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Abstract

Generative Adversarial Networks (GANs) in supervised 
settings can generate photo-realistic corresponding output 
from low-definition input (SRGAN). Using the architecture 
presented in the SRGAN original paper [2], we explore how 
selecting a dataset affects the outcome by using three 
different datasets to see that SRGAN fundamentally learns 
objects, with their shape, color, and texture, and redraws
them in the output rather than merely attempting to sharpen 
edges. This is further underscored with our demonstration
that once the network learns the images of the dataset, it can 
generate a photo-like image with even a slight hint of what it 
might look like for the original from a very blurry edged 
sketch. Given a set of inference images, the network trained 
with the same dataset results in a better outcome over the 
one trained with arbitrary set of images, and we report its
significance numerically with Fréchet Inception Distance 
score [22]. Keywords: GAN, SRGAN, FID.

1. Introduction

Generative Adversarial Networks are a type of deep 
neural networks that are used to generate images by using 
two networks; the generator and the discriminator. The 
generator attempts to generate images from an array of often 
smaller size, and the discriminator determines whether the 
generated images are real or fake by finding the Nash 
equilibrium of a game [7, 8].  GANs have shown to be very 
effective methods for Super Resolution imaging (SR), also 
referred to as Single image super-resolution (SISR), which is 
a class of techniques that enhances the resolution of an 
imaging system. It aims to refine and convert an image of 
low-resolution to that of high-resolution. Following the 
work by Dong et al. [25], Ledig et al. [2] demonstrated that 

using the Generative Adversarial Network as well as pre-
trained VGG network [26] improve the performance of SR 
(SRGAN).

SRGAN has achieved generating high resolution images 
by training rather general image sets, i.e., any arbitrary 
image set can be used for training. But if one is to enhance a 
particular type of image, such as that of human face, a
building, or furniture, should the network be trained with the 
given specific features that will appear in the inference 
images?  The question of how the selection of training data 
affects the SRGAN has not been well studied.

This paper explores effective ways of training to achieve 
super-resolution and other applications, using various 
datasets in SRGAN.  In order to answer a question such as 
“If we want to reconstruct high-resolution face images from 
low-resolution ones using SRGAN, should we train it with 
the dataset of face images, or does it matter what kind of 
images we train?”, we use three different datasets for 
training and measure the effects on the resulting images.  In
other words, this study attempts to uncover how SRGAN 
uses neural networks to generate super-resolution images by 
learning other similar images.

Our main contributions are as follows:

With FID, we show numerically that for the best result
one should use the same image-type dataset that will be
used at inference time.
Demonstrate examples of other usages of SRGAN, such
as Coloring and Edges to Photo, as applications of
image-to-image translation.

After Section 2, Related Work, we describe the dataset 
and the network architecture, along with the experimental 
methods in Section 3.  Section 4 describes the results of the 
experiments in Section 3. In Section 5, we explore usages of 
SRGAN beyond super-resolution, coloring and edges to 
photo, and the paper concludes with Section 6.
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2. Related Work 
 
2.1 Unsupervised Training 

 
With Generative Adversarial Networks, along with 

Variational AutoEncoders (VAE) [20] and other techniques, 
a random noise is often used as an input to draw images in 
an unsupervised manner.  Since its inception in 2014 [7], 
GAN has evolved within this domain for generating clearer 
images and more stable training, with the input of a sample 
from a Gaussian distribution z.  Radford et al. [10] 
successfully generated convincing images by using a 
convolutional neural network that has no fully connected 
layers and replaced max-pooling with strided convolutions.  
Arjovsky et al. [11] demonstrated a stable training by 
measuring divergence with Earth Mover (EM) distance, a 
distance between two probability distributions that is to be 
minimized continuously.  It was followed by Gulrajani et al. 
[12], which proposes weight regularization rather than 
weight clipping.  Mao et al. [13] introduced a least-squares 
loss for slower saturation of the loss function.  And Berthelot 
et al. [14] proposed a loss derived from the Wasserstein 
distance with an auto-encoder based training as a 
discriminator.  Meanwhile, with increasing members of the 
GAN family, efforts have been made to organize, sort, and 
evaluate different flavors of GANs [18]. 
 
 
2.2 Supervised Training 
 

On the other hand, attempts to control the output more 
precisely by way of supervised training settings took place.  
The training is conducted by feeding an image to the 
network as an input (as opposed to the random noise z), and 
form a one-to-one mapping with the corresponding output 
image.  Our work focuses on this area.  SRGAN [2] is one of 
the prominent works of one-to-one mapping. 

Conditional GAN (cGAN) [15, 16, 17] inserts a 
condition in the network and tries to generate an output with 
specific attributes.  Notably, in close relation to our work, 
Isola et al. [3] showed that cGANs can achieve image-to-
image translation.  In this regard, SRGAN is a part of the 
broader term of Conditional GANs. 

The supervised nature of these GANs requires paired 
training data, which is often difficult to obtain except in the 
case where one can generate input images from the original 
ones, as demonstrated in this paper.  CycleGAN [9] 
eliminates this requirement; it can translate images in one 
domain to another without pairs of training data.  
 
 
3. Methods and Experimental Settings 
 
3.1 Dataset 
 

We use three different datasets: 

1.  CelebA for faces – we use the “aligned” version, which 
has been compiled from the original version of “in the 
wild”.  Every image is a uniform size of 178 x 218 and 
contains all peoples’ faces in the center of the frame.  
(Total number of images: 202,599) [27] 

2.  Lsun Dining Room – consisting of dining tables, chairs, 
etc., representing indoor furniture (657,571) [28] 

3. Lsun Tower – architectural buildings in the outdoors 
(708,264) [28] 
The idea of selecting these three datasets is to contrast 

them to each other, where each dataset representing unique 
characteristics of images of a similar kind (faces, towers, 
furnished rooms).  We created three different pre-trained 
networks, corresponding to respective datasets.  When the 
trainings are completed, each of which should have learned 
human faces, indoor furniture, and buildings outdoor, 
respectively.  For our experiment, a single training consists 
of 200,000 images, which are selected randomly from one of 
the datasets and run for 10 epochs. 

Note that the aligned CelebA contains faces in the frame 
consistent in all the images in such a way that we can simply 
center-crop and resize them in the same ratio, while Lsun 
images are taken from the wild, and objects are placed 
randomly in an image.  Thus, naturally the network learns 
faces more easily than dining rooms or towers.  All the 
images are resized (CelebA) or randomly cropped (Dining 
Room and Tower) to be 128×128 in size. 
 
 
3.2 Network Architecture 
 
3.2.1 Architecture 
 

We used code from Github [1] which closely presents the 
original SRGAN [2] and made very few changes to the 
network itself.  We used different datasets for comparison.  
The generator of the network has eight residual blocks (the 
original SRGAN uses 16 blocks), each of which consists of 
Conv, BN, and Parametric ReLU, followed by layers of 
PixelShufflers, which are inserted to accommodate various 
upscale ratios (The original SRGAN has two PixelShufflers 
to facilitate 4×4 upscaling factors).  The discriminator also 
contains eight convolutional layers, consisting of Conv, BN, 
and Leaky ReLU, but with more feature maps than those of 
the generator.  Both networks use the kernel size 3 and no 
max-pooling is used.  In order to properly measure the 
effects of the choice of datasets, we used the fixed network 
architecture throughout the experiments. (Figure 1) 

Although the study of the network construction is beyond 
the scope of our work, a few points should be made.  There 
are discussions as to which network between the generator 
and discriminator should be more powerful, such as how fast 
the generator learns than the discriminator does, or vice 
versa.  Despite suggestions that the parameters of the 
discriminator should be updated more frequently than the 
generator, many implementations use the same frequency of 
parameter updates between the two networks. We follow the 
latter.  In terms of the network size, the discriminator in our 
network is several times larger than its counter-part. 
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3.2.2 Loss function 
 

With a pair of training images, the discriminator 
calculates the loss function – pixel-wise distances between 
the target image and the input image.  This is a straight 
forward way to minimize the loss in image-to-image 
translation.  The original SRGAN paper [2] uses Mean 
Squared Error (MSE, or L2) loss in its content loss 
calculation.  While we also used L2 loss for the majority of 
experiments, in Section 5 we used both L1 and L2 losses for 
comparison. In general, the L2 function performs well as 
long as outliers (noise in the image) are not present in the 
input. 

 

 

 

 
 

As part of the content loss, 16 layer VGG network [26] 
was used throughout the experiments along with L1 or L2 
loss. 

 
 
3.2.3 Batch Normalization 
 

Batch Normalization (BN) is a normalization technique 
used on the input of each layer to reduce covariance shift 
(changing of distribution of activations in intermediate 
layers) [5].  Wang, et al. [4] claims that removing the BN 
improves the image quality, but it is also known to allow a 
wider range of the selections for hyper-parameters.  
Determining hyper-parameters increases the experimental 
budget exponentially when we change the image size, and 
BN helps alleviate this cost.  Using Batch Normalization 
helps the network to converge more easily. 

The network adopted in this paper uses Batch 
Normalization at each layer in all experiments.  
 
 
4.  Super-Resolution with 4×4 Up-Scaling 
Images 

 
4.1 Method 

 
The up-scale ratio we use in this section is 4×4, as is 

typically done in SRGAN.  We create three trained-networks 
by training three datasets, namely, CelebA [27], Lsun Dining 
Room [28], and Lsun Tower [28].  Given a target image of 
128×128, an input image is created by resizing the target 
image by 4×4 with bi-cubic interpolation, resulting in a 
32×32 low resolution (LR) image.  This input is then passed 
to the generator, resulting in an image with the original size 
of 128×128, yet still low resolution, at which point we have 
a pair of images; one is the original HR image (target), the 
other is the LR output by the generator, both the same size.  
Now, the loss is calculated between the pair which is to be 
minimized during the training.  This process is repeated with 
200,000 different pairs, consisting of one epoch. 

We trained 10 epochs for each of three networks.  With 
Nvidia GTX 1080 Ti, using a single GPU it takes 
approximately one hour for an epoch, thus about 10 hours to 
finish training.  After creating the three trained networks, 
each with trained with faces, dining rooms, and towers, we 
then test each for inference with the test sets of the three 
datasets of face, dining room and tower, totaling 9 tests. 
 
4.1.1 Evaluation of the performance metrics  
 

The image-to-image translation involves the supervised 
training of two images; original or target, and the 
corresponding image generated from the LR input, to be 
measured its fidelity to the original.  Thus, direct comparison 
of two images between the original and the generated image 
would make sense.  We can measure the Euclidean distance, 
often as MSE, of every pixel between pairs of the two 
images, then average them over the entire test set.  Peak 

 
 
Figure 1: Architecture of the network.  The numbers 
in the parenthesis indicate the number of feature maps. 
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Signal to Noise Ratio (PSNR) and Structural Similarity 
Index (SSIM) are derivatives of MSE metrics.   PSNR 
represents a measure of the peak error (noise).  The lower 
the value, the lower the error.  SSIM gives a value of 1.0 if 
the two images are identical.  The lower the SSIM value, the 
bigger the difference.  Traditionally they have been used to 

measure image qualities in the reconstruction of image 
compression, however, for GANs those measurements do 
not represent the true quality of the generated output [2, 4, 6, 
8, 18, 21, 22].  The reason they do not represent visual 
perception is well described in Theis et al. [21].  Even for a 
pair of identical images, a shift by only one pixel on one of 
the images causes a large increase in the distance of the 
metrics.  Nevertheless, Chart 1 and 2 show these MSE-based 
quantitative results and will be compared to Fréchet 
Inception Distance (FID) [22], which corresponds to more 
realistic qualitative measure 

Fréchet Inception Distance uses a pre-trained Inception 
network [24] and calculates Fréchet distance between two 
multivariate Gaussian distributions with mean  and 
covariance , 
 

 
 
where x, g are the activations of the pool_3 layer of the 
Inception-v3 net for real samples and generated samples, 
respectively.  We take 2,599 images from test set, and 
generate the corresponding inference images through one of 
our pre-trained networks, resulting in two sets that are to be 
measured by the FID calculator [23]; 2,599 test images and 
2,599 output images. Note that the number of images comes 
from the CelebA dataset, whose total is 202,599, of which 
we used 200,000 for training, thus leaving 2,599 for testing.  
The sample size must be consistent throughout the 
measurements, thus we randomly select 2,599 images from 
each of test sets of Dining Room and Tower as well. 

Measuring FID appropriately shows that an image of 
CelebA, Dining Room, or Tower is best inferred through the 
network that has been trained with CelebA, Dining Room, or 
Tower, respectively, as seen in the [Chart 3].  FID measures 
can better support what we observe visually in Figure 2 as 
described in the next section. 

 
 
 

4.1.2. Visual analysis of the outputs  
 

More obvious differences can be observed in actual 
images shown in Figure 2.  For example, the top three 
images are CelebA images and we can see that the networks 
trained with Dining Room and Tower never learned the 
shape of eyes, whereas the network that has been trained 
with faces clearly shows pupil/iris (dark area in the center of 
an eye) and sclera (white area surrounding iris). 

The 4th and 5th rows are Dining Room images.  In the 4th 
row, the edge of the white table is more clearly shown, 
inferred by the network trained with Dining Room.  
Similarly, the image in the 5th row shows columns of the 
chair (vertical wooden back support) more clearly through 
the network trained with it.  On the other hand, in the images 
with the network trained with Tower, one can observe bricks 
and window-like texture on the surface of the buildings more 
clearly (rows 6 and 7). 
 

 
 
Chart 1: Pixel-wise Euclidean Distance Metrics – PSNR.  The 
higher the value, the better. 
 
 

 
 
Chart 2: Pixel-wise Euclidean Distance Metrics – SSIM.  The 
higher the value, the better. 
 
 

 
 
Chart 3: Each pre-trained network that has been trained with 
CelebA, Dining Room, and Tower is tested against three datasets.  
The lower the value is, the better. 
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5. Coloring and Edges to Photo 
 
5.1 Coloring 

 
There have been various methods of coloring single 

channel images – i.e., grayscale and edged. But CNN 
architectures, along with Transposed/Fractionally-Strided 
Convolutions (or deconvolutions), have been used more 
recently [3, 19].  We used this image-to-image translation 
with L2 loss function for the colorization with the same 
architecture of the network used for SRGAN.  We used 
upscale ratio 1 (No blurring operation in the inputs) for all 
the trainings.   

For inference, we only used corresponding pre-training 
networks; i.e. for the inference of face images, we used the 
network trained by face dataset only, for dining room images 
we used the network trained by dining room dataset only.  
Before the training, we prepared the input data with gray-
scale images using OpenCV. 
 
5.1.1. Face 
 

Figure 4 shows the result of our experiment for face 
coloring. As can be seen, regardless of race the difference in 
skin color of human faces is relatively small. However in the 
testing, the network properly redraws the original skin color 
in the output images.  Note that the network never learned 
the color of the background, and more generic beige color is 
used for it (3rd and 4th rows on Figure 4). 

 
5.1.2. Dining Room 
 

Figure 5 shows the result of our experiment for dining 
room coloring.  Many training images contain tables and 
chairs, and very often if the color of the table is white, the 
chairs are brown, and vice versa.  Two examples of those 
color combinations are presented.  It appears the network 
detects the texture of materials to determine the color of 
furniture. 
 
5.1.3. Tower 

 
As shown in Figure 6, the buildings in the dataset do not 

exhibit a common color, but other elements, such as the sky 
or illumination of the building at night, will be regenerated 
in the output, which indicates that the network picks up 
colors of the most common denominator found in the 
training images. 
 
 
 
 
 

 
 

 
 

 
 

 
 

Figure 4: Converting Gray-Scale to Color (Face) 
Left: black and white, Center: original, Right: output. 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
Figure 2: Top 3 rows: CelebA images. Center 2 rows: Dining 
Room.  Bottom 2 rows: Tower. 
From left to right: Input LR image, Target Image, 
Output inference by pre-trained network with CelebA, 
Output inference by pre-trained network with Dining Room, 
Output inference by pre-trained network with Tower. 
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5.2 Edges to Photo

 
In this section, we conducted additional experiments with 

two loss functions described in Section 3.2.2, as well as 
several upscale values, to see how blurry edge images can 
generate corresponding colored images.  We were able to 
generate images only for CelebA; the network did not 
converge for Dining Room or Tower in training.  In the 
CelebA datasets, the objects (faces) are placed roughly at the 
center of the frames, but Lsun images contain multiple 
objects “in the wild”, not aligned in any way as in CelebA, 
blurring a focal point to learn a single object.  We used 
OpenCV to generate edged images with its Canny edge 
detector before training. 

Setting the upscale value 1 (input and target images have 
the same size) induces artifacts, although the output image 
has better resolution than that of the upscale value of 2 or 
greater.  As we blur the input, the artifacts disappear in the 
output and smooths out the details.  In the very blurry 
output, such as ×8 and ×16, the network still draws human 
faces, indicating what it has learned by the training.  In terms 
of the loss functions L1 or L2, we observe clear differences, 
but it is hard to say which one is better than the other for all 
cases (Figure 7). 

The way the artifacts show up in the output draws an 
attention.  Our experimental results and observations suggest 
that in most cases, either experimental or practical, the 
objective of the type of exercise presented in this section is a 

general restoration of the original object, per se, so the 
features in objects in the input should be in such a way that 
they represent a general guideline, like DNA, to represent 
the original.  Neural network of SRGAN and Image-to-
Image translation learns to capture these features, it seems, 
in the form of the guideline to reproduce the original image.  
For a pre-trained network, the more articulate the guideline 
is, the better it produces the image.  However, if the 
guideline in the input is overly articulated, there will be 
artifacts in the output.  The greater the detail the input is 
depicted, the more amplified the artifacts will be, in which 
case it appears the output fails to generalize the original 
object. 
 

 
6. Conclusion 

 
In all the experiments conducted in this paper, we used a 

fixed network architecture of the GANs.  We showed that 
given a set of inference images, the network trained with the 
same dataset results in a better outcome.  This is numerically 
presented in FID scores.  SRGAN fundamentally learns 
objects, with their shape, color, and texture, and redraws 
them in the output rather than attempting to sharpen edges.   

    
 

    
 
Figure 5: Converting Gray-Scale to Color (Dining 
Room)  
Left: black and white, Center: original, Right: output. 
 

    
 

    
 
Figure 6: Converting Gray-Scale to Color (Tower)  
Left: black and white, Center: original, Right: output. 
 

 
×1 (176×176 => 176×176) 

 

 
×2 (88×88 => 176×176) 

 

 
×4 (44×44 => 176×176) 

 

 
×8 (22×22 => 176×176) 

 

 
×16 (11×11 => 176×176) 

 
Figure 7: Converting Edges to Photo  
From left to right: Input, Target, Output L1, and Output 
L2 
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We also showed that one-to-one mapping of image 
translation inherent in supervised training can be used in 
coloring and converting edges to photo.  Once the network 
learns objects, it can regenerate them from a very faint 
sketch that suggests the original.  The question remains as to 
whether the result presented here is consistent with all other 
architectures of the network. We further need to investigate 
the artifacts presented in the previous section in future work. 
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