we 
also observe a degradation in generalizability with some cur-
riculum strategies. SSIM syllabus, for instance, is a strategy 
that reduces generalization performance of ResNeXt-101 by 
5% compared to the baseline.

This is interesting because it implies that the training 
improvements induced by the proposed methods directly 
translate to performance gains in generalization. This is 
beneficial because most models achieve similar accuracy as 
the baseline in significantly a smaller number of iterations. 
Based on the experiments, VGG is the only model that does 
not conform to these gains. The order of sample presenta-
tion in case of VGG may not be as significant compared to 
the other architectures. We believe this is somewhat related 
to how the model performs successive feature extraction 
in comparison to other. More experiments with more net-
work architectures and datasets are needed to confirm this 
intuition.

The results suggest that the curriculum learning tech-
nique that incorporates complexity of training samples 
may be more effective not only in traversing the input space 
towards the ideal minimum as a way to expedite training 
and feature extraction, but also it has statistically significant 
impact on the classifier’s generalization performance even 
when considering real-world scenarios (discussed below). 
Specifically, we see that the variance in gradient direction 
of points (capture by the trends in loss) decrease much faster 
when training using syllabus per batch in comparison to the 
tradition, random shuffling approach.

Further Study on Generalization

When considering applicability of these models to real-
world scenarios, the models must go through validation 
process that considers variations and imbalance in real-
world input. To this end, we further assess generalization 
performance of models trained with the proposed using the 
CATSvsDOGS dataset for binary classification task. We 
chose binary classification partly due to the rich and proven 
family of metrics for assessing applicability of classifiers to 
a given domain. Taking sample complexity into account, in 
the context of curriculum learning may, therefore, increase 
the likelihood to achieve a higher-quality local minimum 
during training which in turn produces robust models with 
better generalization performance but in a smaller number 
of training iterations. The metrics, including the number of 
iterations, are presented in column 3 of Table 3. Figure 4 
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Fig. 2  Left. Comparison of CIFAR10 training performance of vari-
ous models with and without CLO. Right. Comparison of test per-
formance of the various models on CIFAR10 held-out test set. 
MobileNet achieve similar accuracy as the baseline in 2/3 of number 

of training steps. The ease the interpretation of the plots the median 
loss of the baseline during training and the max accuracy achieved 
during testing are highlighted in orange dashed lines
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below depicts the ROC curve of MobileNet performance 
on CATSvsDOGS using various curriculum strategies. As 
can be seen in the plot, most CL strategies have AUC values 
greater than the baseline. For instance, K–L syllabus-trained 
MobileNet has AUC value of 0.985 compared to 0.943 of the 
baselines. These values indicate that CL-trained models have 
good measure of separability, making the proposed method 
suitable for both research purposes, to identify training strat-
egies that expedite training, but also to produce more robust 
models for practical applications.

Optimization Methods

SGD and its variant Adam [2] work well for many opti-
mization problems and can converge to a promising local 
or global optimum within a reasonable computation cost. 
Instead of computing loss on the whole dataset, SGD com-
putes loss and weight updates on a batch of samples and 
updates the model variables by computing the loss function 
gradient instances by instances. SGD produces the same 
performance as regular gradient descent when the learning 
rate is low. Another variant of gradient descent widely used 
in practice is Adam. It is an adaptive learning rate method 
that combines the advantages of two SGD extensions—Root 
Mean Squared Propagation (RMSProp) [13] and Adaptive 
Gradient Algorithm (AdaGrad) [13]. It computes individual 
adaptive learning rates for different parameters of the model. 
Unlike SGD, Adam updates exponentially moving averages 
of the gradients and the square gradients whose decay rates 
are controlled by hyperparameters [26]. In this section of the 
experiment, we use both optimization techniques to verify 
that our proposed method’s performance is invariant to the 

type of technique used to update model parameters. The 
results are depicted in Fig. 5.

The results show that the proposed method has compa-
rable impact on training performance when combined with 
SGD or Adam optimizer. In line with previous observations, 
SGD progresses to find a minimum, but it takes significantly 
longer than Adam. We observe a training loss reduction by 
factor of 1.75 when Deep-CLO is employed alongside of 
Adam, while the loss reduction with SGD is expedited by a 
factor of 1.8. The gaps in loss reduction as depicted in Fig. 5 

Fig. 3  Left. Comparison of inception training performance with and without MI syllabus. Right. Comparison of test performance of the same 
the network on test set. The model achieves similar test accuracy as the baseline in almost 1/2 of number of training steps

Fig. 4  ROC curve that captures generalization performance of 
MobileNet on Cats vs Dogs with various CL strategies. The closer 
the AUC value is to 1 the better the model is at generalizing to real-
world data
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are inherent to the optimizers. This is because SGD is much 
more reliant on a robust initialization and annealing schedule 
and may get stuck in saddle points rather than local minima. 
So usually, SGD takes a greater number of iterations com-
pared to its variants. Adam, on the other hand, is an adap-
tive momentum and adaptive learning rate algorithm which 
does not rely on robust initialization. Given these results, we 
hypothesize that our proposed method is optimizer agnostic. 
In other words, the various CL strategies have similar impact 
on training regardless of which optimizer is used.

Selecting a Strategy

Most neural network-based machine learning algorithms 
come with millions of tunable and user-specified parameters. 
Many of these parameters are encoded in the network archi-
tecture and are tuned by the training procedure. In CNNs, for 
instance, these types of parameters include the convolution 
filter banks or weights which are tuned for a given dataset 
by the backpropagation algorithm. While these are types of 
parameters that are automatically fine-tuned, there also exist 
parameters, such as learning rate and batch-size, commonly 
known as hyperparameters, which are considered as tuning 
knobs of the learning system that researchers and practition-
ers use to control the behavior of algorithm when optimizing 
its performance on a given dataset. Hyperparameter tuning 
for performance optimization is a challenging problem and 
is a subject of many machine learning researchers. As it 
currently stands, there are no established rules for predicting 
the right set of parameters that guarantee best performance 
for a given dataset [39]. Deep-CLO introduced one such 
hyperparameter, namely the metric (m), used to construct a 
curriculum strategy. In this section, we discuss our obser-
vation of one potential approach to identify a strategy that 
is best suited for a given dataset. A more in-depth study 
related to this is under way and will be considered in future 
publications.

Capturing Structural Information of Dataset

Figure 3 depicts the probability distribution of entropy 
metric of the CIFAR10 and 100 datasets. The plots cap-
ture the distribution of the entropy value of each sample as 
well as the histogram of these values across classes (labels). 
We have found a strong correlation between extracted the 
structural information of a dataset (such as distribution 

Table 3  Comparison of 
generalization (real-time 
inference) capabilities of 
various models with and 
without curriculum learning

The metrics that outperform the baseline are highlighted in bold

Model Strategy # Iterations 
(10k)

p r F1-Score AUC Acc (%)

ResNeXt-101 Baseline 19 0.54 0.55 0.54 0.74 0.63
ResNeXt-101-MI MI 15 0.67 0.73 0.70 0.81 0.78
VGG16 Baseline 6 0.83 0.85 0.84 0.89 0.91
VGG16-MI MI 6 0.86 0.75 0.80 0.82 0.84
BiT-ResNet Baseline 15 0.67 0.74 0.70 0.73 0.77
BiT-ResNet-MI MI 19 0.75 0.88 0.81 0.85 0.88
EfficientNet-B7 Baseline 8 0.58 0.53 0.55 0.992 0.88
EfficientNet-B7-MI MI 6.7 0.63 0.65 0.64 0.994 0.95
MobileNet V1 Baseline 6 0.88 0.88 0.88 0.992 0.88
MobileNet V1-MI MI 4.8 0.95 0.95 0.95 0.994 0.95
Inception v2 Baseline 6 0.94 0.95 0.94 0.94 0.93
Inception v2-MI MI 4.75 0.97 0.93 0.95 0.96 0.94

Fig. 5  Comparison of Adam and SGD optimizers on training perfor-
mance of Inception model when trained using MI CL strategy
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of Entropy) to the training and generalization trends of 
select models on that dataset. To illustrate, consider the 
EfficientNet-B7 model performance, (Fig. 2), first column. 
The model achieves training loss of 0.3 when trained using 
entropy strategy on CIFAR10 dataset compared to 0.9 of the 
baseline—a statistically significant loss reduction which is 
induced by the proposed learning strategy. We believe this 
performance optimization is somehow related to the struc-
tural information of the dataset as captured by the metric. 
Entropy-based strategy favors such a reduction since entropy 
distribution (Fig. 6 top) of the training set is a normal distri-
bution with a mean of 0.1 and standard deviation of 0.0002. 
This structural information is also consistent with the test 
set which enables us to predict the generalization gains of 
the strategy. As can be seen in Fig. 2, the entropy-based 
model achieves similar accuracy as that of the Baseline in 
3/4th of the number of training steps. At the end, it beats 
the Baseline model by achieving 91% accuracy compared 

to 82%. On the other hand, we noticed performance deg-
radation when the same model is trained using the same 
strategy on the CIFAR100 dataset. This observation that we 
argue is predictable if one sees the structural information 
of CIFAR100 as captured by the strategy in use (Fig. 6 bot-
tom). We see that the entropy of every sample in CIFAR100 
dataset significantly deviates from one another by at least 
standard deviation of 2.6. In addition, entropy value across 
the labels also shares such discrepancy making the strategy 
less effective at optimizing the model.

Although these kinds of characteristics are well suited 
to describe datasets, we believe, when combined with our 
recommended training strategy, they also enable us to rec-
ommend appropriate classification model and strategy for a 
given dataset. Extracting and visualizing structural informa-
tion of the various metrics used in this study are relatively 
cumbersome and we do not have a thought-out and efficient 
solution at this stage.

Fig. 6  Entropy value distribution (left) and distribution of Entropy value across classes for both CIFAR10 (top) and CIFAR100 (bottom) datasets
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Conclusion

In this paper, we present a framework for assessing and 
ranking training samples and used this framework to 
investigate curriculum learning optimization, an exten-
sion of stochastic gradient descent in which samples of 
a batch are presented to the learning system based on a 
rank that captures inherent characteristics of each sample 
and its relationship to other samples. We start with an 
extended definition of curriculum learning in the context 
of deep learning which we termed Deep-CLO and pre-
sent results that showcase both training and generaliza-
tion performance improvements compared to conventional, 
no-curriculum training. Our proposed training framework, 
which is designed to make research in curriculum learning 
practical, provides the groundwork that enabled us to con-
struct and investigate various training strategies for classi-
fication models using varying convolutional architectures 
and benchmark datasets. Compare to previous work, ours 
alleviates the need to rank difficulty of samples by hand 
(hand-engineering syllabus) or using multiple training 
passes. Our framework dynamically proposes and evalu-
ates syllabus by integrating image analysis techniques 
that capture characteristics of each training example into 
deep learning-based training pipeline. Deep-CLO is also 
modular and independent of the model architecture, which 
allows each component to be improved separately with-
out inducing any change to the model architecture. The 
results suggest that while sample ordering does affect the 
training process, the optimal order in which samples are 
presented may vary based on the dataset and algorithm 
used. With all strategies, we found loss reduction at the 
initial stages of training to be the most consistent signal 
that showcases the impact of our method. We believe our 
approach is optimizer agnostic. However, it is sensitive 
to the type of dataset used for training and potentially the 
model architecture. In addition to training performance, 
we also notice improvements in generalization perfor-
mance both in standard testing scenarios and scenarios 
that consider real-world variations in input.

Our primary aim with this work is to investigate the 
impact and practicality of curriculum learning for off-the-
shelf, computer vision models. However, it would also be 
nice to understand the general principles that make some 
curriculum strategies work better than others. This is the 
subject of our future work. In particular, correlating a 
strategy to a network and to a dataset or both will allow 
us to reap the advantages of CL by minimizing human 
involvement and introducing determinism into the training 
and model deployment processes. Currently, these pro-
cesses are based on trial-and-error approaches that also 
rely on significant human expertise.
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