
SRGAN: Training Dataset Matters
Nao Taka

Computer Science and Engineering University of Colorado Denver

Abstract

Generative Adversarial Networks (GANs) in supervised
settings can generate photo-realistic corresponding output
from low-definition input (SRGAN). Using the architecture
presented in the SRGAN original paper [2], we explore how
selecting a dataset affects the outcome by using three
different datasets to see that SRGAN fundamentally learns
objects, with their shape, color, and texture, and redraws
them in the output rather than merely attempting to sharpen
edges. This is further underscored with our demonstration
that once the network learns the images of the dataset, it can
generate a photo-like image with even a slight hint of what it
might look like for the original from a very blurry edged
sketch. Given a set of inference images, the network trained
with the same dataset results in a better outcome over the
one trained with arbitrary set of images, and we report its
significance numerically with Fréchet Inception Distance
score [22]. Keywords: GAN, SRGAN, FID.

1. Introduction

Generative Adversarial Networks are a type of deep
neural networks that are used to generate images by using
two networks; the generator and the discriminator. The
generator attempts to generate images from an array of often
smaller size, and the discriminator determines whether the
generated images are real or fake by finding the Nash
equilibrium of a game [7, 8]. GANs have shown to be very
effective methods for Super Resolution imaging (SR), also
referred to as Single image super-resolution (SISR), which is
a class of techniques that enhances the resolution of an
imaging system. It aims to refine and convert an image of
low-resolution to that of high-resolution. Following the
work by Dong et al. [25], Ledig et al. [2] demonstrated that

using the Generative Adversarial Network as well as pre-
trained VGG network [26] improve the performance of SR
(SRGAN).

SRGAN has achieved generating high resolution images
by training rather general image sets, i.e., any arbitrary
image set can be used for training. But if one is to enhance a
particular type of image, such as that of human face, a
building, or furniture, should the network be trained with the
given specific features that will appear in the inference
images? The question of how the selection of training data
affects the SRGAN has not been well studied.

This paper explores effective ways of training to achieve
super-resolution and other applications, using various
datasets in SRGAN. In order to answer a question such as
“If we want to reconstruct high-resolution face images from
low-resolution ones using SRGAN, should we train it with
the dataset of face images, or does it matter what kind of
images we train?”, we use three different datasets for
training and measure the effects on the resulting images. In
other words, this study attempts to uncover how SRGAN
uses neural networks to generate super-resolution images by
learning other similar images.

Our main contributions are as follows:

With FID, we show numerically that for the best result
one should use the same image-type dataset that will be
used at inference time.
Demonstrate examples of other usages of SRGAN, such
as Coloring and Edges to Photo, as applications of
image-to-image translation.

After Section 2, Related Work, we describe the dataset
and the network architecture, along with the experimental
methods in Section 3. Section 4 describes the results of the
experiments in Section 3. In Section 5, we explore usages of
SRGAN beyond super-resolution, coloring and edges to
photo, and the paper concludes with Section 6.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 | 29

ISBN: 1-60132-506-1, CSREA Press ©

2. Related Work

2.1 Unsupervised Training

With Generative Adversarial Networks, along with

Variational AutoEncoders (VAE) [20] and other techniques,
a random noise is often used as an input to draw images in
an unsupervised manner. Since its inception in 2014 [7],
GAN has evolved within this domain for generating clearer
images and more stable training, with the input of a sample
from a Gaussian distribution z. Radford et al. [10]
successfully generated convincing images by using a
convolutional neural network that has no fully connected
layers and replaced max-pooling with strided convolutions.
Arjovsky et al. [11] demonstrated a stable training by
measuring divergence with Earth Mover (EM) distance, a
distance between two probability distributions that is to be
minimized continuously. It was followed by Gulrajani et al.
[12], which proposes weight regularization rather than
weight clipping. Mao et al. [13] introduced a least-squares
loss for slower saturation of the loss function. And Berthelot
et al. [14] proposed a loss derived from the Wasserstein
distance with an auto-encoder based training as a
discriminator. Meanwhile, with increasing members of the
GAN family, efforts have been made to organize, sort, and
evaluate different flavors of GANs [18].

2.2 Supervised Training

On the other hand, attempts to control the output more
precisely by way of supervised training settings took place.
The training is conducted by feeding an image to the
network as an input (as opposed to the random noise z), and
form a one-to-one mapping with the corresponding output
image. Our work focuses on this area. SRGAN [2] is one of
the prominent works of one-to-one mapping.

Conditional GAN (cGAN) [15, 16, 17] inserts a
condition in the network and tries to generate an output with
specific attributes. Notably, in close relation to our work,
Isola et al. [3] showed that cGANs can achieve image-to-
image translation. In this regard, SRGAN is a part of the
broader term of Conditional GANs.

The supervised nature of these GANs requires paired
training data, which is often difficult to obtain except in the
case where one can generate input images from the original
ones, as demonstrated in this paper. CycleGAN [9]
eliminates this requirement; it can translate images in one
domain to another without pairs of training data.

3. Methods and Experimental Settings

3.1 Dataset

We use three different datasets:

1. CelebA for faces – we use the “aligned” version, which
has been compiled from the original version of “in the
wild”. Every image is a uniform size of 178 x 218 and
contains all peoples’ faces in the center of the frame.
(Total number of images: 202,599) [27]

2. Lsun Dining Room – consisting of dining tables, chairs,
etc., representing indoor furniture (657,571) [28]

3. Lsun Tower – architectural buildings in the outdoors
(708,264) [28]
The idea of selecting these three datasets is to contrast

them to each other, where each dataset representing unique
characteristics of images of a similar kind (faces, towers,
furnished rooms). We created three different pre-trained
networks, corresponding to respective datasets. When the
trainings are completed, each of which should have learned
human faces, indoor furniture, and buildings outdoor,
respectively. For our experiment, a single training consists
of 200,000 images, which are selected randomly from one of
the datasets and run for 10 epochs.

Note that the aligned CelebA contains faces in the frame
consistent in all the images in such a way that we can simply
center-crop and resize them in the same ratio, while Lsun
images are taken from the wild, and objects are placed
randomly in an image. Thus, naturally the network learns
faces more easily than dining rooms or towers. All the
images are resized (CelebA) or randomly cropped (Dining
Room and Tower) to be 128×128 in size.

3.2 Network Architecture

3.2.1 Architecture

We used code from Github [1] which closely presents the
original SRGAN [2] and made very few changes to the
network itself. We used different datasets for comparison.
The generator of the network has eight residual blocks (the
original SRGAN uses 16 blocks), each of which consists of
Conv, BN, and Parametric ReLU, followed by layers of
PixelShufflers, which are inserted to accommodate various
upscale ratios (The original SRGAN has two PixelShufflers
to facilitate 4×4 upscaling factors). The discriminator also
contains eight convolutional layers, consisting of Conv, BN,
and Leaky ReLU, but with more feature maps than those of
the generator. Both networks use the kernel size 3 and no
max-pooling is used. In order to properly measure the
effects of the choice of datasets, we used the fixed network
architecture throughout the experiments. (Figure 1)

Although the study of the network construction is beyond
the scope of our work, a few points should be made. There
are discussions as to which network between the generator
and discriminator should be more powerful, such as how fast
the generator learns than the discriminator does, or vice
versa. Despite suggestions that the parameters of the
discriminator should be updated more frequently than the
generator, many implementations use the same frequency of
parameter updates between the two networks. We follow the
latter. In terms of the network size, the discriminator in our
network is several times larger than its counter-part.

30 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 |

ISBN: 1-60132-506-1, CSREA Press ©

3.2.2 Loss function

With a pair of training images, the discriminator
calculates the loss function – pixel-wise distances between
the target image and the input image. This is a straight
forward way to minimize the loss in image-to-image
translation. The original SRGAN paper [2] uses Mean
Squared Error (MSE, or L2) loss in its content loss
calculation. While we also used L2 loss for the majority of
experiments, in Section 5 we used both L1 and L2 losses for
comparison. In general, the L2 function performs well as
long as outliers (noise in the image) are not present in the
input.

As part of the content loss, 16 layer VGG network [26]
was used throughout the experiments along with L1 or L2
loss.

3.2.3 Batch Normalization

Batch Normalization (BN) is a normalization technique
used on the input of each layer to reduce covariance shift
(changing of distribution of activations in intermediate
layers) [5]. Wang, et al. [4] claims that removing the BN
improves the image quality, but it is also known to allow a
wider range of the selections for hyper-parameters.
Determining hyper-parameters increases the experimental
budget exponentially when we change the image size, and
BN helps alleviate this cost. Using Batch Normalization
helps the network to converge more easily.

The network adopted in this paper uses Batch
Normalization at each layer in all experiments.

4. Super-Resolution with 4×4 Up-Scaling
Images

4.1 Method

The up-scale ratio we use in this section is 4×4, as is

typically done in SRGAN. We create three trained-networks
by training three datasets, namely, CelebA [27], Lsun Dining
Room [28], and Lsun Tower [28]. Given a target image of
128×128, an input image is created by resizing the target
image by 4×4 with bi-cubic interpolation, resulting in a
32×32 low resolution (LR) image. This input is then passed
to the generator, resulting in an image with the original size
of 128×128, yet still low resolution, at which point we have
a pair of images; one is the original HR image (target), the
other is the LR output by the generator, both the same size.
Now, the loss is calculated between the pair which is to be
minimized during the training. This process is repeated with
200,000 different pairs, consisting of one epoch.

We trained 10 epochs for each of three networks. With
Nvidia GTX 1080 Ti, using a single GPU it takes
approximately one hour for an epoch, thus about 10 hours to
finish training. After creating the three trained networks,
each with trained with faces, dining rooms, and towers, we
then test each for inference with the test sets of the three
datasets of face, dining room and tower, totaling 9 tests.

4.1.1 Evaluation of the performance metrics

The image-to-image translation involves the supervised
training of two images; original or target, and the
corresponding image generated from the LR input, to be
measured its fidelity to the original. Thus, direct comparison
of two images between the original and the generated image
would make sense. We can measure the Euclidean distance,
often as MSE, of every pixel between pairs of the two
images, then average them over the entire test set. Peak

Figure 1: Architecture of the network. The numbers
in the parenthesis indicate the number of feature maps.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 | 31

ISBN: 1-60132-506-1, CSREA Press ©

Signal to Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) are derivatives of MSE metrics. PSNR
represents a measure of the peak error (noise). The lower
the value, the lower the error. SSIM gives a value of 1.0 if
the two images are identical. The lower the SSIM value, the
bigger the difference. Traditionally they have been used to

measure image qualities in the reconstruction of image
compression, however, for GANs those measurements do
not represent the true quality of the generated output [2, 4, 6,
8, 18, 21, 22]. The reason they do not represent visual
perception is well described in Theis et al. [21]. Even for a
pair of identical images, a shift by only one pixel on one of
the images causes a large increase in the distance of the
metrics. Nevertheless, Chart 1 and 2 show these MSE-based
quantitative results and will be compared to Fréchet
Inception Distance (FID) [22], which corresponds to more
realistic qualitative measure

Fréchet Inception Distance uses a pre-trained Inception
network [24] and calculates Fréchet distance between two
multivariate Gaussian distributions with mean and
covariance ,

where x, g are the activations of the pool_3 layer of the
Inception-v3 net for real samples and generated samples,
respectively. We take 2,599 images from test set, and
generate the corresponding inference images through one of
our pre-trained networks, resulting in two sets that are to be
measured by the FID calculator [23]; 2,599 test images and
2,599 output images. Note that the number of images comes
from the CelebA dataset, whose total is 202,599, of which
we used 200,000 for training, thus leaving 2,599 for testing.
The sample size must be consistent throughout the
measurements, thus we randomly select 2,599 images from
each of test sets of Dining Room and Tower as well.

Measuring FID appropriately shows that an image of
CelebA, Dining Room, or Tower is best inferred through the
network that has been trained with CelebA, Dining Room, or
Tower, respectively, as seen in the [Chart 3]. FID measures
can better support what we observe visually in Figure 2 as
described in the next section.

4.1.2. Visual analysis of the outputs

More obvious differences can be observed in actual
images shown in Figure 2. For example, the top three
images are CelebA images and we can see that the networks
trained with Dining Room and Tower never learned the
shape of eyes, whereas the network that has been trained
with faces clearly shows pupil/iris (dark area in the center of
an eye) and sclera (white area surrounding iris).

The 4th and 5th rows are Dining Room images. In the 4th
row, the edge of the white table is more clearly shown,
inferred by the network trained with Dining Room.
Similarly, the image in the 5th row shows columns of the
chair (vertical wooden back support) more clearly through
the network trained with it. On the other hand, in the images
with the network trained with Tower, one can observe bricks
and window-like texture on the surface of the buildings more
clearly (rows 6 and 7).

Chart 1: Pixel-wise Euclidean Distance Metrics – PSNR. The
higher the value, the better.

Chart 2: Pixel-wise Euclidean Distance Metrics – SSIM. The
higher the value, the better.

Chart 3: Each pre-trained network that has been trained with
CelebA, Dining Room, and Tower is tested against three datasets.
The lower the value is, the better.

0

10

20

30

CelebA Dining Room Tower

Network trained with

PSNR

CelebA

Dining

Tower

Dataset

0.65

0.70

0.75

0.80

0.85

CelebA Dining Room Tower

Network trained with

SSIM

CelebA

Dining

Tower

Dataset

0

20

40

60

CelebA Dining Room Tower

Networks trained with

FID on Pre-trained Network

CelebA

Dining

Tower

Dataset

32 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 |

ISBN: 1-60132-506-1, CSREA Press ©

5. Coloring and Edges to Photo

5.1 Coloring

There have been various methods of coloring single

channel images – i.e., grayscale and edged. But CNN
architectures, along with Transposed/Fractionally-Strided
Convolutions (or deconvolutions), have been used more
recently [3, 19]. We used this image-to-image translation
with L2 loss function for the colorization with the same
architecture of the network used for SRGAN. We used
upscale ratio 1 (No blurring operation in the inputs) for all
the trainings.

For inference, we only used corresponding pre-training
networks; i.e. for the inference of face images, we used the
network trained by face dataset only, for dining room images
we used the network trained by dining room dataset only.
Before the training, we prepared the input data with gray-
scale images using OpenCV.

5.1.1. Face

Figure 4 shows the result of our experiment for face
coloring. As can be seen, regardless of race the difference in
skin color of human faces is relatively small. However in the
testing, the network properly redraws the original skin color
in the output images. Note that the network never learned
the color of the background, and more generic beige color is
used for it (3rd and 4th rows on Figure 4).

5.1.2. Dining Room

Figure 5 shows the result of our experiment for dining
room coloring. Many training images contain tables and
chairs, and very often if the color of the table is white, the
chairs are brown, and vice versa. Two examples of those
color combinations are presented. It appears the network
detects the texture of materials to determine the color of
furniture.

5.1.3. Tower

As shown in Figure 6, the buildings in the dataset do not

exhibit a common color, but other elements, such as the sky
or illumination of the building at night, will be regenerated
in the output, which indicates that the network picks up
colors of the most common denominator found in the
training images.

Figure 4: Converting Gray-Scale to Color (Face)
Left: black and white, Center: original, Right: output.

Figure 2: Top 3 rows: CelebA images. Center 2 rows: Dining
Room. Bottom 2 rows: Tower.
From left to right: Input LR image, Target Image,
Output inference by pre-trained network with CelebA,
Output inference by pre-trained network with Dining Room,
Output inference by pre-trained network with Tower.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 | 33

ISBN: 1-60132-506-1, CSREA Press ©

5.2 Edges to Photo

In this section, we conducted additional experiments with

two loss functions described in Section 3.2.2, as well as
several upscale values, to see how blurry edge images can
generate corresponding colored images. We were able to
generate images only for CelebA; the network did not
converge for Dining Room or Tower in training. In the
CelebA datasets, the objects (faces) are placed roughly at the
center of the frames, but Lsun images contain multiple
objects “in the wild”, not aligned in any way as in CelebA,
blurring a focal point to learn a single object. We used
OpenCV to generate edged images with its Canny edge
detector before training.

Setting the upscale value 1 (input and target images have
the same size) induces artifacts, although the output image
has better resolution than that of the upscale value of 2 or
greater. As we blur the input, the artifacts disappear in the
output and smooths out the details. In the very blurry
output, such as ×8 and ×16, the network still draws human
faces, indicating what it has learned by the training. In terms
of the loss functions L1 or L2, we observe clear differences,
but it is hard to say which one is better than the other for all
cases (Figure 7).

The way the artifacts show up in the output draws an
attention. Our experimental results and observations suggest
that in most cases, either experimental or practical, the
objective of the type of exercise presented in this section is a

general restoration of the original object, per se, so the
features in objects in the input should be in such a way that
they represent a general guideline, like DNA, to represent
the original. Neural network of SRGAN and Image-to-
Image translation learns to capture these features, it seems,
in the form of the guideline to reproduce the original image.
For a pre-trained network, the more articulate the guideline
is, the better it produces the image. However, if the
guideline in the input is overly articulated, there will be
artifacts in the output. The greater the detail the input is
depicted, the more amplified the artifacts will be, in which
case it appears the output fails to generalize the original
object.

6. Conclusion

In all the experiments conducted in this paper, we used a

fixed network architecture of the GANs. We showed that
given a set of inference images, the network trained with the
same dataset results in a better outcome. This is numerically
presented in FID scores. SRGAN fundamentally learns
objects, with their shape, color, and texture, and redraws
them in the output rather than attempting to sharpen edges.

Figure 5: Converting Gray-Scale to Color (Dining
Room)
Left: black and white, Center: original, Right: output.

Figure 6: Converting Gray-Scale to Color (Tower)
Left: black and white, Center: original, Right: output.

×1 (176×176 => 176×176)

×2 (88×88 => 176×176)

×4 (44×44 => 176×176)

×8 (22×22 => 176×176)

×16 (11×11 => 176×176)

Figure 7: Converting Edges to Photo
From left to right: Input, Target, Output L1, and Output
L2

34 Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 |

ISBN: 1-60132-506-1, CSREA Press ©

We also showed that one-to-one mapping of image
translation inherent in supervised training can be used in
coloring and converting edges to photo. Once the network
learns objects, it can regenerate them from a very faint
sketch that suggests the original. The question remains as to
whether the result presented here is consistent with all other
architectures of the network. We further need to investigate
the artifacts presented in the previous section in future work.

References

[1] https://github.com/leftthomas/SRGAN
[2] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose

Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, Wenzhe Shi, Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial
Network. 2017 IEEE Conference on CVPR

[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A.
Efros, Image-to-Image Translation with Conditional
Adversarial Networks. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017,
ISSN: 1063-6919

[4] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao
Liu, Chao Dong, Chen Change Loy, Yu Qiao, Xiaoou
Tang, ESRGAN: Enhanced Super-Resolution
Generative Adversarial Networks. preprint
arXiv:1809.00219v2, Sep 2018.

[5] Sergey Ioffe and Christian Szegedy, Batch
Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. PMLR, pp.448–
456, 2015.

[6] Tero Karras, Timo Aila, Samuli Laine, Jaakko
Lehtinen, Progressive Growing of GANs for Improved
Quality, Stability, and Variation. ICLR 2018.

[7] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, Yoshua Bengio, Generative Adversarial
Nets. Advances in Neural Information Processing
Systems 27, Curran Associates, Inc. pp.2672–2680,
2014

[8] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen, Improved
techniques for training GANs. Advances in Neural
Information Processing Systems, pp.2234–2242, 2016

[9] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei
A. Efros, Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. 2017 IEEE
International Conference on Computer Vision (ICCV),
ISSN: 2380-7504

[10] A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016.

[11] Martin Arjovsky, Soumith Chintala, and L´eon Bottou,
Wasserstein GAN. International Conference on
Machine Learning (ICML), 2017

[12] Ishaan Gulrajani, Faruk Ahmed, Mart´ın Arjovsky,
Vincent Dumoulin, and Aaron C. Courville. Improved

training of Wasserstein GANs. Advances in Neural
Information Processing Systems (NIPS), 2017

[13] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau,
Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. International
Conference on Computer Vision (ICCV), 2017

[14] David Berthelot, Tom Schumm, and Luke Metz.
BEGAN: Boundary equilibrium generative adversarial
networks. preprint arXiv:1703.10717, 2017

[15] Emily Denton, Soumith Chintala, Arthur Szlam, and
Rob Fergus, Deep Generative Image Models using a
Laplacian Pyramid of Adversarial Networks. Advances
in Neural Information Processing Systems (NIPS)
pp.1486–1494, 2015

[16] J. Gauthier. Conditional generative adversarial nets
for convolutional face generation. Class Project for
Stanford CS231N: Convolutional Neural Networks for
Visual Recognition, Winter semester, 2014

[17] M. Mirza and S. Osindero. Conditional generative
adversarial nets. arXiv:1411.1784, 2014

[18] Mario Lucic, Karol Kurach, Marcin Michalski, Olivier
Bousquet, and Sylvain Gelly, Are GANs Created
Equal? A Large-Scale Study. NeurIPS, pp.698–707,
2018

[19] Richard Zhang, Phillip Isola, and Alexei A. Efros,
Colorful Image Colorization. Computer Vision -
ECCV 2016, pp.649–666

[20] Carl Doersch, Tutorial on Variational Autoencoders.
arXiv:1606.05908v2, Aug 2016

[21] Lucas Theis, Aäron van den Oord, and Matthias
Bethge, A note on the evaluation of generative models.
CVPR, 2017

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter, GANs trained
by a two time-scale update rule converge to a local
Nash equilibrium. In Advances in Neural Information
Processing Systems, 2017

[23] https://github.com/bioinf-jku/TTUR
[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, Rethinking the Inception Architecture
for Computer Vision, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
ISSN: 1063-6919, 2016

[25] Chao. Dong, Chen Change Loy, Kaiming He, and
Xiaoou Tang, Image super-resolution using deep
convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(2):295–307,
2016.

[26] Karen Simonyan and Andrew Zisserman, Very deep
convolutional networks for large-scale image
recognition. In International Conference on Learning
Representations (ICLR), 2015. 2, 3, 4, 5

[27] http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
[28] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song,

Thomas Funkhouser, Jianxiong Xiao, LSUN:
Construction of a Large-Scale Image Dataset using
Deep Learning with Humans in the Loop. CoRR,
abs/1506.03365, 2015

Int'l Conf. IP, Comp. Vision, and Pattern Recognition | IPCV'19 | 35

ISBN: 1-60132-506-1, CSREA Press ©

