
Vol.:(0123456789)

SN Computer Science (2020) 1:245
https://doi.org/10.1007/s42979-020-00251-7

SN Computer Science

ORIGINAL RESEARCH

Deep curriculum learning optimization

Henok Ghebrechristos1 · Gita Alaghband1

Received: 31 March 2020 / Accepted: 11 July 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
We describe a quantitative and practical framework to integrate curriculum learning (CL) into deep learning training pipeline
to improve feature learning in deep feed-forward networks. The framework has several unique characteristics: (1) dynamic-
ity—it proposes a set of batch-level training strategies (syllabi or curricula) that are sensitive to data complexity (2) adap-
tivity—it dynamically estimates the effectiveness of a given strategy and performs objective comparison with alternative
strategies making the method suitable both for practical and research purposes. (3) Employs replace–retrain mechanism
when a strategy is unfit to the task at hand. In addition to these traits, the framework can combine CL with several variants
of gradient descent (GD) algorithms and has been used to generate efficient batch-specific or data-set specific strategies.
Comparative studies of various current state-of-the-art vision models, such as FixEfficentNet and BiT-L (ResNet), on several
benchmark datasets including CIFAR10 demonstrate the effectiveness of the proposed method. We present results that show
training loss reduction by as much as a factor 5. Additionally, we present a set of practical curriculum strategies to improve
the generalization performance of select networks on various datasets.

Keywords Curriculum learning optimization · Convolutional neural network · Deep learning · Information theory ·
Syllabus · Curriculum strategy

Introduction

Curriculum learning, which initially, in the context of
machine learning, was formalized by Bengio et al. has in
recent years gained some traction as a potential technique
to further improve deep learning [1–5]. The general ques-
tion CL attempts to answer is the question of how to find
ordering of samples in which to supply and effectively train a
model for a given task. Most curriculum learning techniques
get their inspiration from human learning where training is
highly organized, based on education system and a curricu-
lum which usually enables learning concepts in gradually

increasing levels of difficulty while considering previously
learned concepts [1]. In machine learning, CL attempts to
find some optimal sequence of training input (or training
tasks for transfer learning) in which to present to the learn-
ing system to optimize the learning process compared to
no-curriculum training.

In this text, we extend curriculum learning based on rank-
ing or weighing (as defined by Bengio et al.) of individual
samples with dependency ranks that relate two or more sam-
ples. The core idea as described in Ghebrechristos et al. is to
present training sample to the system with samples such that
adjacent samples have higher dependency rank than those
that are not adjacent. Ranking may be based on a metric
that measures the information content, overlap or statistical
dependency between samples.

The main challenge and the reason why CL remains in
the fringes of practical machine learning research, is partly
due to our inability to efficiently determine the ‘presumed
difficulty’ of training sample, or effectiveness of a syllabus,
without supervision. Moreover, even when such a sequence
is provided by a human teacher, it may not reflect the true
difficulty in the perspective of the learning system. For
example, in visual object recognition using feed-forward

This article is part of the topical collection “Machine Learning
inPattern Analysis” guest edited by Reinhard Klette, Brendan
McCane,Gabriella Sanniti di Baja, Palaiahnakote Shivakumara
and LiangWang.

 * Henok Ghebrechristos
 henok.ghebrechristos@ucdenver.edu

 Gita Alaghband
 gita.alaghband@ucdenver.edu

1 Department of Computer Science, University of Colorado,
Denver, CO 80014, USA

http://orcid.org/0000-0001-9626-4438
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00251-7&domain=pdf

 SN Computer Science (2020) 1:245 245 Page 2 of 14

SN Computer Science

networks, it has been demonstrated that what makes an
image difficult to a human observer may not always match
whatever makes it difficult to a neural network classifier
[6, 7]. This observation has been taken advantage of in the
recent work on adversarial examples [8] and improved fea-
ture extraction [9] and is potentially why handcrafting an
optimal training syllabus is impractical.

In the second part of this text, we explore the practical-
ity of curriculum learning using a framework designed to
automatically rank samples, propose and evaluate the effec-
tiveness of an input sequence (syllabus) all by dynamically
analyzing training samples, without supervision. This also
alleviates the need for a human teacher to provide a reliable
difficulty score (i.e. handcrafted syllabus), or when obtaining
such a score by human teachers or transfer learning is too
costly. The framework is also adaptive, in that it dynami-
cally detects and updates a syllabus that is unfit for the task
at hand.

In contrast to previous work, our method adopts image
processing and information theory techniques to discover
optimal input paths in the optimization landscape by assess-
ing content of individual samples and their relationship to
other samples in the dataset. Why is this a promising idea?
There are two reasons. First, let us again consider human
learning via curriculum. Two concepts that are close to each
other (i.e. one concept depends on the other) are typically
adjacent to each other in the syllabus. For instance, take
a syllabus for Algebra course, where it is only sensible to
present relations and functions after presenting multi-step
equations and inequalities which in turn depend on basic
concepts, such as arithmetic. For the learning to be effective,
a concept or related concepts are presented after their pre-
requisites have been presented. Hence, in human learning,
a syllabus ensures presentation of concepts that minimize
confusion or maximize the chances of the student grasping
and applying the concepts. This idea can directly be trans-
lated to machine learning language where a training syl-
labus presents samples such that their ordering ensures the
minimization of training loss at each iteration while improv-
ing generalization performance. Although, this is the main
motivation behind the design and implementation of our
framework, we also consider two unique properties of deep
neural networks that informed our methodology, namely the
fact that most feed-forward networks behave like univer-
sal approximators [10] and their ability to learn and make
relevant predictions when trained with noise-only data [6].
Intuitively, we believe these characteristics are reminiscent
of their ability to discover complex functions that map indi-
vidual training samples in a dataset to a corresponding label
regardless of the features present in each sample. That is to
say, the networks will find the most approximate function
based solely on the dataset. With this observation, we can
safely hypothesize that deep neural networks, when trained

using deep learning techniques, are universal pattern extrac-
tors, not only the human recognizable pattern ones, but also
patterns not visible to a human observer (noise-only dataset).
This in turn allows us to venture out to explore weighting or
raking strategies that do not rely on neither the network itself
nor human but rather the dataset and its characteristics. Sec-
tion 2 describes a framework, Deep-CLO, which by design
exploits these observations for non-convex optimization.

To quantify our approach, we perform empirical evalua-
tion and compare the performance of various models when
using a curriculum which is based on different ranking
options, and one control condition where low-ranked exam-
ples are presented first. The main results of this empirical
study can be summarized as follows: (1) Convergence is
always faster with curriculum learning. That is, models
trained using curriculum learning achieve similar loss as
no-curriculum training in a smaller number of iterations.
(2) CLO has favorable impact on generalization, especially
when the conditions for learning are hard: the task is dif-
ficult, a number of classes are significant, etc. (3) Networks
training using curriculum sometimes achieve better gener-
alization results in a smaller number of iterations compared
to baseline, no-curriculum, training.

The contribution of this work is twofold: (1) we present
the design and implementation of Deep-CLO that enables
in-depth experiments of CL strategies while simplifying
the experimentation process involving curriculum learning,
(2) subsequently, we use this framework to identify train-
ing strategies that improve training and generalization per-
formance of convolutional neural network (CNN) on select
classification tasks.

The following section presents the theoretical merit of
our extended definition, termed curriculum learning opti-
mization (CLO), in the context of gradient descent (GD)
algorithms and non-convex objective functions. We first
define the effectiveness metric of a curricula for a given
task as the aggregated loss with respect to the optimal clas-
sifier over a fixed number of training steps. We then prove
that curriculum learning combined with various optimizers
under different setups can significantly alter the optimization
landscape in favor of convergence speed. This is supported
by empirical evidence obtained by training several past and
present state-of-the-art convolutional network architectures.
We also show an improved generalization performance of
networks trained using CLO.

Deep‑CLO: Deep Curriculum Learning
Optimization

We consider supervised learning tasks, such as
classification [11, 12], comprising a training set
T =

{(
x�, y�

)
,
(
x�, y�

)
,… ,

(
xn, yn

)}
 consisting n pairs of

SN Computer Science (2020) 1:245 Page 3 of 14 245

SN Computer Science

feature-label vectors, where the feature vector xi ∈ ℝ
d2x

and the corresponding label vector yi ∈ ℝ
d2y are of dimen-

sions dx and dy , respectively. A classification model can
then be represented as mapping F(;�) ∶ X → Y , where X
and Y denote the feature and label spaces, respectively,
and � denotes the variable vector (candidate network
weights) involved in the mapping [13]. Given a feature
vector xi ∈ X , we represented the output of the model
as ŷi = F

(
xi;𝜃

)
 and the error or loss of the model rela-

tive to the true label yi as e
(
ŷi, yi

)
 . Mean Squared Error

(MSE), Mean Absolute Error (MAE), Hinges Loss and
Cross-Entropy Loss are amongst the loss functions used
to measure errors introduced bythe model [14]. In this
text, we emphasize the error function commonly used in
classification tasks, the cross-entropy loss:

Depending on the number of classes involved as well
as the activation functions being used for the model, the
cross-entropy function can be specified as sigmoid cross
entropy [13] which is great for binary classification tasks
with sigmoid function as the activation function for the
output layer or softmax cross entropy [14] used for multi-
class classification tasks with softmax function as the
activation function. Given a loss function, the error of the
model on the task can be represented as the sum of the
errors on individual examples:

The purpose of curriculum learning optimization (CLO)
is then to minimize the total loss introduced on the training
set to achieve the most optimal set of weights � . Formally,
the objective function or criterion of deep learning model
training can be represented as follows:

where Θ = ℝ
d2� denotes the variable domain or weight space

of the model and d� denotes the dimension of variable vec-
tor �.

CLO achieves E∗ by proposing training input sequence
(syllabus) for training via curriculum and by employing
gradient decent (GD) to iteratively move in the direction
of the steepest decent using directional derivative and
negative gradient [15]. In other words, since the negative
gradient −∇�E points directly opposite to E, we can mini-
mize E by moving in the direction of the negative gradient
using an input sequence that favors the global minima, i.e.
at every iteration, gradient decent proposes a new value

(1)e��
(
ŷi, yi

)
= −

dy∑

j=�

yi(j)���ŷi(j).

(2)E(𝜃 ∶ T) =
∑

(xi,yi)∈T

e
(
ŷi, yi

)
=

∑

(xi,yi)∈T

e
(
F
(
xi;𝜃

)
, yi

)
.

(3)E∗ = min
�∈Θ

E(� ∶ T),

E� = E − �∇�E(�), where � is the learning rate, a positive
scalar determining the size of the update step. CLO is said
to have converged when every element of the gradient is
close to zero.

Deep curriculum learning optimization (Deep-CLO) is
an umbrella term we use to describe our framework which
can be used for training by combining CL with conventional
deep learning techniques. As stated above, the loss functions
used in deep learning usually have highly non-convex shape
with many local minima, so the order in which training sam-
ples are presented have impact on learning. In contrast to
conventional training, which only shuffles batches of training
samples at most to achieve decent local minima, Deep-CLO
uses an informed and deterministic ordering of samples to
a similar end.

As described in Ghebrechristos et al., a curriculum
strategy (or a syllabus) is decoupled from the core opti-
mization algorithm as well as the model architecture. This
choice is also inspired by how curriculum is employed in
human learning (Sect. 1). A curriculum in human learning
is applied to several students whose learning abilities may
vary. Similarly, Deep-CLO is designed to enable optimiza-
tion of various models having different architectures. This
alleviates the need for the cumbersome task of modifying
the native objective function of every model to capture the
impact of a strategy. In our framework, a curriculum cor-
responds to the training examples. At an abstract level, it
is a sequence of training criteria. Each training criterion in
the sequence is associated with a separate set of weights
or ranks of the straining examples. Formally, a syllabus
S =

(
x�, x�,… , x�

)
∈ T of a training set containing M ≪ n

samples is a computationally found order set such that
�x1 ≤ �x2 ≤ ⋯ ≤ �xM where �xi corresponds to the rank of
the i th sample as measure by a metric m taken from Table 1.
A syllabus S for a given training set and model is considered
effective if it outperforms a no-curriculum training of the
same model after a fixed number of training updates.

Deep-CLO is built using a three-stage processing pipe-
line depicted in Fig. 1. In stage I, all samples of a batch are
assessed and ranked using a prespecified metric m (Table 1).
In stage II, the batch is ordered according to the rank of each
sample. The ordered batch, or syllabus, is then supplied to
the network for training. In stage III, the effectiveness of the
syllabus is determined using the network’s native loss func-
tion after training for a fixed number of batches. The number
of batches used to control how often the syllabus is evalu-
ated is a configurable hyperparameter. Below we discuss
each stage in detail. The full recipe in an end-to-end training
pipeline is presented in Table (Algorithm) 2.

 SN Computer Science (2020) 1:245 245 Page 4 of 14

SN Computer Science

Assessing and Raking Training Samples

Feed-forward networks learn patterns of features from train-
ing and use layer-wise superposition of the features to gener-
alize to unseen samples. To enable robust feature extraction
and ease the pattern discovery, we are interested in generat-
ing curricula based on how samples are related to each other.
This is not considered when employing conventional, batch
shuffling-based training. We consider two types of metrics
to measure these relationships: statistical and information-
theoretic measures. These measures are further categorized
into standalone and distance depending on the input(s) to
the measure. If a measure takes two samples as input and
returns a single value that relates the two samples, it is con-
sidered a distance measure. Otherwise, the measure is stan-
dalone and takes a single sample as input and returns a value
that captures a certain characteristic of the sample.

To use information-theoretic measures, we model all sam-
ples as 2D random variables where each pixel is an inde-
pendent and identically distributed random variable (i.i.d)

Table 1 List of measures used in this study

Metric Category Implementation—given samples x, x1, x2 ∈ T where b
x
 is normalized histogram of pixel

intensities and i is an index of a pixel value in a sample

Entropy Standalone E(x) =
∑

i∈� ,x∈T

b
x(i)���

N

bx(i)

Joint entropy (JE) Distance ��
�
x�, x�

�
=
∑
i

b
x(i)���bx(i)

Mutual information (MI) Distance ��
(
x�, x�

)
= E

(
x�

)
+ E

(
x�

)
− ��

(
x�, x�

)

K–L divergence (K–L) Distance
D����

�
x�, x�

�
=
∑
i

x�i
���

bx�
(i)

bx�
(i)

Information variation (IV) Distance ��
(
x�, x�

)
= E

(
x�

)
+ E

(
x�

)
−��

(
x�, x�

)

Conditional entropy (CE) Distance ��
(
x�|x�

)
= E

(
x�, x�

)
− E

(
x�

)
, where E

(
x�, x�

)
 is the sum entropies of x� and x�

Structural Similarity index (SSIM) Distance ����
(
x�, x�

)
=

(2�x�
�x�

+C�)(2�x�x�
+C�)

(��
x�
+��

x�
+C�)(�

�
x�
+��

x�
+C�)

Select training batch

Train
with

Syllabus
Loss

Fitness signal(Update metric m If unfit syllabus)

Hyperparameters: Π, m,
β

Training batch B of size
M

Fig. 1 (Ghebrechristos et al.). Processing stages of Deep-CLO. From
left to right given batch B and hyperparameters read once at start: I.
Rank each sample. II. Generate syllabus by ordering B according to

rank of each sample which is then used to train a network. III. Evalu-
ate syllabus using network loss

Table 2 (Algorithm 2) Curriculum training of a CNN network η

Here, at least two m values, a primary measure and backup measures,
from Table 2 are pre-specified. If no m is prespecified, deep-clo picks
a primary and backup measures randomly from the set of measures
listed in Table 1

SN Computer Science (2020) 1:245 Page 5 of 14 245

SN Computer Science

realization. With this model, we utilize information-theoretic
measures, such as entropy, to quantify information content
of training samples. Below we discuss few measures. A com-
plete list is presented in Table 1.

Information‑Theoretic Measures

Information theory provides a theoretical foundation to
quantify information content, or the uncertainty, of a random
variable represented as a distribution [16, 17]. Information-
theoretic measures of content can be extended to image
processing and computer vision [18]. One such measure is
entropy. Intuitively, entropy measures how much relevant
information is contained within an image when represent-
ing an image as a discrete information source that is ran-
dom [17]. Formally, let X be a discrete random variable
with alphabet � and a probability distribution function
p(x), x ∈ � . The Shannon entropy [19] of � is defined as

where 0 log∞ = 0 and the base of the logarithm determines
the unit, e.g. if base 2, the measure is in bits [20]. The term
− log p(x) can be viewed as the amount of information gained
by observing the outcome p(x) . Entropy is usually meant
to measure the uncertainty of a continuous random vari-
able. However, when applied to discrete images, this meas-
ures how much relevant information is contained within an
image when representing the image as a discrete informa-
tion source [17]. Here, we construct probability distribution
associated with each image by binning the pixel values into
histograms. The normalized histogram can then be used as
an estimate of the underlying probability of pixel intensities,
i.e., p(i) = bx(i)∕N, where bi(x) denotes the histogram entry
of intensity value i in x, and N is the total number of pixels
of x . With this representation, the entropy of an image x can
be computed as:

where T is the training set and �(s) represents the image as
a vector of pixel values. While individual entropy is used
to measure the standalone rank of a sample, we also used
metrics that relate training samples. These include joint
entropy (JE), K–L divergence (K–L), mutual information
(MI), information variation (IV), and conditional entropy
(CE). A complete list of the metrics used for this study is
listed in Table 2. Readers are encouraged to refer to [16, 17,
21] for detailed treatment of these metrics and others.

(4)H(X) =
∑

x∈�

p(x) log
1

p(x)
,

(5)E(x) =
∑

i∈� ,x∈T

bx(i) log
N

bx(i)
,

Joint Entropy

By considering two random variables (X, Y) as a single vec-
tor-valued random variable, we can define the joint entropy
JE(X, Y) with joint distribution p(x, y) as follows:

When we model images as random variables, the joint
entropy is computed by gathering joint histogram between
the two images. For two samples, x1, x2 ∈ T , the joint
entropy is given by:

where bx(i) is the i th value in the joint histogram.

Kullback–Leibler (K–L) Divergence

K–L divergence [17] is another measure we use to assess
similarity of adjacent training samples. It is a natural dis-
tance measure from the pixel distribution of a sample x1 to
another distribution x2 and is defined as:

where i the index of a pixel value taken from the distribution.

Mutual Information

Mutual information (MI) is the measure of the statistical
dependency between two or more random variables [16].
The mutual information of samples x1, x2 ∈ T can be defined
in terms of the individual entropies of both x1 and x2 and the
joint entropy of the two samples JE

(
x1, x2

)
:

As noted in [18], maximizing the mutual information
between samples seems to try and find the most complex
overlapping regions by maximizing the individual entropies
such that they explain each other well by minimizing the
joint entropy. As image similarity measure, MI has been
found to be successful in many application domains [22].

Statistical Measures

Statistical metrics, on the other hand, measure the similarity
(dissimilarity) of samples and typically use statistical meas-
urements, such as mean 2� and standard deviation 2� . Few
of the statistical measures used in this study are discussed

(6)JE(Y ,X) = −
∑

x

∑

y

p(x, y) log p(x, y).

(7)JE
(
x1, x2

)
=
∑

i

bx(i) log bx(i),

(8)DK||L
(
x1, x2

)
=
∑

i

x1i log
x1i

x2i
,

(9)MI
(
x1, x2

)
= E

(
x1
)
+ E

(
x2
)
− JE

(
x1, x2

)
.

 SN Computer Science (2020) 1:245 245 Page 6 of 14

SN Computer Science

below. Readers interested in further detail of these metrics
are welcome to refer to [21].

Structural Similarity Index (SSIM)

SSIM is often used for predicting image quality using a ref-
erence image. Given two samples x1 and x2 , the SSIM index
[21] is given by:

where the terms � and � are the mean and variances of the
two vectors and �x1x2 is the covariance of x1 and x2 . The con-
stant terms C1 and C2 are used to avoid a null denominator.

Peak Signal‑to‑Noise Ratio (PSNR)

PSNR [21] is another objective metric widely used in
CODECs to assess picture quality. PSNR can be defined in
terms of the mean squared error (MSE). The MSE of two
samples having the same size N is defined as:

The PSNR measure can then be expressed as:

where MAX is the maximum possible pixel value of a refer-
ence image.

Sorting Batches of Samples

In contrast to traditional training approach, our proposed
method does not shuffle individual batches. Instead it reor-
ganizes then based on a concrete measure of each sample in
the batch. The approach works as follows: a batch of train-
ing samples B =

{
x1, x2,… , xM

}
⊂ T is selected from the

training set. Each sample xk ∈ B is assigned a rank by ana-
lysing its pixel distribution using the specified metric m .
We use two types of metrics: distance and standalone. If
m is a distance metric, a reference sample xr ∈ B is used to
rank a moving sample xm ∈ B . Initially, the reference sample
is chosen at random. For instance, consider the following
setup: let m be the mutual information (MI) measure, the
algorithm first selects an initial reference sample, xr = x1
and computes the MI-index or rank (�) of every other sam-
ple, x2,… , xM, in the batch against xr . If asc ordering is
used, the sample with the smallest � value is promoted to
become a reference sample. This is repeated until the last

(10)SSIM
(
x1, x2

)
=

(2�x1
�x2

+ C1)(2�x1x2 + C2)
(
�2
x1
+ �2

x2
+ C1

)(
�2
x1
+ �2

x2
+ C2

) ,

(11)MSE
(
x�, x�

)
=

1

N2

N∑

i

N∑

j

(
x�ij − x�ij

)2
.

(12)PSNR = 20 log10

�
MAX
√
MSE

�
,

sample is promoted and a syllabus is proposed. Note here,
the syllabus,SB , is an ordering of the samples according to
their mutual information index. Given a proposed syllabus
SB = {x�

1
, x�

2
,… x�

M
} , the network first sees the initial refer-

ence sample, then the sample having the smallest depend-
ency rank, � value is fed to the network. The overall behav-
iour is that adjacent samples are closer to each other than
those that are not adjacent. Closeness in this context is meas-
ured by the metric in use. The smaller the value � , the closer
the two samples are. When using a standalone metric, such
as entropy, each sample is ranked. The entire batch is then
sorted based on the specified ordering and the rank of each
sample. m selected from a set of metrics is pre-specified as
a learning parameter and can be updated during training if
corresponding syllabus is deemed unfit. We experimented
with several metrics and asc sorting order to observe the
impact on training.

Syllabus Fitness Evaluation

We use the network’s native loss function to determine the
fitness of a given syllabus. The syllabus is evaluated after
training for a fixed number of iterations. Fitness of a syllabus
for a given network and training set T is determined using
two configurable hyperparameters: number of iterations (can
also be number of batches) π and the baseline performance
β of the network on T averaged over π. β is the threshold by
which the syllabus’s fitness is determined and is chosen to
be the average baseline loss of the network over π number
of iterations. Baseline performance of a network is the net-
work’s training performance without curriculum.

Syllabus fitness criteria: Once the network is trained on T
for π number of iterations using a syllabus S , the losses are
aggregated and the average loss,

where loss (i) is the i th iteration training loss, of the network
associated with S is computed. The syllabus-to-baseline loss
ratio, � = ��→S

/
�, is then used as the sole criterion to deter-

mine the fitness of the syllabus. Depending on the value of
� , a fitness signal f� , that can take on one of three forms:
continue, stop, or replace–rerun, and is propagated to the
image analysis submodule. A syllabus is deemed fit if the
ratio is less than or equal to 1 and f� is set to continue. Oth-
erwise f� is set to stop or replace and the syllabus is consid-
ered unfit and discarded. If replace–rerun is propagated,
then Deep-CLO adaptively proposes a new syllabus using a
prespecified backup metric. Here, we make a naive assump-
tion that the syllabus’s training performance is as good as
the baseline if the ratio is close to 1.

(13)��→S =

∑�

i=0
����(i)

�
,

SN Computer Science (2020) 1:245 Page 7 of 14 245

SN Computer Science

Experiments

Implementation detail and datasets—Our method is imple-
mented with the TensorFlow library1 [23] and training was
done using a system optimized for deep learning research
and developments. We present training and classification
results obtained by training state-of-the-art image classifica-
tion networks using different curriculum strategies described
in Sect. 2 on CATSvsDOGS [24], CIFAR10, CIFAR100
[25].

Training—We trained several past and current state-of-
the-art CNNs using open-source TensorFlow implementa-
tions.2 Each network is first evaluated on the corresponding
datasets to create baseline reference performance metrics for
comparison. For each network, we used stochastic gradient
descent (SGD) optimizer and its variant, Adaptive moment
estimation (Adam) [26], a fixed momentum of 0.9, batch size
of 8, and an exponentially decaying learning rate with factor
0.94 starting at 0.01. For the rest of training, we used rec-
ommended configurations by respective authors. We report
empirical results gathered by training each network for at
least 1 million iterations. We ensure all learning parameters
and environment are identical, with varying networks, learn-
ing methods (curriculum vs no-curriculum) and optimizers,
to rule out other factors of influence.

Networks—Variants of EfficientNet [27] and FixEfficient-
Net-L2 [28] are among the networks evaluated in this study.
EfficientNet is a family of architectures generated using
a novel model scaling method that uses simple yet highly
effective compound coefficients to scale up CNNs in a more
structured manner [27]. We experimented with EfficientNet-
L2 [29] which surpassed state-of-the-art accuracy in 2019.
FixEfficientNet-L2 is another iteration over EfficientNet
which uses a new weight update procedure, FixRes [30] dur-
ing training. This model currently holds the state-of-the-art
in the ImageNet ILSVRC 2012 benchmark [31]. In addition
to these models, we also experimented with various notable
models including variants of the ResNet architecture [32],
BiT-L [33] and ResNeXt [34] as well as one variant, Incep-
tion v2, of the GoogleNet (Inception) model family as well
as MobileNet v3 [35]—a model architecture high optimized
for mobile and embedded devices. To observe the training
trends, we use curriculum settings or syllabi with varying
measure m, π = 100,000, o = asc and β value that is unique
to each network and training set.

Testing scenarios—The standard testing scenario of a
classification task is to train the models using a portion of
the dataset and then test it in previously unseen, held-out test
set. There is no prior exploration on the test set. This setting

is preferred and able to clearly measure the generalizabil-
ity of the networks with and without the proposed method,
so we evaluate our Deep-CLO approach under the standard
testing scenario.

Evaluation metrics—In a typical data classification
problem, evaluation metrics are employed into two stages:
training stage (learning) and testing stage. In training stage,
the evaluation metric was used to optimize the classifica-
tion algorithm. In other words, the evaluation metric was
employed as the discriminator to discriminate and to select
the optimal solution which can produce a more accurate pre-
diction of future evaluation of a particular classifier. Mean-
while, in the testing stage, the evaluation metric was used
as the evaluator to measure the effectiveness of produced
classifier when tested with the unseen data. There are vari-
ous types of evaluation metrics that can be used to evaluate
the quality of classifiers with different aims. We report sev-
eral metrics that show the impact of our method on train-
ing and generalization performance: Training Trends—the
training loss over a period of training updates and trends
in Test Accuracy—the ratio of correct predictions over the
total number of test samples. In addition to these standard
metrics, we also report metrics that are suited for opera-
tional models. Metrics that capture the tradeoff between cor-
rect classifications and misclassification, which are tuned
to imbalance classifications and address the asymmetry of
real-world costs associated with each class [36]. These met-
rics include:

• Precision (p) [37]—is used to measure the patterns of a
given category that are correctly predicted from the total
predicted patterns in that category. For instance, if we
consider a cat category in a cat vs dog classification task
to be a positive class (and dog a negative class), precision
is used to measure the overall accuracy of the model on
a cat from the total predicted patterns of a cat category,
including false alarms. Formally, it is defined as the ratio
of true positives and the sum of true positives and false
positives. Precision value takes on values in the range
0–1 with values close to 1 indicating a classifier with
high degree of precision.

• Recall (r) [37]—on the other hand captures the fraction
of cat predictions that are correct. It is defined as the
ration of true positive to the sum of true positive and true
negative. It is used to assess model’s ability to accurately
predict (recall) a given category from a bucket of samples
containing all categories. Similarly, recall takes value on
the scale 0–1.

• F1-Score [37]—is the harmonic mean between recall and
precision values. i.e. 2rp

r+p
.

• Receiver operator characteristic (ROC) curve [38]—
another effective method commonly used for assessing 1 https ://githu b.com/h3nok /curri culum _learn ing_optim izati on.

2 https ://githu b.com/tenso rflow /model s/tree/maste r/resea rch/slim.

https://github.com/h3nok/curriculum_learning_optimization
https://github.com/tensorflow/models/tree/master/research/slim

 SN Computer Science (2020) 1:245 245 Page 8 of 14

SN Computer Science

the performance of a diagnostic test tools for medical
applications. ROC considers the true positive, true nega-
tive, false positive and false negative predictions of the
model. It is a plot that depicts the trade-off between sen-
sitivity and 1-specificity where sensitivity is the frac-
tion of positive patterns that are correctly classified, and
specificity is the fraction of negative patterns that are
correctly classified. The area under a ROC curve (AUC)
is a single and most commonly used index for measuring
the performance of a test. Unlike the threshold metrics
above, the AUC value reflects the overall prediction per-
formance of a classifier. The closer the AUC value is to
1, the better the performance of the models is on a real-
world data.

Results and Analysis

Training

First, we evaluated training performance of all models using
various curriculum strategies and compare the results to the
baseline, state-of-the-art performance of each model on
the corresponding dataset. We use the total loss, the sum
of cross-entropy and regularization losses, as the primary
evaluation criteria of the impact of each strategy on training.
The results are depicted in Fig. 2.

With most curriculum strategies, we observe large
improvement in training performance over the baseline.
This shows that the proposed method accelerates training
in agreement with prior theoretical investigation [1, 4]. For
instance, we notice 15.6% absolute percentage improvement
in reducing the training loss when training EfficientNet-B7
using MI syllabus on CIFAR10 dataset. The improvement
is consistently observed on the other curriculum strate-
gies. As can be seen in Fig. 3 left column plots, similar
trends are observed with the ResNeXt and FixEfficientNet.
Moreover, we notice that almost all curriculum strategies
outperform the baseline and the improvements are statisti-
cally significant.

Whilst these results are interesting, to rule out other
factors of influence and ensure repeatability across data-
sets, we whitelisted the best performing strategy in our
CIFAR10 experiment and performed similar experiments
on CIFAR100. The results are depicted in Fig. 3.

We noticed the test accuracy and training loss follow their
usual course observed during CIFAR10 training. The results
on both datasets show that CL has favorable impact on train-
ing performance. CL-trained models achieve the same level
of loss but only require 2/3 of the steps compared to conven-
tional training. These results also are in line with the results
on ImageNet presented in Ghebrechristos et al.

Results on test set (standard scenario)—another observa-
tion from this experiment is that some curriculum strate-
gies produce models that generalize better to unseen sam-
ples compared with the baseline (Fig. 3, right column). For
instance, if we look at the test performance of Inception
V2 trained using MI on CIFAR10 (Fig. 3, top right), the
improvement on the test set is close to 15%. However, we
also observe a degradation in generalizability with some cur-
riculum strategies. SSIM syllabus, for instance, is a strategy
that reduces generalization performance of ResNeXt-101 by
5% compared to the baseline.

This is interesting because it implies that the training
improvements induced by the proposed methods directly
translate to performance gains in generalization. This is
beneficial because most models achieve similar accuracy as
the baseline in significantly a smaller number of iterations.
Based on the experiments, VGG is the only model that does
not conform to these gains. The order of sample presenta-
tion in case of VGG may not be as significant compared to
the other architectures. We believe this is somewhat related
to how the model performs successive feature extraction
in comparison to other. More experiments with more net-
work architectures and datasets are needed to confirm this
intuition.

The results suggest that the curriculum learning tech-
nique that incorporates complexity of training samples
may be more effective not only in traversing the input space
towards the ideal minimum as a way to expedite training
and feature extraction, but also it has statistically significant
impact on the classifier’s generalization performance even
when considering real-world scenarios (discussed below).
Specifically, we see that the variance in gradient direction
of points (capture by the trends in loss) decrease much faster
when training using syllabus per batch in comparison to the
tradition, random shuffling approach.

Further Study on Generalization

When considering applicability of these models to real-
world scenarios, the models must go through validation
process that considers variations and imbalance in real-
world input. To this end, we further assess generalization
performance of models trained with the proposed using the
CATSvsDOGS dataset for binary classification task. We
chose binary classification partly due to the rich and proven
family of metrics for assessing applicability of classifiers to
a given domain. Taking sample complexity into account, in
the context of curriculum learning may, therefore, increase
the likelihood to achieve a higher-quality local minimum
during training which in turn produces robust models with
better generalization performance but in a smaller number
of training iterations. The metrics, including the number of
iterations, are presented in column 3 of Table 3. Figure 4

SN Computer Science (2020) 1:245 Page 9 of 14 245

SN Computer Science

Fig. 2 Left. Comparison of CIFAR10 training performance of vari-
ous models with and without CLO. Right. Comparison of test per-
formance of the various models on CIFAR10 held-out test set.
MobileNet achieve similar accuracy as the baseline in 2/3 of number

of training steps. The ease the interpretation of the plots the median
loss of the baseline during training and the max accuracy achieved
during testing are highlighted in orange dashed lines

 SN Computer Science (2020) 1:245 245 Page 10 of 14

SN Computer Science

below depicts the ROC curve of MobileNet performance
on CATSvsDOGS using various curriculum strategies. As
can be seen in the plot, most CL strategies have AUC values
greater than the baseline. For instance, K–L syllabus-trained
MobileNet has AUC value of 0.985 compared to 0.943 of the
baselines. These values indicate that CL-trained models have
good measure of separability, making the proposed method
suitable for both research purposes, to identify training strat-
egies that expedite training, but also to produce more robust
models for practical applications.

Optimization Methods

SGD and its variant Adam [2] work well for many opti-
mization problems and can converge to a promising local
or global optimum within a reasonable computation cost.
Instead of computing loss on the whole dataset, SGD com-
putes loss and weight updates on a batch of samples and
updates the model variables by computing the loss function
gradient instances by instances. SGD produces the same
performance as regular gradient descent when the learning
rate is low. Another variant of gradient descent widely used
in practice is Adam. It is an adaptive learning rate method
that combines the advantages of two SGD extensions—Root
Mean Squared Propagation (RMSProp) [13] and Adaptive
Gradient Algorithm (AdaGrad) [13]. It computes individual
adaptive learning rates for different parameters of the model.
Unlike SGD, Adam updates exponentially moving averages
of the gradients and the square gradients whose decay rates
are controlled by hyperparameters [26]. In this section of the
experiment, we use both optimization techniques to verify
that our proposed method’s performance is invariant to the

type of technique used to update model parameters. The
results are depicted in Fig. 5.

The results show that the proposed method has compa-
rable impact on training performance when combined with
SGD or Adam optimizer. In line with previous observations,
SGD progresses to find a minimum, but it takes significantly
longer than Adam. We observe a training loss reduction by
factor of 1.75 when Deep-CLO is employed alongside of
Adam, while the loss reduction with SGD is expedited by a
factor of 1.8. The gaps in loss reduction as depicted in Fig. 5

Fig. 3 Left. Comparison of inception training performance with and without MI syllabus. Right. Comparison of test performance of the same
the network on test set. The model achieves similar test accuracy as the baseline in almost 1/2 of number of training steps

Fig. 4 ROC curve that captures generalization performance of
MobileNet on Cats vs Dogs with various CL strategies. The closer
the AUC value is to 1 the better the model is at generalizing to real-
world data

SN Computer Science (2020) 1:245 Page 11 of 14 245

SN Computer Science

are inherent to the optimizers. This is because SGD is much
more reliant on a robust initialization and annealing schedule
and may get stuck in saddle points rather than local minima.
So usually, SGD takes a greater number of iterations com-
pared to its variants. Adam, on the other hand, is an adap-
tive momentum and adaptive learning rate algorithm which
does not rely on robust initialization. Given these results, we
hypothesize that our proposed method is optimizer agnostic.
In other words, the various CL strategies have similar impact
on training regardless of which optimizer is used.

Selecting a Strategy

Most neural network-based machine learning algorithms
come with millions of tunable and user-specified parameters.
Many of these parameters are encoded in the network archi-
tecture and are tuned by the training procedure. In CNNs, for
instance, these types of parameters include the convolution
filter banks or weights which are tuned for a given dataset
by the backpropagation algorithm. While these are types of
parameters that are automatically fine-tuned, there also exist
parameters, such as learning rate and batch-size, commonly
known as hyperparameters, which are considered as tuning
knobs of the learning system that researchers and practition-
ers use to control the behavior of algorithm when optimizing
its performance on a given dataset. Hyperparameter tuning
for performance optimization is a challenging problem and
is a subject of many machine learning researchers. As it
currently stands, there are no established rules for predicting
the right set of parameters that guarantee best performance
for a given dataset [39]. Deep-CLO introduced one such
hyperparameter, namely the metric (m), used to construct a
curriculum strategy. In this section, we discuss our obser-
vation of one potential approach to identify a strategy that
is best suited for a given dataset. A more in-depth study
related to this is under way and will be considered in future
publications.

Capturing Structural Information of Dataset

Figure 3 depicts the probability distribution of entropy
metric of the CIFAR10 and 100 datasets. The plots cap-
ture the distribution of the entropy value of each sample as
well as the histogram of these values across classes (labels).
We have found a strong correlation between extracted the
structural information of a dataset (such as distribution

Table 3 Comparison of
generalization (real-time
inference) capabilities of
various models with and
without curriculum learning

The metrics that outperform the baseline are highlighted in bold

Model Strategy # Iterations
(10k)

p r F1-Score AUC Acc (%)

ResNeXt-101 Baseline 19 0.54 0.55 0.54 0.74 0.63
ResNeXt-101-MI MI 15 0.67 0.73 0.70 0.81 0.78
VGG16 Baseline 6 0.83 0.85 0.84 0.89 0.91
VGG16-MI MI 6 0.86 0.75 0.80 0.82 0.84
BiT-ResNet Baseline 15 0.67 0.74 0.70 0.73 0.77
BiT-ResNet-MI MI 19 0.75 0.88 0.81 0.85 0.88
EfficientNet-B7 Baseline 8 0.58 0.53 0.55 0.992 0.88
EfficientNet-B7-MI MI 6.7 0.63 0.65 0.64 0.994 0.95
MobileNet V1 Baseline 6 0.88 0.88 0.88 0.992 0.88
MobileNet V1-MI MI 4.8 0.95 0.95 0.95 0.994 0.95
Inception v2 Baseline 6 0.94 0.95 0.94 0.94 0.93
Inception v2-MI MI 4.75 0.97 0.93 0.95 0.96 0.94

Fig. 5 Comparison of Adam and SGD optimizers on training perfor-
mance of Inception model when trained using MI CL strategy

 SN Computer Science (2020) 1:245 245 Page 12 of 14

SN Computer Science

of Entropy) to the training and generalization trends of
select models on that dataset. To illustrate, consider the
EfficientNet-B7 model performance, (Fig. 2), first column.
The model achieves training loss of 0.3 when trained using
entropy strategy on CIFAR10 dataset compared to 0.9 of the
baseline—a statistically significant loss reduction which is
induced by the proposed learning strategy. We believe this
performance optimization is somehow related to the struc-
tural information of the dataset as captured by the metric.
Entropy-based strategy favors such a reduction since entropy
distribution (Fig. 6 top) of the training set is a normal distri-
bution with a mean of 0.1 and standard deviation of 0.0002.
This structural information is also consistent with the test
set which enables us to predict the generalization gains of
the strategy. As can be seen in Fig. 2, the entropy-based
model achieves similar accuracy as that of the Baseline in
3/4th of the number of training steps. At the end, it beats
the Baseline model by achieving 91% accuracy compared

to 82%. On the other hand, we noticed performance deg-
radation when the same model is trained using the same
strategy on the CIFAR100 dataset. This observation that we
argue is predictable if one sees the structural information
of CIFAR100 as captured by the strategy in use (Fig. 6 bot-
tom). We see that the entropy of every sample in CIFAR100
dataset significantly deviates from one another by at least
standard deviation of 2.6. In addition, entropy value across
the labels also shares such discrepancy making the strategy
less effective at optimizing the model.

Although these kinds of characteristics are well suited
to describe datasets, we believe, when combined with our
recommended training strategy, they also enable us to rec-
ommend appropriate classification model and strategy for a
given dataset. Extracting and visualizing structural informa-
tion of the various metrics used in this study are relatively
cumbersome and we do not have a thought-out and efficient
solution at this stage.

Fig. 6 Entropy value distribution (left) and distribution of Entropy value across classes for both CIFAR10 (top) and CIFAR100 (bottom) datasets

SN Computer Science (2020) 1:245 Page 13 of 14 245

SN Computer Science

Conclusion

In this paper, we present a framework for assessing and
ranking training samples and used this framework to
investigate curriculum learning optimization, an exten-
sion of stochastic gradient descent in which samples of
a batch are presented to the learning system based on a
rank that captures inherent characteristics of each sample
and its relationship to other samples. We start with an
extended definition of curriculum learning in the context
of deep learning which we termed Deep-CLO and pre-
sent results that showcase both training and generaliza-
tion performance improvements compared to conventional,
no-curriculum training. Our proposed training framework,
which is designed to make research in curriculum learning
practical, provides the groundwork that enabled us to con-
struct and investigate various training strategies for classi-
fication models using varying convolutional architectures
and benchmark datasets. Compare to previous work, ours
alleviates the need to rank difficulty of samples by hand
(hand-engineering syllabus) or using multiple training
passes. Our framework dynamically proposes and evalu-
ates syllabus by integrating image analysis techniques
that capture characteristics of each training example into
deep learning-based training pipeline. Deep-CLO is also
modular and independent of the model architecture, which
allows each component to be improved separately with-
out inducing any change to the model architecture. The
results suggest that while sample ordering does affect the
training process, the optimal order in which samples are
presented may vary based on the dataset and algorithm
used. With all strategies, we found loss reduction at the
initial stages of training to be the most consistent signal
that showcases the impact of our method. We believe our
approach is optimizer agnostic. However, it is sensitive
to the type of dataset used for training and potentially the
model architecture. In addition to training performance,
we also notice improvements in generalization perfor-
mance both in standard testing scenarios and scenarios
that consider real-world variations in input.

Our primary aim with this work is to investigate the
impact and practicality of curriculum learning for off-the-
shelf, computer vision models. However, it would also be
nice to understand the general principles that make some
curriculum strategies work better than others. This is the
subject of our future work. In particular, correlating a
strategy to a network and to a dataset or both will allow
us to reap the advantages of CL by minimizing human
involvement and introducing determinism into the training
and model deployment processes. Currently, these pro-
cesses are based on trial-and-error approaches that also
rely on significant human expertise.

Compliance with ethical standards

Conflict of interest On behalf of all authors, I state that there is no
conflict of interest.

References

 1. Bengio Y, Louradour J, Collobert R, Weston J. Curriculum learn-
ing. 2009. https ://doi.org/10.1145/15533 74.15533 80.

 2. Graves A, Bellemare MG, Menick J, Munos R, Kavukcuoglu K.
Automated curriculum learning for neural networks. In: Proceed-
ings of the 34th international conference on machine learning, vol.
70. ICML’17. 2017, pp. 1311–1320.

 3. Avramova V. Curriculum learning with deep convolutional neural
networks. Thesis. KTH Royal Institute of Technology. 2015, p.
119.

 4. Weinshall D, Cohen G, Amir D. Curriculum learning by trans-
fer learning: theory and experiments with deep networks.
ArXiv180203796 Cs, Feb. 2018, [Online]. arXiv :1802.03796 .
Accessed 15 Jun 2018.

 5. Henok G, Gita A. Information theory-based curriculum learn-
ing factory to optimize training. In: Asian conference on pattern
recognition, Auckland, Zew Zealand, 2019.

 6. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Under-
standing deep learning requires rethinking generalization.
ArXiv161103530 Cs, Nov. 2016, [Online]. arXiv :1611.03530 .
Accessed 02 Apr 2018.

 7. Martin CH, Mahoney MW. Rethinking generalization requires
revisiting old ideas: statistical mechanics approaches and complex
learning behavior. ArXiv171009553 Cs Stat, Oct. 2017. [Online].
arXiv :1710.09553 . Accessed 12 Nov 2018.

 8. Szegedy C et al. Intriguing properties of neural networks.
ArXiv13126199 Cs, Dec. 2013. [Online]. https ://arXiv .org/
abs/1312.6199. Accessed 26 Oct 2018.

 9. Ghebrechristos H, Alaghband G. Expediting training using infor-
mation theory-based patch ordering algorithm. Las Vegas: CSCI;
2018. p. 6.

 10. Hornik K, Stinchcombe M, White H. Multilayer feedforward net-
works are universal approximators. Neural Netw. 1989;2(5):359–
66. https ://doi.org/10.1016/0893-6080(89)90020 -8.

 11. Kotsiantis SB. Supervised machine learning: a review of clas-
sification techniques. Emerg Artif Intell Appl Comput Eng.
2017;160:20.

 12. Deming WE, Morgan SL. The elements of statistical learning.
Amsterdam: Elsevier; 1993.

 13. Zhang J. Gradient descent based optimization algorithms for deep
learning models training. ArXiv190303614 Cs Stat, Mar. 2019.
[Online]. arXiv :1903.03614 . Accessed 16 Nov 2019.

 14. Janocha K, Czarnecki WM. On loss functions for deep neural net-
works in classification. ArXiv170205659 Cs, Feb. 2017, [Online].
arXiv :1702.05659 . Accessed 16 Jun 2018.

 15. Goodfellow I, Bengio Y, Courville A. Deep learning. New York:
MIT Press; 2016.

 16. Cover TM, Thomas JA. Elements of information theory. New
York: Wiley; 2006. p. 774.

 17. Feixas M, Bardera A, Rigau J, Xu Q, Sbert M. Information theory
tools for image processing. Synth Lect Comput Graph Animat.
2014;6(1):1–164.

 18. Leff HS, Rex AF, editors. Maxwell’s demon: entropy, information,
computing. Princeton: Princeton University Press; 1990.

 19. Shannon CE. A mathematical theory of communication. Bell Syst
Tech J. 1948;27:55.

https://doi.org/10.1145/1553374.1553380
http://arXiv.org/abs/1802.03796
http://arXiv.org/abs/1611.03530
http://arXiv.org/abs/1710.09553
http://arXiv.org/abs/1312.6199
http://arXiv.org/abs/1312.6199
https://doi.org/10.1016/0893-6080(89)90020-8
http://arXiv.org/abs/1903.03614
http://arXiv.org/abs/1702.05659

 SN Computer Science (2020) 1:245 245 Page 14 of 14

SN Computer Science

 20. Bonev BI. Feature selection based on information theory. New
York: Springer; 2010. p. 200.

 21. Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM. Aug.
2010, pp. 2366–2369. https ://doi.org/10.1109/ICPR.2010.579.

 22. Russakoff DB, Tomasi C, Rohlfing T, Maurer Jr CR. Image simi-
larity using mutual information of Torsten Rohlfing. In: 8th Euro-
pean conference on computer vision (ECCV, 2004, pp. 596–607).

 23. Abadi M, et al. TensorFlow: a system for large-scale machine
learning. ArXiv160508695 Cs, May 2016. [Online]. arXiv
:1605.08695 . Accessed 23 Jun 2018.

 24. Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV. Cats and
dogs. In: 2012 IEEE conference on computer vision and pattern
recognition, Jun. 2012, pp. 3498–3505. https ://doi.org/10.1109/
CVPR.2012.62480 92.

 25. Krizhevsky A. Learning multiple layers of features from tiny
images. New York: Springer; 2009. p. 60.

 26. Kingma DP, Ba J. Adam: a method for stochastic optimization.
ArXiv14126980 Cs, Dec. 2014. [Online]. arXiv :1412.6980.
Accessed 16 Jun 2018.

 27. Tan M, Le QV. EfficientNet: rethinking model scaling for convo-
lutional neural networks. ArXiv190511946 Cs Stat, Nov. 2019,
[Online]. arXiv :1905.11946 . Accessed 19 Mar 2020.

 28. Touvron H, Vedaldi A, Douze M, Jégou H. Fixing the train-test
resolution discrepancy: FixEfficientNet. ArXiv200308237 Cs,
Apr. 2020. [Online]. arXiv :2003.08237 . Accessed 20 May 2020.

 29. Xie Q, Luong M-T, Hovy E, Le QV. Self-training with noisy stu-
dent improves ImageNet classification. ArXiv191104252 Cs Stat,
Apr. 2020. [Online]. arXiv :1911.04252 . Accessed 20 May 2020.

 30. Touvron H, Vedaldi A, Douze M, Jégou H. Fixing the train-test
resolution discrepancy. ArXiv190606423 Cs, Mar. 2020, [Online].
arXiv :1906.06423 . Accessed 22 May 2020.

 31. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification
with deep convolutional neural networks. In: Advances in neural

information processing systems, 2012, pp. 1097–1105, [Online].
https ://paper s.nips.cc/paper /4824-image net-class ifica tion-w.
Accessed 17 Sept 2016.

 32. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE conference on computer vision and
pattern recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp.
770–778. https ://doi.org/10.1109/CVPR.2016.90.

 33. Kolesnikov A, et al. Big transfer (BiT): general visual representa-
tion learning. ArXiv191211370 Cs, May 2020, [Online]. arXiv
:1912.11370 . Accessed 20 May 2020.

 34. Yalniz IZ, Jégou H, Chen K, Paluri M, Mahajan D. Billion-
scale semi-supervised learning for image classification.
ArXiv190500546 Cs, May 2019, [Online]. arXiv :1905.00546 .
Accessed 22 May 2020.

 35. Howard AG, et al. MobileNets: efficient convolutional neural net-
works for mobile vision applications. ArXiv170404861 Cs, Apr.
2017. [Online]. arXiv :1704.04861 . Accessed 06 Apr 2019.

 36. Koyejo OO, Natarajan N, Ravikumar PK, Dhillon IS. Consistent
binary classification with generalized performance metrics. New
York: Springer; 2014. p. 9.

 37. Hossin M, Sulaiman MN. A review on evaluation metrics for data
classification evaluations. Int J Data Min Knowl Manag Process.
2015;5(2):1–11. https ://doi.org/10.5121/ijdkp .2015.5201.

 38. Kumar R, Indrayan A. Receiver operating characteristic (ROC)
curve for medical researchers. Indian Pediatr. 2011;48(4):277–87.
https ://doi.org/10.1007/s1331 2-011-0055-4.

 39. Bergstra J, Bengio Y. Random search for hyper-parameter optimi-
zation. J Mach Learn Res. 2012;13:25.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICPR.2010.579
http://arXiv.org/abs/1605.08695
http://arXiv.org/abs/1605.08695
https://doi.org/10.1109/CVPR.2012.6248092
https://doi.org/10.1109/CVPR.2012.6248092
http://arXiv.org/abs/1412.6980
http://arXiv.org/abs/1905.11946
http://arXiv.org/abs/2003.08237
http://arXiv.org/abs/1911.04252
http://arXiv.org/abs/1906.06423
http://papers.nips.cc/paper/4824-imagenet-classification-w
https://doi.org/10.1109/CVPR.2016.90
http://arXiv.org/abs/1912.11370
http://arXiv.org/abs/1912.11370
http://arXiv.org/abs/1905.00546
http://arXiv.org/abs/1704.04861
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1007/s13312-011-0055-4

	Deep curriculum learning optimization
	Abstract
	Introduction
	Deep-CLO: Deep Curriculum Learning Optimization
	Assessing and Raking Training Samples
	Information-Theoretic Measures
	Joint Entropy
	Kullback–Leibler (K–L) Divergence
	Mutual Information

	Statistical Measures
	Structural Similarity Index (SSIM)
	Peak Signal-to-Noise Ratio (PSNR)

	Sorting Batches of Samples
	Syllabus Fitness Evaluation

	Experiments
	Results and Analysis
	Training
	Further Study on Generalization
	Optimization Methods

	Selecting a Strategy
	Capturing Structural Information of Dataset

	Conclusion
	References

