
Journal of Intelligent Systems 2014; aop

 Lan Vu * and Gita Alaghband

 Efficient Algorithms for Mining Frequent
Patterns from Sparse and Dense Databases
 Abstract: In this article, we present a new approach for frequent pattern mining (FPM) that runs fast for both

sparse and dense databases. Two algorithms, FEM and DFEM, based on our approach are also introduced.

FEM applies a fixed threshold as the condition for switching between the two mining strategies; meanwhile,

DFEM adopts this threshold dynamically at runtime to best fit the characteristics of the database during the

mining process, especially when minimum support threshold is low. Additionally, we present optimization

techniques for the proposed algorithms to speed the mining process, reduce the memory usage, and optimize

the I/O cost. We also analyze in depth the performance of FEM and DFEM and compare them with several

existing algorithms. The experimental results show that FEM and DFEM achieve a significant improvement

in execution time and consume less memory than many popular FPM algorithms including the well-known

Apriori, FP-growth, and Eclat.

 Keywords: Data mining, frequent pattern mining, association rule mining, frequent itemset, transactional

database.

 2010 Mathematics Subject Classification: 62-07, 68P99, 97R50.

 DOI 10.1515/jisys-2014-0040

 Received February 24 , 2014

1 Introduction
 Frequent pattern mining (FPM) is a fundamental task in data mining that is used to find many types of rela-

tionships among variables in large databases such as associations [1] , correlations [6] , causality [26] , sequen-

tial patterns [2] , episodes [19] , and partial periodicity [12] . Moreover, it helps in data indexing, classification,

clustering, and other data mining tasks as well [14] . Thus, FPM has become a focused research with numerous

practical applications including consumer market-basket analysis, web mining, similarity search of complex

structured data, network intrusion detection, and many others [8, 14] .

 The FPM problem aims at searching for groups of itemsets, subsequences, or substructures that co-occur

in a database with their frequency no less than a user-specified minimum support threshold. For example,

a set of items (itemset), such as milk and bread, that appear frequently together in a database is a frequent

itemset or frequent pattern. In a typical transactional database, the number of distinct single items and their

combinations are usually very large. For a small minimum support threshold, the number of generated item-

sets can be extremely large. Hence, it is a great challenge to design algorithms for mining frequent patterns

that scale with memory size and run in reasonable time [17, 30] .

 Many exiting methods for FPM have typically worked well for certain types of databases. Most methods

performed efficiently on either sparse or dense databases but poorly on the other [3 – 5, 9, 11, 13, 22 – 24] . Table 1

 *Corresponding author: Lan Vu, Department of Computer Science and Engineering, University of Colorado Denver, 1380 Law-

rence Street, Denver, CO 80204, USA, e-mail: lan.vu@ucdenver.edu

 Gita Alaghband: Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO, USA

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

2      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

presents the execution time of three well-known algorithms Apriori [1] , Eclat [34] , and FP-growth [13] on sparse

and dense databases and shows that Eclat performs best on dense data whereas FP-growth runs fastest on the

sparse ones (the best execution times among the three algorithms are underlined). Therefore, it is difficult to

select a suitable algorithm for a specific application. Moreover, data mining components in like Oracle RDBMS,

MS. SQL Server and IBM DBS2 and statistical software like R, SAS and SPSS Clementine which support data

mining tasks [16, 28, 32] usually require mining methods that stably perform on various data types.

1.1 Contributions

 Most databases consist of both sparse and dense data portions that can only be detected during the mining

process. Applying single mining strategy for FPM will omit this feature and result in unstable performance on

different data types. In this article, we present a novel approach for FPM and two algorithms, FEM and DFEM,

based on this approach that can self-adapt to data characteristics. The main contributions of our study include:

1. The recognition of various characteristics of databases and the fact that this characteristics may change

during the mining process is an original idea. The new approach presented in this article detects the

data characteristics at various stages of the mining process and selects one of the two mining algorithms

suitable for each subset of the data remaining to be mined on the fly. Two algorithms, FEM and DFEM,

derived from the proposed approach are discussed.

2. Effective optimization techniques are introduced for the implementation of our mining approach to

further the mining process, reduce the memory usage, and the I/O cost.

3. The efficiency of our approach is demonstrated in both execution time and memory usage via the bench-

mark of our algorithms (FEM and DFEM) with six other FPM algorithms including Apriori [1] , Eclat [34] ,

FP-growth [13] , FP-growth* [11] , FP-array [18] , AIM2 [25] . We also analyze the reasons for the performance

merit of our approach.

2 Background

2.1 Problem Statement

 The FPM problem can be stated as follows: let I = { i
1
 , i

2
 , … , i

 n
 } be the set of all distinct items in the transac-

tional database D. The count of an itemset x (a set of items) is the number of occurrences of x in D and the

support of x is the percentage of transactions containing x . A k -itemset x , which consists of k items from I , is

frequent if the support of x is at least minsup, where minsup is a user-specified minimum support threshold.

Given a database D and a minsup, the problem statement is to find the complete set of frequent itemsets (or

frequent patterns) in D . In this article, we use the terms “ pattern ” and “ itemset ” as well as “ database ” and

 “ data set ” interchangeably.

 For example, given the data set in Table 2 and minsup = 20%, the frequent 1-itemsets include a , b , c , d ,

and e , whereas f is infrequent because its support is only 11%. Similarly, ab , ac , ad , ae , bc , bd , cd , ce , and de

are frequent 2-itemsets, and abc , abd , ace , and ade are the frequent 3-itemset.

 Table 1.   Execution Time on Sparse and Dense Databases.

Databases   Type   Minsup (%)   Apriori   Eclat   FP-growth

Chess   Dense   20   1924   77   89

Connect   Dense   30   522   366   403

Retail   Sparse   0.003   18   59   10

Kosarak   Sparse   0.08   4332   385   144

 Execution time is in seconds. The best execution times among the three algorithms are underlined.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      3

 Table 2.   Sample Data Set with Minsup = 20%.

TID   Items   Sorted frequent items

1   b , d , a   a , b , d

2   c , b , d   b , c , d

3   c , d , a , e   a , c , d , e

4   d , a , c   a , d , c

5   c , b , a   a , b , c

6   c , b , a   a , b , c

7   f  

8   b , d , a   a , b , d

9   c , b , a , e   a , b , c , e

 FPM is an important part of many data mining tasks, especially in association rule mining (ARM) [3] ,

a problem of finding all strong association rules with the form: X → Y | X , Y ⊂ I and X ∩ Y = ∅, whose

support and confidence satisfy a minimum support threshold (minsup) and a minimum confidence threshold

(minconf). The confidence of a rule is the percentage of transactions in D that contain X also contain Y . An

example of such a rule might be that 60% of customers who purchase flour also buy sugar with a confidence

80%. ARM consists of two steps. The first step is finding all frequent itemsets that are computationally inten-

sive and is the focus of our research. The second step is generating strong association rules from the frequent

itemsets.

2.2 Frequent Pattern Mining Approaches

 Mining frequent patterns is nontrivial because of its exponential search space and its large amount of data.

Many algorithms have been developed to do this mining on large databases, and they typically perform effi-

ciently on either sparse or dense databases but not both [1, 3 – 5, 9, 11, 13, 15, 22 – 25, 34] .

 Apriori [1] was the first sequential algorithm that sharply cuts down the search space to make this mining

task feasible. Some variants of Apriori include direct hashing and pruning (DHP) [21] , sampling technique

 [27] , dynamic itemset counting (DIC) [7] , BitApriori [9] , and Hybrid search-based ARM [10] . Because of the

breath-first strategy with multiple I/O scanning times and candidate generate-and-test approach, Apriori-like

methods usually suffer from large computational time and memory usage.

 Eclat-like algorithms load all data of the frequent items into memory, present them in vertical format,

and apply the depth-first strategy to search for all frequent patterns. These algorithms run significantly faster

than Apriori-like ones because they require at most two database scans and reduce memory usage sharply.

Eclat and their variants have been shown to be the better choice for long patterns and/or dense databases [9,

24, 25, 33] .

 FP-growth is known as one of the most efficient FPM algorithms [13] . It compresses the data of the fre-

quent items into an FP-tree in memory and recursively mines all frequent patterns from this data structure

without candidate generation requirement. Because of its efficiency, this algorithm is used in large-scale

applications such as Google ’ s query recommendation [17] . FP-growth* [11] , H-mine [22] , nonordfp [23] , FP-

growth with database partition projection [20] are some improvements of FP-growth. Although FP-growth

has shown to outperform previously developed methods including Eclat and Apriori [4, 11, 13, 22, 23] , it has

been shown not to perform as well as Eclat-like algorithms [9, 24, 25] for dense databases or mining with low

minimum support.

 Recently, a new algorithm named FP-array has been proposed [18] . This algorithm inherits the mining

features of FP-growth and presents data as arrays for cache optimization. FP-array was shown to achieve a

significant performance improvement compared with FP-growth [13] , nonordfp [23] , and AIM2 [25] .

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

4      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

3 A New Self-Adaptive Approach for Frequent Pattern Mining
 This section lays the groundwork for our algorithms. We present our observations and analysis of the charac-

teristics of various databases with respect to frequent patterns to motivate our new approach. We present a

high-level description of our method, the relevant data structures used, and the data transformation needed

to switch between the two mining tasks of our approach.

3.1 Data Structures

 FPM is a memory intensive task whose data presentation and manipulation have a huge impact on mining

performance. In our mining approach, we apply two main data structures including FP-tree and Bit Vector

for the mining task.

 FP-tree is a prefix tree that compacts all sets of ordered frequent items from database into memory. This tree

consists of a header table storing the frequent items with their count, a root node, and a set of prefix subtrees.

Each node of the tree includes an item name, a count indicating the number of transactions that contain all items

in the path from the root node to the current node, and a link to its parent node. Each linked list starting from the

header table links all nodes of the same frequent item. If two itemsets share a common prefix, the shared part can

be merged as long as the count properly reflects the frequency of each itemset in the database. Figure 1 illustrates

an FP-tree constructed from the data set in Table 2, where a pair < x : y > indicates item name and its count.
 Bit Vector is used to store data in memory using the vertical format. This data structure includes item

name, count, and vector of binary bits associated with an item or an itemset. The i th bit of this vector indicates

if the i th transaction in the database contains that item or itemset (1: exist, 0: does not exist). For example, the

data set in Table 2 can be presented in five bit vectors as in Figure 2 . The bit vector of the item f is removed

because this item is infrequent. This structure does not only save memory but also enables low-cost bitwise

operations for computations.

3.2 The Proposed Approach

 Studying many real databases and their characteristics, we observed that most consist of a group of items occur-

ring much more frequently than the others. During the mining process, the items in this group create data subsets

whose characteristic is dense, whereas the less frequent items create subsets that are sparse. Our approach is

combining two mining strategies: (1) the first one, which is applied for sparse data subsets, presents data as

FP-tree and uses the divide-and-conquer approach to generate frequent patterns; (2) the second strategy, which

is used to mine the dense data portions, stores data into Bit Vectors and performs ANDing bitwise operation on

 Figure 1.   FP-Tree Constructed from the Database in Table 2.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      5

pairs of vectors to specify the frequent patterns. It has been shown that the first mining strategy works better on

sparse data [11, 13, 22, 23] and the second one is more suitable for dense one [9, 24, 25, 34] . The proposed approach

detects the characteristic of each data subset (not whole database) and applies a suitable one for these data

dynamically. Based on this approach, we develop two new algorithms, FEM and DFEM, which are presented in

Sections 4 and 5. In general, our mining method includes three main subtasks as shown in Figure 3 :

 FP-tree construction: the database is scanned for the first time to find the frequent items and create

the header table. A second database scan is conducted to get frequent items of each transaction. Then, these

items are sorted and inserted in the FP-tree in frequency-descending order. During the top-down traversal of

the tree construction, if a node presenting an item exists, its count will be incremented by one. Otherwise, a

new node is added to the FP-tree.

 MineFPTree generates frequent patterns by concatenating the suffix pattern of the previous step with

each item x of the input FP-tree. Then, it constructs a child FP-tree called conditional FP-tree for every item x

using a data set called conditional pattern base. This data set is extracted from the input FP-tree and consists

of sets of frequent items co-occurring with the suffix pattern. The new tree is then used as the input of this

recursive mining task. This mining approach explores data in the horizontal format and does not require gen-

erating a large number of candidate patterns. Hence, it performs well on sparse databases. However, unlike

the related works [11, 13, 22, 23] that perform mining on FP-tree only, MineFPTree can switch to the second

mining strategy when it detects the current data subset is dense. In this case, the data subset is converted into

bit vectors and MineBitVector is invoked. A weight vector w whose elements indicate the frequency of sets in

the conditional pattern base is added as the input of MineBitVector.

 MineBitVector generates frequent patterns by concatenating the suffix pattern with each item of the

input bit vector. It then joins pairs of bit vectors using logical AND operation and computes their support
using the weight vector to specify new frequent patterns. The resulting bit vectors are used as the input of

 MineBitVector to find longer frequent patterns. The mining process continues in a recursive manner until

all frequent patterns are found. For dense data, this mining strategy is better than MineFPTree because the

 Figure 3.   Mining Model of the Proposed Approach.

 Figure 2.   Bit Vectors Constructed from the Data Set in in Table 2.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

6      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

number of frequent patterns, which is usually found in dense data, make is suitable for the candidate genera-

tion and test approach of MineBitVector.

 Figure 4 illustrates an example. The conditional pattern base of item d , extracted from the FP-tree in

Figure 1, consists of the four sets { a :2, b :2 } , { a :1, c :1 } , { a :1 } , and { b :1, c :1 } in which { a , b } occurs twice (Figure

4A). This base is equivalent to the data set represented in Figure 4B. If MineFPTree is selected, the conditional

FP-tree of item d is constructed as in Figure 4C. Otherwise, the bit vectors a , b , c , and the weight vector w

(Figure 4D and E) are created instead to be used by MineBitVector.

3.3 Switching between Two Mining Strategies

 Effective determination of how and when to switch between the two mining strategies is key in our

approach to perform efficiently on different types of databases. During the mining process of MineFPTree,

a very large number of child FP-trees are constructed from the parent tree. A FP-tree is organized in such

a way that the nodes of the most frequent items are closer to the top. The newly generated trees are much

smaller than their parents because the less frequent items whose nodes are at bottom of the parent trees

are removed. The size of a conditional pattern base, which is used to construct a new FP-tree, also reduces

to a level where it contains mostly the most frequent items. In these cases, the conditional pattern base

has the characteristic of a dense data set. Therefore, only small conditional pattern bases are considered

for transforming into bit vectors and weight vector. The size of a conditional pattern base is specified by

the number of sets in that base that is similar to the number of transactions in a data set. If this size is less

than or equal to a threshold K , bit vectors and a weight vector are constructed and the mining switches

to MineBitVector.

4 The FEM Algorithm

4.1 Algorithmic Descriptions

 FEM uses the method described in Section 3 and includes three subalgorithms: FEM (Figure 5), MineFPTree

(Figure 6), and MineBitVector (Figure 7). FEM first constructs the FP-tree from the database and then calls

MineFPTree to start searching for frequent patterns and dynamically switch to MineBitVector if appropriate.

In FEM, a fixed value of threshold K is used to decide whether MineFPTree or MineBitVector is applied during

 Figure 4.   Illustration of FP-Tree and Bit Vector Construction. A: Conditional pattern base of item d; B: Dataset equivalent to the

conditional base of item d; C: Conditional FP-tree of item d; D: Bit Vectors; E: Weight vector.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      7

 Figure 5.   FEM Algorithm.

 Figure 7.   MineBitVector Algorithm.

 Figure 6.   MineFPTree Algorithm.

the mining process. Our experimental results show that selecting a good value of K for FEM is data-specific

and depends on the user-specified minimum support threshold (minsup). For FEM to perform well on many

databases, we suggest K = 128 (line 3). K can be adjusted to obtain better performance for a specific database

application. An in-depth analysis on a range of values for K is presented in Section 4.2.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

8      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

4.2 Selection of Threshold K

 We further investigate the impact of varying values of K of different databases in this section. Selecting a

good value of K also depends on the minimum support specified by the user. This raises the question of how

to select a good value of K without testing all possible values ? To answer this question, we conducted an

experiment from which we suggest a good default value of K for FEM. In this experiment, we measure the

performance of FEM on eight real data sets for varying values of K . The eight data sets selected for these test

cases consist of a mix of four dense, three sparse, and one moderate to represent a variety of database char-

acteristics. The detailed characteristics of these data sets are presented in Table 4. Values of K were selected

in the range of 0 – 256 as multiples of 32 so that the maximum size of transaction ID (TID) bit vectors are also

multiples of 32 (4 bytes) for better memory utilization. The running time of FEM for values of K for each data

set are presented in Figure 8 .

 As the results show, FEM performs better with K in the 32 – 128 range for seven of the data sets. For the

Kosarak data set, FEM with a value of K in the 128 – 256 range performs best. This result reflects the excecution

time with the selected minsup values. Based on extensive tests not presented here, we observe that when

minsup varies, the range of K for each data set to produce best performance also changes, but it remains

within the overall range of 0 – 256. For this reason, we recommend K = 128 as a default value for good perfor-

mance on various databases and different minsup values. For K = 128, the maximum size of a Bit Vector is

128 bits (16 bytes). This is smaller than or equal to the size of just one node of FP-tree, which needs at least 16

bytes for item name (4 bytes), count (4 bytes), a link to parent node (4 bytes), and a link to the next node of its

linked list (4 bytes). The total memory size of all Bit Vectors is therefore not greater than the number of items

in the conditional pattern base multiplied by 16 bytes. This data structure requires much less memory space

than an equivalent conditional FP-tree does. Furthermore, the bitwise operations on Bit Vector will perform

faster than creating and manipulating FP-trees.

5 The DFEM Algorithm
 DFEM is a major improvement of FEM. Unlike FEM, it automatically finds the dynamic value of K at runtime,

which helps DFEM adapt better to the data characteristic [29, 31] .

5.1 Computing Dynamic Value of K

 FEM performs well for many databases using a value of K = 128. However, in some cases, the best perfor-

mance is not reached with this fixed selection. The second column in Table 3 shows the running time of FEM

for Kosarak data set with different values of K and minsup = 0.07%. As can be seen, for K = 224, the running

time of FEM is 871 s, significantly faster than its running time of 1206 s for K = 128. This execution time dif-

ference becomes significantly larger when the minimum support threshold (minsup) is set to lower levels as

required by many applications such as query recommendation for web search engine [17] . In this case, it is

important to find the best possible value of K dynamically as the program runs on a specific database with

the required minsups to gain near-optimal performance.

 In Table 3, when K increases, the number of frequent patterns found solely by the MineFPTree task

reduces because more mining workload is shifted to the MineBitVector task. Let { K
0
 , K

1
 , … , K

 n
 } be the set

of all values of K , where K
 i = K

 i – 1
 + 32; P

 i is the number of frequent patterns generated by the MineFPTree

task when K
 i is applied; and R

 i is the ratio indicating the difference between P
 i and P

 i – 1
 . R

 i is computed as

 R
 i = P

 i – 1
 / P

 i , i = 1, … , n .

 Our intensive empirical study indicates that good mining performance is achieved with K
 i that satis-

fies: 2 (2,).i jR R j i/< ∃ < ∀ >∋ In other words, FEM will perform best (near optimal) at the smallest K
 i , where

increasing K does not result in a sharp drop in the number of frequent patterns found by the MineFPTree

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      9

0

10

20

30

40

50

60

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Chess (minsup = 20%)

0

50

100

150

200

250

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Connect (minsup = 40%)

0

10

20

30

40

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Mushroom (minsup = 0.5%)

0

15

30

45

60

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Pumbs (minsup = 50%)

0

30

60

90

120

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Accidents (minsup = 3%)

0

1

2

3

4

5

6

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K

Retail (minsup = 0.003%)

0

1000

2000

3000

4000

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Threshold K Threshold K

Kosarak (minsup = 0.07%)

0

2500

5000

7500

10000

0 32 64 96 128 160 192 224 256

R
un

ni
ng

 ti
m

e
(s

)

Webdocs (minsup = 4%)

 Figure 8.   Running Time of FEM with Different Values of K .

task. In the example in Table 3, the K
 i that satisfies this condition is 224, and its runtime is 871 s. Although

this result is promising, the challenge is that this K
 i can only be specified when the mining process completes

and all P
 i and R

 i have been computed. We have developed a practical method to predict a value of K that is

close to or equal to the best K
 i . The predicted value is based on all P

 i ’ s estimated dynamically at runtime as

described in UpdateK algorithm in Figure 9 . In this algorithm, K is the global threshold initialized to zero,

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

10      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

N is the number of different threshold values, Ki, that are being considered (default value N=9), Step is the

distance between Ki and Ki–1
 (default value Step=32); and P[N] is an array whose the ith element stores the

number of frequent patterns Pi estimated from all conditional pattern bases of the MineFPTree task. The ele-

ments of P[N] are initialized to zero and are regularly updated using the UpdateK algorithm everytime a new

conditional pattern base is processed. K is then updated with a new value newK if newK satisfies the condi-

tion stated above. In Figure 9, NewPatterns indicates the number of new frequent patterns and is equal to the

number of items in C (conditional pattern base); Size is the size of the C.

5.2 Algorithmic Description

 DFEM uses UpdateK algorithm (Figure 9) to dynamically select the value of K at runtime and using it to adapt

its mining behaviors to the characteristics of processed data better than FEM. DFEM consists of four sub

algorithms: DFEM (Figure 10), UpdateK (Figure 9), MineFPTree* (Figure 11), and MineBitVector (Figure 6).

MineBitVector of DFEM is similar to the one of FEM, shown in Figure 6.

 DFEM algorithm builds the FP-tree, initializes the variables used by UpdateK and invokes the MineFP-

Tree*. The variables in lines 3 – 6 must be declared in a scope that UpdateK can access and update.

 The MineFPTree* algorithm is similar to MineFPTree with the exception of the extra steps needed to regu-

larly update K (lines 4 – 5 and lines 11 – 13 in Figure 10).

 Table 3.   Measurements of FEM for Kosarak (Minsup = 0.07%).

Threshold K i   Runtime (s)   No. patterns by the
MineFPTree task (P i)

  Ratio R i

 K
0
 = 0   3341   2,776,266,097   N/A

 K
1
 = 32   2939   1,316,339,679   2.1

 K
2
 = 64   2146   206,479,285   6.4

 K
3
 = 96   1664   26,795,140   7.7

 K
4
 = 128   1206   2,413,815   11.1

 K
5
 = 160   1005   407,051   5.9

 K
6
 = 192   934   86,575   4.7

 K
7
 = 224   871   63,876   1.4

 K
8
 = 256   870   58,304   1.1

 Bold text presents the good K value for FEM performing fast. N/A, Not available.

 Figure 9.   UpdateK Algorithm.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      11

 Figure 10.   DFEM Algorithm.

6 Optimization Techniques
 In addition to the mining strategies and their data structures, the architecture of the machine on which a FPM

program runs also has a significant impact on mining time of an FPM task. In this section, we present imple-

mentation techniques for our mining approach to optimize the use of cache, memory, and I/O and reduce the

mining time.

 FP-Tree Construction: In the second database scan, FEM and DFEM preload the frequency-descending-

sorted sets of frequent items into a lexicographically sorted list. One copy of similar transactions is kept with

its count. For very large databases, the transaction list size is set at runtime to fit the available memory. We

organize this list in a binary tree and maintain its order while the list grows in size. When its size limit is

reached, the sets of frequent items and their counts are extracted from the list one by one to build the FP-tree.

Therefore, the construction time of FP-tree is significantly reduced because similar itemsets are added into

 Figure 11.   MineFPTree* Algorithm.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

12      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

FP-tree only once. Moreover, the lexicographical order of the transaction list makes the FP-tree nodes most

visited together to be allocated close together in memory optimizing the use of cache and speeding up the

mining stage.

 MineFPTree Task: We improve the technique proposed in [11] to implement an additional array associ-

ated with each FP-tree to precompute the count of new patterns. It helps to reduce the traversal cost of parent

FP-trees when constructing the child FP-trees. The improvement of performance results from maximizing the

locality of consistent memory access pattern. However, for the trees with a large number of frequent items,

the array size will be very large, which consequently consume a large amount of memory and increases the

runtime. Therefore, we only enable this technique in FEM and DFEM whenever the array size does not go

beyond a predefined limit; current default value is 64 KB.

 Memory Management: For better memory utilization, large chunks of memory are allocated to store

data of all FP-trees and bit vectors, which is similar to the technique used in [11] . When all frequent patterns

from an FP-tree or bit vectors and their child FP-trees or bit vectors have been found, the storage for these data

structures are discarded. The chunk size is variable. This technique minimizes the overhead of allocating and

freeing small pieces of data and prevents data scattered in memory.

 Output Processing: The most frequent output values are preprocessed and stored in an indexed table as

proposed in [25] . In addition, the similar part of two frequent itemsets outputted consecutively is processed

only once. This technique considerably reduces the computational time on output reporting, especially when

the output size is large.

 I/O Optimization: Data are read into a buffer before being parsed into transactions. Similarly, the outputs

are buffered and only written when the buffer is full. This technique reduces much of the I/O overhead.

7 Experiments and Evaluation
 We evaluate the efficiency of our approach by benchmarking the two algorithms FEM and DFEM with six

other state-of-the-art FPM on both sparse and dense real data sets.

7.1 Experimental Setup

7.1.1 Data Sets

 Eight real data sets with various characteristics and domains were selected from the Frequent Itemset

Mining Implementations Repository [35] . They include four dense, three sparse, and one moderate data sets

(Table 4).

7.1.2 Software

 We benchmarked FEM, DFEM, and six state-of-the-art FPM algorithms: Apriori [1] , Elcat [34] , FP-growth [13] ,

FP-growth* [11] , FP-array [18] , and AIM2 [25] . FEM and DFEM are implemented using our proposed method

and the optimization techniques introduced in this article. Source codes of the compared methods can be

found in [5, 35] .

7.1.3 Hardware

 Eight algorithms were tested on an Altus 1702 machine with dual AMD Opteron 2427 processor, 2.2 GHz, 24-GB

memory, and 160-GB hard drive. Its running operating system is CentOS 5.3, a Linux-based distribution.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      13

7.2 Time Comparison

 The execution time of eight algorithms on eight data sets with various minsup are presented in Figure 12 .

The experimental results show that FEM and DFEM run stably and outperform the others in almost all cases,

whereas the other algorithms behave differently for different data sets. Apriori runs slowest on eight data

sets, but it does better than FP-growth* and FP-array for two dense data sets, Chess and Mushroom. For

Retail, the sparse data set, Apriori has longer execution time compared with FEM, DFEM, and FP-growth but

runs faster than the others. Eclat performs better than the others except AIM2, FEM, and DFEM on the dense

data sets. However, for the sparse data sets such as Retail and Kosarak, Eclat runs slower than most of the

others. Compared with Eclat, three algorithms, FP-growth, FP-growth*, and FP-array, run faster for the dense

data sets but slower for the sparse ones. AIM2, a variant of Eclat, performs well for some dense and sparse

data sets but worse for the other ones.

 Based on the execution time in this experiment, we found that FEM and DFEM run faster than Apriori –

the most popular used FPM method – from 3.4 to 5555.6 times. In comparison to Eclat and AIM2 whose mining

approach use vertical data format, our algorithms run faster from 1.02 to 45.3 times. Our algorithms performed

 Table 4.   Data Sets and Their Properties.

Data sets   Type   No. items   Average length   No. transactions

Chess   Dense   76   37   3196

Connect   Dense   129   43   67,557

Mushroom   Dense   119   23   8124

Pumsb   Dense   2113   74   49,046

Accidents   Moderate   468   33.8   340,183

Retail   Sparse   16,470   10.3   88,126

Kosarak   Sparse   41,271   8.1   990,002

Webdocs   Sparse   52,676,657   177.2   1,623,346

 Figure 12.   Execution Time of FEM, DFEM, and Other Algorithms.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

14      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

1.2 to 23.4 times better than FP-growth, FP-growth*, and FP-array, which are among the best methods for FPM.

This experiment demonstrates the efficiency performance of FEM and DFEM for both sparse and dense data.

7.3 Memory Usage Comparison

 To evaluate the memory usage efficiency of FEM and DFEM, we measured their peak memory usage in com-

parison to the other six algorithms for the eight data sets using the memusage command of Linux. Table 5

shows the memory usage (megabytes) of all algorithms for the test cases with low minimum supports so that

the result can reflect the large difference in memory usage among the algorithms. As in Table 5, FEM and

DFEM consume much less memory than Apriori in every case. Their memory requirements are closer to the

average memory usage of Eclat and FP-growth in most cases. For the Accidents and Connect data set, our

algorithms use less memory than both Eclat and FP-growth. For the Chess data set, FEM and DFEM need

more memory because our implementation includes some additional buffers to enhance the performance.

However, these buffers have fixed size and do not require much memory. Compared with FP-growth*, FEM

and DFEM require more memory for the dense data sets but less memory for the sparse ones. In contrast,

compared with FP-array, the memory usage of FEM and DFEM is smaller for the dense data sets but larger for

the sparse ones. The memory usage of AIM2 is smallest in most cases. However, the memory usage of AIM2

for Webdocs, where memory optimization is critical due to its large memory requirements, AIM2 uses a sig-

nificantly lager memory than the others do.

 To sum up, the two experiments in Sections 7.2 and 7.3 show that FEM and DFEM not only significantly

improve the mining performance and outperform other existing “ efficient ” algorithms for both sparse and

dense data sets, they also compare well in memory requirements. Their memory consumption is much less

than Apriori and FP-growth and is, on average, at par with the other algorithms. These results demonstrate

the efficiency and efficacy of our algorithms. DFEM performs better than FEM, especially when minsup is low.

Therefore, for mining application that requires low minsup, DFEM is a better choice.

7.4 Performance Impact of the Two Mining Strategies

 To study the performance merit of our mining approach, we measured the mining time of DFEM in three sepa-

rated cases: (1) using MineFPTree* only, (2) using MineBitVector only, and (3) using both MineFPTree* and

MineBitVector, i.e., our approach. The results for DFEM on both dense and sparse data (Figure 13) show that it

outperforms the other methods where single mining strategy was used. This is explained by the contribution

of dynamic combination of the two strategies, MineFPTree and MineBitVector, to the mining task where each

handles data portions it can perform best.

 Table 5.   Peak Memory Usage of FEM, DFEM, and Other Algorithms.

Data sets   Minsup (%)   FEM   DFEM   Apriori   Eclat   FP-growth   FP-growth*   FP-array   AIM2

Chess   20   4   4   1139   2   3   3   33   1

Connect   30   11   11   31   13   16   2   43   3

Mushroom   0.5   4   4   20   3   5   2   33   1

Pumsb   50   15   15   921   15   15   6   46   10

Accidents   3   181   181   368   232   305   198   154   40

Retail   0.003   30   30   1203   25   33   350   59   32

Kosarak   0.07   141   141   16,406   138   154   160   133   130

Webdocs   4   4707   4707   24,576   3996   5103   5581   4256   7544

 Peak memory usage is in megabytes. Bold text presents memory usage of FEM and DFEM, the proposed algorithms.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      15

7.5 Analyzing the Self-adaptive Capability of Our Mining Approach to Data
Characteristics

 To understand the self-adaptive capability of our mining to data characteristics, we measured the time of

MineBitVector and MineFPTree * in DFEM separately to observe the level that each mining strategy contrib-

utes to the overall performance for different databases and for various minsup input values.

 Figure 14 shows the time distribution of MineBitVector and MineFPTree * for eight databases whose data

characteristics range from very sparse to very dense. The results show that our approach automatically dis-

tributes the mining workload to its two mining strategies based on data characteristics. MineBitVector, which

is more suitable for dense data, has been utilized mostly for the dense data sets like Chess, Connect, Mush-

room, and Pumsb (85 – 99% of total mining time). The time percentage of this strategy reduces when the data

are sparse. MineFPTree * is increasingly used for sparse data sets like Retail, Kosarak, and Webdocs (33 – 90%

of total mining time). For the sparse portions of the data sets, MineFPTree * is a better choice because its

mining approach does not require generating the very large number of infrequent candidate patterns.

 The ability to self-adapt to data characteristics shows not only for different databases but also for dif-

ferent minsup values for a given database. This is demonstrated by the time distribution of MineFPTree *

and MineBitVector as minsup varies. Figure 15 presents the time distribution for Accident data set with

various minsup values. The results show the lower minsup, the more mining workload and time were

handled by MineBitVector. For the smaller values of minsup, a large number of frequent patterns are

generated because more patterns satisfy the condition to be frequent. This situation is similar to mining

on dense database. Our mining approach, therefore, automatically detects this feature and adjust its

mining behavior to have more mining workload handled by MineBitVector and help improve the overall

performance.

 Figure 14.   Time Distribution of Two Mining Strategies in DFEM.

 Figure 13.   Execution Time of Using Single Mining Strategy vs. Using Both.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

16      L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases

8 Conclusion
 We have presented FEM and DFEM, two new FPM algorithms that work efficiently on both sparse and dense

databases. DFEM is different from FEM, as it dynamically selects the value of threshold K used to switch

between the two mining tasks. We have also introduced a combination of several optimization techniques

for the implementation of FEM and DFEM to enhance their performance. The experimental results show that

FEM and DFEM significantly improve the performance of mining frequent patterns and outperform other effi-

cient algorithms for both sparse and dense databases. They consume much less memory than Apriori and FP-

growth and, on average, are at par with the other memory-optimized algorithms. Comparing the two, DFEM

runs faster than FEM in most test cases. In future work, we will study parallel approaches for implementing

FEM and DFEM on parallel and distributed systems because the experiments show that memory limitation

and computational time are the major obstacles to deploying any sequential FPM algorithm on very-large-

scale databases.

 Bibliography
 [1] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International

 Conference on Very Large Databases , pp. 487 – 499, 1994.

 [2] R. Agrawal and R. Srikant, Mining sequential patterns, in: Proceedings of Data Engineering , pp. 3 – 14, 1995.

 [3] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large databases, Proc. ACM
SIGMOD Manage. Data 22 (1993), 207 – 216.

 [4] C. Borgelt, An implementation of the FP-growth algorithm, in: Proceedings of OSDM Frequent Pattern Mining Implementa-
tions , August 2005.

 [5] C. Borgelt, Frequent pattern mining implementations . http://www.borgelt.net .

 [6] S. Brin, R. Motwani and C. Silverstein, Beyond market basket: generalizing association rules to correlations, Proc. ACM
SIGMOD Manage. Data 26 (1997), 265 – 276.

 [7] S. Brin, R. Motwani, J. D. Ullman and S. Tsur, Dynamic itemset counting and implication rules for market basket analysis,

 Proc. ACM SIGMOD Manage. Data 26 (1997), 255 – 264.

 [8] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke and T. Yiu, MAFIA: a maximal frequent itemset algorithm, IEEE Trans. Knowl-
edge Data Eng. 17 (2005), 1490 – 1504.

 [9] A. Fiat and S. Shporer, AIM: another itemset miner, in: Proceedings of Frequent Itemset Mining Implementations , 2003.

 [10] A. Ghanem and H. Sallam, Hybrid search based association rule mining, in: Proceedings of the 2011 IEEE Pacifi c Rim Con-
ference on Communications, Computers and Signal Processing , pp. 608 – 612, 2011.

 [11] G. Grahne and J. Zhu, Effi ciently using prefi x-trees in mining frequent itemsets, in: Proceedings of Frequent Pattern Mining
Implementations , pp. 123 – 132, 2003.

 [12] J. Han, G. Dong and Y. Yin, Effi cient mining of partial periodic patterns in time series database, in: Proceedings of the IEEE
Data Engineering , pp. 106 – 115, March 1999.

 Figure 15.   Time Distribution of Two Mining Strategies in DFEM for Accidents Dataset with Different minsup Input Values.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

L. Vu and G. Alaghband: Efficient Algorithms for FPM from Sparse and Dense Databases      17

 [13] J. Han, J. Pei and Y. Yin, Mining frequent patterns without candidate generation, Proc. Manage. Data 29 (2000), 1 – 12.

 [14] J. Han, H. Cheng, D. Xin and X. Yan, Frequent pattern mining: current status and future directions, J. Data Mining Knowl-
edge Discov. 15 (2007), 55 – 86.

 [15] N. Le, T. Nguyen and T. C. Chung, BitApriori: an apriori-based frequent itemsets mining using bit streams, in: Proceedings
of Knowledge Discovery and Data Mining , pp. 1 – 6, 2010.

 [16] W. Li and A. Mozes, Computing frequent itemsets inside Oracle 10g, in: Proceedings of the 30th International Conference
on Very Large Databases , pp. 1253 – 1256, 2004.

 [17] H. Li, Y. Wang, D. Zhang, M. Zhang and E. Chang, PFP: parallel FP-growth for query recommendation, in: Proceedings of the
2008 ACM Recommender Systems , pp. 107 – 114, 2008.

 [18] L. Liu, E. Li, Y. Zhang and Z. Tang, Optimization of frequent itemset mining on multiple-core processor, in: Proceedings of
the 33rd International Conference on Very Large Databases , pp. 1275 – 1285, 2007.

 [19] H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of Frequent Episodes in Event Sequences, J. Data Mining Knowledge
Discov. 1 (1997), 259 – 289.

 [20] R. Moriwal, FP-growth tree for large and dynamic data set and improve effi ciency, J. Inform. Comput. Sci. 9 (2014), 83 – 90.

 [21] J. S. Park, M. S. Chen and P. Yu, An eff ective hash-based algorithm for mining association rules, Proc. ACM SIGMOD Man-
age. Data 24 (1995), 175 – 186.

 [22] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang and D. Yang, Hmine: hyper-structure mining of frequent patterns in large data-bases,

in: Proceedings of IEEE Data Mining , pp. 441 – 448, November 2001.

 [23] B. Racz, nonordfp: an FP-growth variation without rebuilding the FP-tree, in: Proceedings of IEEE ICDM Workshop on Fre-
quent Itemset Mining Implementations , November 2004.

 [24] L. Schmidt-Thieme, Algorithmic features of Eclat, in: Proceedings of IEEE Frequent Itemset Mining Implementations , Novem-

ber 2004.

 [25] S. Shporer, AIM2: Improved implementation of AIM, in: Proceedings of IEEE Frequent Itemset Mining Implementations ,

November 2004.

 [26] C. Silverstein, S. Brin, R. Motwani and J. Ullman, Scalable techniques for mining causal structures, J. Data Mining Knowl-
edge Discov. 4 (2000), 163 – 192.

 [27] H. Toivonen, Sampling large databases for association rules, in: Proceedings of Very Large Databases , pp. 134 – 145, 1996.

 [28] C. Utley, Introduction to SQL server 2005 data mining, Microsoft SQL Server 9.0 technical articles (2005). http://technet.

microsoft .com/en-us/library/ms345131.aspx .

 [29] L. Vu and G. Alaghband, A fast algorithm combining FP-tree and TID-list for frequent pattern mining, in: Proceedings of
Information and Knowledge Engineering , pp. 472 – 477, July 2011.

 [30] L. Vu and G. Alaghband, High performance frequent pattern mining on multi-core cluster, in: Proceedings of 2012 IEEE
International Conference on Collaboration Technologies and Systems , pp. 630 – 633, May 2012.

 [31] L. Vu and G. Alaghband, Mining frequent patterns based on data characteristics, in: Proceedings of 2012 International
Conference on Information and Knowledge Engineering , pp. 369 – 375, July 2012.

 [32] T. Yoshizawa, I. Pramudiono and M. Kitsuregawa, SQL based association rule mining using commercial RDBMS (IBM db2

UBD EEE), in: Proceedings of Data Warehousing and Knowledge Discovery , pp. 301 – 306, 2000.

 [33] M. J. Zaki and K. Gouda, Fast vertical mining using diff sets, in: Proceedings of ACM SIGKDD Knowledge Discovery and Data
Mining , pp. 326 – 335, 2003.

 [34] M. Zaki, S. Parthasarathy, M. Ogihara and W. Li, New algorithms for fast discovery of association rules, in: Proceedings of
Knowledge Discovery and Data Mining , pp. 283 – 286, 1997.

 [35] Frequent itemset mining implementations repository, in: Workshop on Frequent Itemset Mining Implementation , 2003 –

 2004. http://fi mi.ua.ac.be .

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 14.01.15 09:16

