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ABSTRACT‐ The purpose of this project  is to develop a general purpose semiconductor device 

simulator  that  is  functional  and  modular  in  nature  in  order  to  allow  for  flexibility  during 

programming  and  to  allow  for  future  development  with  relative  ease.  In  addition,  the 

program’s main goal is to provide a tool that can supplement semiconductor device modeling, 

semiconductor  device  physics,  and  to  construct  basic  semiconductor  device  equations  using 

MATLAB  tools.  MATLAB’s  capability  and  inherent  nature  of  handling  matrices  and  matrix 

operations  makes  this  approach  an  excellent  technique  to  develop  numerical  analysis 

algorithms. A device modeling program is developed using the basic MATLAB tools necessary to 

understand the operation of the program.   

 

This project was developed  in the programming environment provided by MATLAB™ which  is 

developed  and  supported  by Mathworks  [1].  Almost  all  academic  institutions  use MATLAB 

heavily in the learning process and is readily available to most students, hence the choice of this 

programming environment. Additionally, MATLAB  is an extremely powerful numerical analysis 

tool  that makes  the  solution  of  a  program  like  this  one  rather  straightforward. MATLAB’s 

capability  and  inherent  nature  of  handling  matrices  and  matrix  operations  makes  this  an 

excellent tool to develop numerical analysis algorithms.  

 

The current  semiconductor  simulation  tools available do not  lend  to updates or modification 

simple or straightforward. In fact most tools are not open to be changed in any manner unless 

the  source  code  is  available. With  the  open  nature  of MATLAB  the  solution  process  can  be 

studied throughout and all variables and parameters are available to study. The program does 

have  the  capability  to  be  standalone  which  allows  for  the  use  of  the  tool  without  the 

requirement of the MATLAB environment. 



 
Semiconductor Device Simulator (SDS) 
In this Section, a brief overview of the SDS program is given with explanations for key aspects 
of the program. We will begin by looking at the “main” program and then investigate the 
functions that are implemented in support of the main program. 
 
The goal is to write a program that solves the matrix-vector equation which was established from 
the classic differential equations. In most aspects the program can be developed however the 
developer likes, but in certain instances poor coding techniques will lead to longer computation 
times and ultimately slower convergence speeds for a given device setup. The main important 
goal is to manipulate the matrix coefficients efficiently and to solve the matrix-vector equation 
with as little iteration as possible. On key element to this is establishing the proper boundary 
conditions and trial values [2]. 
 
A basic flow diagram of the main program is given below [3]. The first few blocks simply 
establish any constants, or numerical parameters required to solve the device. The second block 
establishes any user defined inputs which also include device information for the device to be 
simulated.  
 
clear all;              %Clears all previously stored variable information 
close all;              %Closes all previously open plots 
clc;                    %Clears the command window to blank 
TSTART = tic;           %Starts a timer to record solution time 
format long eng;        %Formats the data to engineering mode 
 
This block is a simple setup that is used before any new simulation is run. All stored variable 
information in the Matlab workspace is cleared, all open plots are closed, and the command 
window is cleared. This section also starts a timer, which is used to investigate the speed of the 
computation algorithm for various device setups. 
 
Every calculated value that is stored in a variable is accessible after the program is run in the 
main Matlab workspace. For example, the last iterated value for the error values is stored in an 
error vector. The program can be easily modified to run through one iteration at a time allowing 
the user to investigate the change in error over each iteration. Every opportunity for the user to 
access the calculated data has been provided so that any insight into those variables can be 
gained if necessary. 
 



 
 

Figure 1 – SDS Basic Flowchart 
 



 
One of the main reasons the author chose to use Matlab was due to the environments natural 
capability to work with matrices. Everything in Matlab, even a one-dimensional variable or 
constant is treated as a matrix. One of the key features in SDS is the use of Cell arrays in Matlab. 
This allows the user to store various types of data in each cell. In fact, the first cell could have a 
standard 3x3 matrix, while the second cell has a string text in it for example. 
 
The cell arrays are treated like matrices as well and indexed similarly. All standard matrix 
operations work, provided that matrix dimensions agree, etc. This works elegantly with the tri-
diagonal block matrices. Each matrix coefficient is a 3x3 matrix but the calculated values are 
stored in a cell array where each element is a 3x3 matrix. The cell array is used in conjunction 
with the recursive algorithm for the solution process. The delta_y array, yo, and y arrays are cell 
arrays as well and the instantiation process is shown below. 
 
delta_y = cell(1,L);          %Defines an empty cell from 1 to L 
delta_y(:) = {[0;0;0]};       %Initializes each cell to a 3x3 empty matrix 
yo = cell(1,L);               %Defines an empty cell from 1 to L 
yo(:) = {[0;0;0]};            %Initializes each cell to a 1x3 empty matrix 
y = cell(1,L);                %Defines an empty cell from 1 to L 
y(:) = {[0;0;0]};             %Initializes each cell to a 1x3 empty matrix 
 
Apr = cell(1,L); 
Bpr = cell(1,L); 
Cpr = cell(1,L); 
Fpr = cell(1,L); 
 
delta_y{N} = inverse_func(Bpr{N})*Fpr{N}... 
            - inverse_func(Bpr{N})*Cpr{N}*delta_y{N+1}; 
 
This calculates the error during one iteration. Following the matrix dimensions gives 
 
delta_y{N} = 3x3 X 3x1 – 3x3 X 3x3 X 3x1 = 3x1, which agrees. 
 
This method of using cell arrays is efficient and compact and is highly recommended. Even the 
update process is compact as shown below. In one line, the original trial potential, yo{N} is 
updated with the calculated error in delta_y{N} at each division point N. Remember the 
boundary conditions have no error associated with them as they are fixed. 
 
y{N} = yo{N} + delta_y{N}; 
 
After each iteration, the solution needs to be checked against the error tolerance. There is 
effectively two main ways to accomplish this. The first method requires that the absolute value 
of each calculated error value for the three fundamental variables, n, p, and sai, are checked 
against the convergence tolerance at each division point. If every single point has converged then 



the solution has been reached. This is somewhat inefficient, however is accurate for the whole 
device. A second method checks the normalized value of the entire error vector (normalized 
value of the error at each division point) against the convergence tolerance. If the normalized 
value is small enough the solution has converged. The process for one error vector is shown 
below. 
 
temp1 = abs(norm(p_error)/norm(po)); 
  
if (temp1 > etol) 
    flag1 = 1; 
else 
    flag1 = 0; 
end 
 
Once all three flags have been cleared to zero (they are initially set to one), then the device has 
converged. The solution algorithm loops until this occurs or the iteration limit set by the user has 
been reached. The default is 15 iterations. 
 
The final part of the “main” code or function simply plots the results, whether the device solution 
converged or not. The electric field, carrier densities, and device potential are all plotted against 
the spatial variable, x. 
 
The rest of the SDS program is a series of functions that are called by the “main” function or 
sub-functions. This is where the matrix coefficients are calculated and the partial derivatives as 
well. The code for one element of the B_func is shown below. It references several functions 
itself. 
 
b(1,1)= ( 1/hpr(N) )*((mu_func(M,h,po,no,Ntot,saio,1)/h(M))... 
    *lambda_func(M,saio,1)-(mu_func(M-1,h,po,no,Ntot,saio,1)/h(M-1))... 
    *lambda_func(M-1,saio,-1))+ diffsrh_func(N,po,no,Ntot,1); 
 
It can be seen that there are several functions to support the calculation of the matrix coefficient. 
Mobility is calculated through a function so that models of temperature and effective doping can 
be used, and the lambda terms and recombination terms are supported by function calls as well. 
This allows for efficient storage of the calculated data. We don’t need the lambda value stored 
across the whole device because unless you are troubleshooting, there is no interest in these 
values. 
 
The lambda function code is shown below. This way beta(M) and beta(M-1) can be calculated in 
one function by passing in the current division point. The other important note for the lambda 
function is the use of the variable, I. This variable is passed in so that the proper sign is used for 
the exponential terms. In this manner, one function can support all of the lambda terms. 
 



Vt = 0.02586; 
theta = 1/Vt; 
  
temp = beta_func(M,saio); 
  
if(I == 1) 
    if(abs(temp) < 1E-5) 
        lambda_out = (1/theta)*(1/(1-(1/2)*temp+(1/6)*temp^2)); 
    else 
        lambda_out = (1/theta)*(temp / (1 - exp(-temp))); 
    end 
elseif(I == -1) 
    if(abs(temp) < 1E-5) 
        lambda_out = -(1/theta)*(1/(1+(1/2)*temp+(1/6)*temp^2)); 
    else 
        lambda_out = (1/theta)*(temp / (1 - exp(temp))); 
    end 
     
end 
  
end 
 
One final note on this function is that for special cases, the actual value of lambda needs to be 
approximated or some of the resulting matrix coefficient calculations will become undefined due 
to a division by zero. For the default device in this program, a step junction profile is used. This 
results in equal values of the device potential in each bulk region which will cause the output of 
the lambda function to go to zero or undefined. Therefore, depending upon the value of beta 
(which is the difference of the device potential between two division points), instead of using the 
direction equation and approximated equation is used. 
 
In essence a series expansion of the lambda terms are performed so that the exponentials are 
approximated. The technique used here was known as Bernoulli’s function.  
 
SDS Example 
In this section, we will review the output of the SDS program applied to a P-N junction 
semiconductor device, shown in Figure 2, to demonstrate the conceptual idea and 
implementation of the program. 
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Figure 2 – Basic P-N Junction Diode 

 
Figure 3 shows the output for the potential of the SDS program with an abrupt step junction of 
equal doping in both regions. The cursor in the graph is displaying the pertinent information. 
 

 
 

Figure 3 – Equilibrium device potential 
 

φn 

φp 

φi= φn‐ φp = 0.2878 – (‐0.2878) = 0.5756 



We can also observe in Figure 3 that the potential is zero at the junction transition as we expect 
since the doping densities are equal in the bulk n and p-regions [4].  
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