
Novel Parallel Method for Mining Frequent Patterns on 
Multi-core Shared Memory Systems 

Lan Vu 
Dept. of Computer Science and Engineering 

University of Colorado Denver 
1380 Lawrence St. Denver, CO 80204, USA 

Lan.Vu@ucdenver.edu 

Gita Alaghband 
Dept. of Computer Science and Engineering 

University of Colorado Denver 
1380 Lawrence St. Denver, CO 80204, USA 

Gita.Alaghband@ucdenver.edu 

 
ABSTRACT 
Frequent pattern mining is an important problem in data mining 
with many practical applications. Current parallel methods for 
mining frequent patterns unstably perform for different database 
types and under-utilize the benefits of multi-core shared memory 
machines. We present ShaFEM, a novel parallel frequent pattern 
mining method, to address these issues. Our method can 
dynamically adapt to the data characteristics to efficiently perform 
on both sparse and dense databases. Its parallel mining lock free 
approach minimizes the synchronization needs and maximizes the 
data independence to enhance the scalability. Its structure lends 
itself well for dynamic job scheduling resulting in well-balanced 
load on new multi-core shared memory architectures. We evaluate 
ShaFEM on a 12-core multi-socket server and find that our 
method runs 2.1 - 5.8 times faster than the state-of-the-art parallel 
method. For some test cases, we have shown that ShaFEM saves 
4.9 days and 12.8 hours of execution time over the compared 
method. 

Categories and Subject Descriptors 

B.3.2 [Memory Structures]: Design Styles – Shared memory; 
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures – Multiple-instruction-stream, multiple-data-stream 
processors; D.1.3 [Programming Techniques]: Concurrent 
Programming – Parallel programming; E.1 [Data Structures]: 
Trees; H.2.8 [Database Management]: Database Applications – 
Data mining; 

General Terms 
Algorithms, Performance 

Keywords 
Frequent pattern mining, multi-core, shared memory, association 
rule mining, parallel algorithm, databases 

1. INTRODUCTION 
Frequent pattern mining is commonly used to find many types of 
relationships among variables in large databases such as 
associations, correlations, causality, sequential patterns, episodes 
and partial periodicity. It plays a crucial role in association rule 

mining and is also applied in data indexing, classification and 
clustering [1, 2]. This frequent pattern mining task is considered 
one of the most important problems in data mining with numerous 
practical applications such as consumer market-basket analysis, 
web mining, similarity search of complex structured data, and 
network intrusion detection [2, 3]. It is also a component of many 
commercial database systems like Oracle Database (RDBMS), 
Microsoft SQL Server and IBM DBS2 Database and statistical 
software like R, SAS and SPSS Clementine [4, 5, 6]. 

1.1 Motivation 
Several studies have shown that existing frequent pattern mining 
methods have typically worked well for certain types of databases. 
Most methods performed efficiently on either sparse or dense 
databases but poorly on the other [7, 8, 9, 10, 11, 12, 13, 14]. 
Furthermore, mining frequent patterns is very time-consuming, 
especially when the database size is large. Hence, it is essential to 
design and apply parallel computing techniques to speedup this 
mining task. Most existing works propose parallel solutions for 
distributed-memory systems [15, 16, 17, 18, 19, 20]. For example, 
Google deploys this task in their query recommendation system 
using MapReduce on a distributed-memory machine with 
thousands of cores [15]. Some surveys [16, 17] have showed that 
few studies investigated on parallel frequent pattern mining 
algorithms for shared memory multi-core computers which under-
utilize the benefits of shared memory. None of previous parallel 
works took into consideration the data characteristics to improve 
the mining performance on different database types. 

1.2 Contributions 
In this paper, we present a novel parallel frequent pattern mining 
method named ShaFEM for the new multi-core shared memory 
platforms to solve the above issues. The proposed method uses a 
new data structure named XFP-tree, an extension of frequent 
pattern tree [7], that is shared among processes (also known as 
threads) to compact data in memory. Then, each parallel process 
independently mines frequent patterns using a dynamic 
combination of two mining strategies: one is suitable for sparse 
data and the other works well on dense data. The main 
contributions of our study include: 

1) A novel parallel mining method that is able to dynamically 
switch between its two mining strategies to adapt to the 
characteristics of the database and runs fast on both sparse 
and dense databases. 

2) A new efficient parallel lock free approach that applies new 
data structures to enhance the independence of parallel 
processes, minimize the synchronization cost and improve 
the cache utilization. Additionally, its dynamic job 
scheduling for load balancing helps increase the scalability 
on multi-core shared memory systems. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org. 
DISCS-2013 November 18, 2013, Denver, CO, USA 
Copyright 2013 ACM 978-1-4503-2506-6/13/11…$15.00. 
http://dx.doi.org/10.1145/2534645.2534653  

49



2. BACKGROUND AND RELATED WORK 
2.1 The Problem Statement 

Let I = {i1, i2,. . . , in} be the set of all distinct items in the 
transactional database D. The count of an itemset α (a set of items) 
is the number of occurrences of α in D and the support of α is the 
percentage of transactions containing α. A k-itemset α, which 
consists of k items from I, is frequent if α’s support is at least 
minsup, where minsup is a user-specified minimum support 
threshold. Given a database D and a minsup, the problem 
statement is to find the complete set of frequent itemsets (or 
frequent patterns) in D. For example, given the dataset in Table 1 
and minsup=30%, the frequent 1-itemsets include a, b, c, d and e 
while f is infrequent because its support is only 22%.  Similarly, 
ab, ac, ad, ae, bc, bd are frequent 2-itemsets and abc is the only 
frequent 3-itemset. 

Table 1. Sample dataset with minsup = 30% 
Transaction ID (TID) Items Sorted Frequent Items 

1 b,d,a a,b,d 
2 c,b,d b,c,d 
3 c,d,a,e a,c,d,e 
4 d,a,e a,d,e 
5 c,b,a a,b,c 
6 c,b,a a,b,c 
7 f  
8 b,d,a a,b,d 
9 c,b,a,e,f a,b,c,e 

2.2 Related Works 
Many sequential algorithms have been developed for mining 
frequent patterns on large databases in which Apriori [1], Eclat 
[21] and FP-growth [7] are most well-known. However, these 
algorithms typically perform efficiently on either sparse or dense 
databases but not both [1, 7, 8, 9, 10, 11, 12, 13, 14, 21].  

For large-scale transactional databases, applying parallel 
computing to speed up the mining process is essential. Majority of 
the existing parallel methods of mining frequent pattern have been 
proposed for distributed memory systems [15, 16, 17, 18, 19, 20]. 
For the memory intensive problems like the one being 
investigated in this paper, efficient utilization of shared memory 
MIMD parallelism can significantly improve the overall 
performance [22]. Parallelizing FP-growth is usually selected for 
large-scale mining applications due to its performance merits [15]. 
Several parallel FP-growth based methods have been proposed for 
shared memory multi-core systems. In the traditional approach, 
parallel processes cooperatively build a shared global FP-tree 
resulting in extensive use of costly synchronization locks to 
access each node of the tree [17]. A different approach called Tree 
Projection partitions the FP-tree into subsections with small 
portions shared among processes. Only access to the small shared 
sections would require locks for synchronization [23]. Multiple 
Local Parallel Trees (MLPT) approach is the first algorithm not 
requiring locks by constructing local trees separately and mining 
the frequent patterns from these trees [24]. FP-array which is 
another efficient parallel algorithm converts the tree data structure 
into arrays for better cache optimization. This method improves 
performance significantly compared to the previous parallel 
methods which we selected to compare with our proposed 
method. FP-array can be found in the PARSEC Benchmark [25]. 

Due to inheriting the mining characteristic of FP-growth, the 
above parallel methods suffered from poor performance on dense 
databases. In our study, we will focus on solving this issue and 

propose a new parallel solution that works efficiently on shared 
memory multi-core architecture. 

3. ShaFEM: A NOVEL PARALLEL 
FREQUENT PATTERN MINING METHOD 
ShaFEM implements a new parallel lock-free approach that uses 
two different mining strategies and dynamically adapts its mining 
behavior at runtime for efficient performance on both sparse and 
dense databases. This is the unique approach that have not been 
found in previous studies. Our algorithmic design leads to 
optimized use of shared memory and enhances the data 
independence among parallel processes for better cache 
utilization. ShaFEM performs in two stages: 

 The XFP-tree construction stage: ShaFEM compacts all 
data in memory into a new data structure that we named 
XFP-tree, an extension of FP-tree storing all sets of frequent 
items retrieved from the database. It differs from the FP-tree 
because some node duplications is allowed. The database is 
divided into equal parts; each parallel process reads its 
portion of data to construct its local FP-tree (the structure of 
these trees described in [7]). The local FP-trees are then 
merged into a global XFP-tree which is shared among the 
processes. The trees are implemented and constructed 
without using locks in nodes to minimize the synchronization 
cost and enhance the scalability. 

 The frequent pattern generation stage: The frequent items 
in the header table of the XFP-tree are distributed to the 
parallel processes to generate all frequent patterns ending 
with items being assigned. Its dynamic scheduling approach 
helps to balance the workload and improves the performance. 
ShaFEM uses two mining strategies for its frequent pattern 
generation: one uses FP-tree and the other uses bit vectors. A 
parallel process will switch between the two strategies for 
each subset of data being mined depending on the detection 
of its density characteristics.   

4. XFP-TREE CONSTRUCTION 
In the first stage of ShaFEM, the global XFP-tree, shared among 
all cores, is built. This process involves three main steps: 

 Step 1 - Finding the frequent items:  

1. The database is evenly divided into horizontal partitions with 
same data size and is distributed to parallel processes. For 
example, the dataset in Table 1 is partitioned into 3 parts 
(Figure 1-a.)   

2. Each process reads its data partition and computes a local 
count list of all items in the database (Figure 1-b.) 

 
Figure 1.  Parallel construction of the global count list  

3. A parallel summation is performed to reduce the local count 
lists into a shared global count list.  Each process Pi is 
responsible for a separate set of items in the global count list 

TID Items Proc #
1 b,d,a 

P1 2 c,b,d 
3 c,d,a,e
4 d,a,e 

P2 5 c,b,a 
6 c,b,a 
7 f 

P3 8 b,d,a 
9 c,b,a,e,f

 (a) Data partition 
 (b) Local  
count lists 

P1  P2  P3 
a 2  a 3  a 2 
b 2  b 2  b 2 
c 2  c 2  c 1 
d 3  d 1  d 1 
e 1  e 1  e 1 
f 0  f 0  f 2 

 

 (c) Global 
count list

P1
a 7
b 6

P2
c 5
d 5

P3
e 3
f 2

 

 

50



to compute their count (Figure 1-c). Hence, no 
implementation of locks is required. 

4. The frequent items are identified and sorted in the 
descending order using their count and the user-supplied 
minsup (Figure 1-c). 

 Step 2 - Constructing the local FP-trees: 

1. Each process creates a local header table consisting of the 
sorted frequent items and their local counts using the local 
count lists created in the previous step. 

2. Each process reads the transactions from its data portion for 
the second time to get frequent items of each transaction and 
inserts them into an FP-tree in their frequency descending 
order. This is the most time consuming step of the first stage 
and in our design, all processes work independently to build 
their local FP-trees. Figure 2 presents three local FP-trees 
created concurrently from the dataset in Table 1. 

 
Figure 2.  Local FP-tree construction 

 Step 3 - Merging local FP-trees into a global XFP-tree: 

1. The construction of the global XFP-tree is initialized by 
converting the header table of one local FP-tree into the 
header table of the global XFP-tree. The frequent items in 
this table are divided into even subsets and assigned to the 
parallel processes. For example, a, b are assigned for P1; c, d 
for P2 and e for P3. Each Pi updates items of this table with 
the global count using the global count list of Step 1. 

Figure 3.  The global shared XFP-tree 

2. Each process Pi then joins the local linked lists of their 
assigned items in the local FP-trees in into the global ones by 
starting from the existing linked list of the global header 

table. When all processes complete their work, the XFP-tree 
is created as in Figure 3. The time to perform this step is 
negligible because the manipulation of linked lists can be 
performed in parallel without changing the local FP-trees. 
Because the next pattern mining stage uses this XFP-tree by 
traveling in bottom-up direction, the root node of XFP-tree is 
not needed and not created. 

5. FREQUENT PATTERN GENERATION 
5.1 Parallel Frequent Pattern Generation 
Based on Data Characteristics 
In this section we introduce a novel parallel approach for frequent 
pattern generation which can efficiently perform on both sparse 
and dense databases. Studying many real databases in the well-
known FIMI Repository [26], we found that most databases 
consist of a group of items occurring much more frequently than 
the others. The more frequent items create subsets of data with the 
characteristic of dense data while the less frequent items create 
ones with the characteristic of sparse data. In ShaFEM, the FP-
tree based mining strategy named MineFPTree is applied for the 
sparse data portions and the Bit Vector based mining strategy 
named MineBitVector is used for the dense ones. The algorithm 
switches back and forth between the two mining strategies. This 
approach is distinct to the prior related parallel works [17, 23, 24, 
25] which applied a single mining strategy. Figure 4 presents the 
overview of the parallel frequent pattern generation process. 

 

Figure 4. The frequent pattern generation model of each 
parallel process 

ParallelMinePattern initializes the frequent pattern generation 
stage and manages the mining workload of parallel processes 
using dynamic job scheduling (Figure 5). Each parallel process Pi 
is dynamically assigned a set of frequent items in the header table 
of the XFP-tree and constructs their conditional pattern bases 
which are "sub-databases" consisting of sets of frequent items co-
occurring with a suffix pattern [7]. Based on the size of these 

MineBitVector 
 Report frequent patterns. 
 Generate candidate patterns 

by ANDing pairs of input bit 
vectors. 

  Identify new frequent 
patterns using the resulting 
bit vectors. 

MineFPTree 

 Report frequent patterns. 

 Generate new frequent patterns 
based on the input FP-trees. 

 Compute the threshold Ki to be 
used for switching decision. 

 

ParallelMinePattern 

 Obtain a set of frequent items in the XFP-tree using dynamic scheduling. 
 Report frequent items. 
 Compute the threshold Ki to be used for switching decision 

The global shared XFP-tree 

local FP-tree local Bit Vectors

    P2 
 

P1 P3 … 
 

recursively 
mine Size of the frequent 

 pattern base > Ki  ? 
Yes No 

recursively
mine

 

 Header 
table 

P1 
a:7 
b:6 

P2 
c:5 
d:5 

P3 e:3 

a:2

b:1 

d:1

b:1

c:1 

d:1

e:1 

d:1

c:1

a:3

b:2

c:2

e:1

d:1

a:2

b:2

c:1

e:1

d:1

a:3 

root 

Header  
table 
a:3 
b:2 
c:2 
d:1 
e:1 

b:2

c:2

e:1

d:1

a:2

root
Header  

table 
a:2 
b:2 
c:1 
d:1 
e:1 

b:2

c:1

e:1
d:1

P2 

P3

TID Items 
1 b,d,a 
2 c,b,d 
3 c,d,a,e
4 d,a,e 
5 c,b,a 
6 c,b,a 
7 f 
8 b,d,a 
9 c,b,a,e,f

P1 a:2

root 

Header  
table 
a:2 
b:2 
c:2 
d:3 
e:1 

b:1

d:1

b:1

c:1

d:1 

e:1

d:1

c:1 

51



conditional pattern bases, the algorithm switches between the two 
mining strategies: MineFPTree and MineBitVector. Each parallel 
process Pi maintains its own threshold Ki which is used as the 
switching condition (Section 5.2). All parallel cores work 
independently until the mining process is completed. 

Procedure ParallelMinePattern (XFP-tree XT,minsup) 

shared XFP-tree XT, minsup 
Ki  = 0 

Parallel Self-Scheduled For j = 1 to number of items in XT 
 {    = jth item in XT 

      Output  
      Size = the size of ’s conditional pattern base 
      Compute and update threshold Ki (* Section 5.2 *) 
      If  Size > Ki  Then  
              Construct ’s private conditional FP-tree T  
              Call MineFPTree(T,,minsup)    
      Else  
              Construct ’s  private bit vectors V and w                       
              Call MineBitVector(V,w,,minsup)  
       End if   } 

Figure 5.  The ParallelMinePattern algorithm 

MineFPTree generates frequent patterns by concatenating the 
suffix pattern of the previous steps with each item  in the header 
table of the input FP-tree. It then constructs the conditional FP-
tree of each item in the input FP-tree and recursively mines new 
frequent patterns from the new tree. This mining approach does 
not require generating a large number of candidate patterns and 
has been shown to perform well on sparse databases [7, 9, 10, 11]. 
In addition, MineFPTree can switch to MineBitVector, the second 
mining strategy that uses the bit vectors and a weight vector. 
Figure 6 shows the algorithmic details of MineFPTree. 

 

Procedure MineFPTree(FP-tree T, suffix, minsup) 

      If  T contains a single path P then 
              For each combination x of the items in P 
                    Output  = x  suffix   
                    Compute and update threshold Ki  (* Section 5.2 *)    
     Else For each item  in the header table of FP-tree T 
                    Output  =   suffix   
                    Size = the size of ’s conditional pattern base 
                    Compute and update threshold Ki (* Section 5.2 *) 
                    If  Size > Ki  Then  
                        Construct ’s conditional FP-tree T’  
                        Call MineFPTree(T’,,minsup)    
                   Else  
                        Construct ’s  private bit vectors V and w               
                        Call MineBitVector(V,w,,minsup)  
                   Endif 
      Endif 

Figure 6. The MineFPTree algorithm 

MineBitVector applies the mining strategy that utilizes the 
vertical data format presented as bit vectors to generate frequent 
patterns. The efficiency of this approach on dense data has been 
shown in [12, 13, 21]. MineBitVector is different from previous 
works because it uses a new bit vector structure and does not mine 
the whole database but only the subsets of data with the dense 
characteristic. The MineBitVector algorithm in Figure 7 generates 
the frequent patterns by concatenating the suffix pattern with each 
item in the input data. MineBitVector then joins pairs of bit 
vectors using logical AND operation and computes their support 
using the weight vector to specify new frequent patterns. The bit 

vectors of these patterns whose structured is described in [27] and 
used as the input to MineBitVector in its recursive loop. 

Procedure MineBitVector (vectors V, vec. w, suffix, minsup) 

      Sort V in support-descending order of their items  
      For each vector vk in V 
                Output  = item of vk  suffix 
                For each vector vj in V with j < k 
                        uj  = vk AND vj 

                        supj =support of uj computed using w 
                          If supj   minsup  Then add uj into  U     
                If all uj in U are identical to vk 
                Then For each combination x of the items in U  
                              Output ’ = x   
                Else If U is not empty 
                              Call MineBitVector(U,w,,minsup)     

Figure 7. The MineBitVector Algorithm 

5.2 Switching Between Two Mining Strategies 
Effective determination of how and when to switch between the 
two mining strategies, is key for ShaFEM to perform efficiently 
on different database types. While MineFPTree and  
ParallelMinePattern proceed, thousands or even millions of child 
FP-trees are constructed. These trees are much smaller than their 
parents and their size gradually reduces to a level where the trees 
contain mostly the most frequent items in the database. In these 
cases, the conditional pattern bases used to build the trees have the 
characteristic of dense datasets. Therefore, only small conditional 
pattern bases whose size are specified by the number of sets  are 
transformed into bit vectors and weight vector. If this size is less 
than or equal to a threshold Ki, ShaFEM switches to the mining 
strategy using bit vectors. Otherwise, MineFPTree continues its 
recursive loop to generate the frequent patterns. 

We use a given K to be the size limit of the bit vectors. The value 
of K is indentified based on an estimation of the density of 
database using the UpdateK algorithm in Figure 8. The efficiency 
of this approach has been proved in our prior study [27] of 
sequential mining. For parallel mining, each parallel process Pi 

maintains its own Ki and measures its value based on local data 
processed by that process. This localization leads to not only more 
parallelism but also a more accurate estimated value of Ki because 
the data characteristics of local data may vary for each process Pi. 

In UpdateK algorithm, NumNewPatterns and Size indicate the number 
of new frequent patterns and the size of a conditional pattern base 
consecutively. The number of frequent patterns generated for 
different values of K is maintained in the array X that will be used 
to determine the best cut-off point to switch from FP-tree to bit 
vector. We keep track of the number of frequent patterns for 
several K values that are multiples of 32, i.e., j*Step, 0 ≤ j ≤ N. 
The step size of 32 is chosen due to a good match with most 
machine’s word and cache block sizes. The efficiency of this 
selection was also demonstrated in [27]. 

Procedure UpdateK(NumNewPatterns , Size) 

 (* Initialization for the first call to UpdateK for process Pi:      
   Create a private array X of N elements, Set all X[j] to zero *)     
For j = 0 to N – 1 
      If Size > j*Step then X[j] = X[j] + NumNewPatterns   
      Else Exit Loop     
 Ki = 0 
 For j = N-1 to 1 
      If X[j-1] ≥ 2*X[j] then Ki = (j+1)*Step and Exit Loop 

Figure 8. The UpdateK algorithm 

52



6
6
 

D
a
2

H
w
O
T

S
o
W
a
a

6

W
d
c
f
s
in
f
F
o

6. PERFOR
6.1 Experim

Datasets: Five r
and two dense da
2). They were ob

T

Dataset 

Chess 
Connect 

Accidents 
Retail 

Kosarak 

Hardware: We e
with shared me
Opteron 2747 pr
This machine is r

Software: ShaFE
our computation
We study the pe
array, one of the 
and is available i

6.2 Perform

We present the ru
datasets in Figur
cases with differ
find that ShaFEM
same number of
ncluding both sp

for large datasets
FP-array for 12 
our method sequ

0

100

200

300

400

500

2

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

C

RMANCE E
mental Setu

real datasets inc
atabases were se
btained from the 

Table 2. Experi

Type 

Dense 
Dense 

Moderate 
Sparse 
Sparse 4

evaluate ShaFEM
mory. It is equ
ocessors, 24 GB
running the Cent

EM has been im
nal method prese
erformance of S
best parallel FP

in the PARSEC B

mance Evalu

unning time of S
re 9. ShaFEM o
rent number of 
M runs 2.1 - 5.8 
f parallel proces
parse and dense
s such as Kosar
cores translates 

uentially runs fas

4 6 8
cores

Chess (dense , mi

0

5

10

15

20

25

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

EVALUATI
p 

cluding two spar
elected for our e
FIMI Repositor

imental Dataset
# of  

Items 
Averag
Lengt

76 37 
129 43 
468 33.8 

16470 10.3 
41271 8.1 

M on a 12-core d
uipped with tw

B memory and 1
tOS 5.8 operatin

mplemented wit
ented in Section

ShaFEM and com
-growth like min
Benchmark Suit

uation 

ShaFEM and FP
outperforms FP
cores and diffe
times faster tha

sses in every cas
e ones. It is impo
rak, this speedup

to a savings of
ster by 117.3 ho

  

 Figure 9. R

8 10 12

insup=5%)

FP-array

ShaFEM

2 4

Retail (sparse

ION 

rse, one modera
xperiments (Tab

ry [26].  

ts 
ge 
th 

# of  
Trans. 
3196 

67557 
340183 
88126 
990002 

dual-socket serv
wo six-core AM

60 GB hard driv
ng system.  

th OpenMP usin
n 4 and Section 
mpare it with F
ning methods [2
te [25]. 

-array for five te
-array for all te

erent datasets. W
an FP-array for th
se for all datase
ortant to note th
p of 2.8 compar
f 12.8 hours whi
ours or 4.9 days

Running time co

0

2

4

6

8

2

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Conn

6 8 10
cores

e, minsup=0.001%

FP-arra

ShaFEM

ate 
ble 

ver 
MD 
ve. 

ng 
5. 
P-

22] 

est 
est 

We 
he 
ets 
hat 
ed 
ile 
in 

this tes
ShaFEM
of FP-a
to 31.3
because
strategi

Figur

Figure 
sequent
scalabl
addition
ShaFEM
ShaFEM
nearly 
dataset
- 12 co
which 
other p
situatio
(Chess)

1

2

3

4

S
pe

ed
up

omparison of Sh

4 6 8
cores

nect (dense , min

12

%)

ay

M

0

200000

400000

600000

800000

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

st case. Figure 
M and FP-array 
array. It demons
3 times over t
e ShaFEM bala
ies meanwhile F

re 10. Speedup 
relativ

11 shows the s
tial execution t
e and perform
nal cores and la
M runs 6.1 - 10.
M scales better
linear for the Ac
s Chess and Con

ores are used. It c
made difficulty
arallel methods.

on when its spe
) and 5.6 (Conne

0.0

0.0

20.0

0.0

40.0

Chess

7.5

21.2

haFEM and FP

10 12

nsup=15%)

FP-array

ShaFEM

1

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

2 4
c

Kosarak (spars

10 shows the
compared with 

strates that ShaF
the FP-array. T
ances its worklo
FP-array use a sin

of ShaFEM an
ve to FP-array

speedup of Sha
time. It demons
mance improvem
arger datasets. W
.6 times faster th
r for sparse dat
ccidents, Retail 
nnect, the speed
causes by the na

y for load balan
 For example, F
eedup on 12 co
ect).   

Connect Acci

5.6
9.4

31.3

2

P-array

0

250

500

750

1000

2 4

Accident

6 8 10 1
cores

se, minsup=0.05%

FP-array
ShaFEM

e speedup on 1
the sequential ru

FEM speeds up 
These results ar
ad between its 
ngle mining stra

nd FP-array on
y one core. 

aFEM compared
strates that the 
ment will con

When all 12 cor
han it does on a 
tasets and its sc
and Kosarak. Fo

dup increases slo
ature structure o
cing and it is c
P-array suffers f
ores for dense 

idents Retail

4 10.0

21.9 22.6

FP-array S

 

4 6 8
cores

ts (moderate, mins

FP

Sh

12

%)

y
M

12 cores of 
unning time 
between 21 
re obtained 
two mining 
tegy.  

n 12 cores 

d to its own 
ShaFEM is 

ntinue with 
es are used, 
single core. 
calability is 
or the dense 

ower when 8 
f dense data 
common for 
from similar 
data is 7.5 

Kosarak

9.4

26.9
haFEM

 
10 12

sup=1%)

P-array

haFEM

53



 

Figure 11. Speedup of ShaFEM on different datasets 

7. CONCLUSION 
We have presented ShaFEM, a novel method for mining frequent 
patterns on multi-core share memory machine, and its efficiency 
on different database types via a number of experimental results 
on the 12 core machine. By applying the novel dynamic parallel 
method using the two mining strategies and no locking 
requirement, ShaFEM has been shown not only running much 
faster than the state-of-the-art methods but also performing stably 
both sparse and dense databases. This method can be applied to 
implement the frequent pattern mining component of databases 
management systems and statistical software like Oracle Database 
(RDBMS), Microsoft SQL Server, IBM DBS2 Database, R, SAS, 
SPSS Clementine, etc. as well as various applications to help this 
mining task self-adapt to the data characteristic. We will integrate 
ShaFEM into our mining framework that combines both 
distributed and shared memory model in near future. 

8. REFERENCES 
[1] Agrawal , R., Srikant, R. 1994. Fast Algorithms for Mining 

Association Rules. In Proceedings of the 20th Int. Conf. on 
Very Large Databases (1994). 487-499. 

[2] Han, J., Cheng, H., Xin, D., Yan, X. 2007. Frequent Pattern 
Mining: Current Status and Future Directions. In Journal of 
Data Mining and Knowledge Discovery (Aug. 2007).  

[3] Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T. 
2005. MAFIA: A Maximal Frequent Itemset Algorithm. In 
IEEE Transaction on Knowledge and Data Engineering 
(Nov. 2005). vol. 17, no. 11, 1490–1504.  

[4] Li, W., Mozes, A. 2004. Computing Frequent Itemsets Inside 
Oracle 10g. In Proc. of the 30th Int. Conf. on Very Large 
Databases (2004). 1253–1256. 

[5] Utley, C. 2005. Introduction to SQL Server 2005 Data 
Mining. Microsoft SQL Server 9.0 technical articles (Jun. 
2005). Available at: http://technet.microsoft.com/en-
us/library/ms345131.aspx. 

[6] Yoshizawa, T., Pramudiono, I., Kitsuregawa, M.. 2000. SQL 
Based Association Rule Mining Using Commercial RDBMS 
(IBM db2 UBD EEE). In Proc. of the 2nd Int. Conf. on Data 
Warehousing and Knowledge Discovery (2000). 301–306. 

[7] Han, J., Pei,J., Yin Y. 2000. Mining Frequent Patterns 
without Candidate Generation. In Proc. of the 2000 ACM 
SIGMOD Int. Conf. on Management of Data (Jun. 2000), 
vol. 29, issue 2, 1-12. 

[8] Borgelt C. 2005. An Implementation of the FP-growth 
Algorithm. In Proc. of the 1st Workshop on OSDM: Frequent 
Pattern Mining Implementations (Aug. 2005). 1-5. 

[9] Grahne, G., Zhu, J. 2003. Efficiently Using Prefix-trees in 
Mining Frequent Itemsets. In Proc. of the 2003 Workshop on 
Frequent Pattern Mining Implementations (2003). 123–132. 

[10] Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D. 2001. 
Hmine : Hyper-structure Mining of Frequent Patterns in 
Large Databases. In Proc. of the IEEE Int. Conf. on Data 
Mining (Nov. 2001). 441–448.  

[11] Racz, B. 2004. Nonordfp: An FP-growth Variation Without 
Rebuilding the FP-tree. In Proc. of the IEEE Workshop on 
Frequent Itemset Mining Implementations (FIMI) (Nov. 
2004). 

[12] Shporer, S. 2004. AIM2: Improved Implementation of AIM. 
In Proc. of the IEEE Workshop on FIMI (Nov. 2004). 

[13] Schmidt-Thieme, L. 2004. Algorithmic Features of Eclat. In 
Proc. of the IEEE Workshop on FIMI (Nov. 2004). 

[14] Agrawal, R., Imielinski T., Swami, A. 1993. Mining 
Association Rules between Sets of Items in Large Databases. 
In Proc of the 1993 ACM SIGMOD Int. Conf on 
Management of Data (Jun. 1993). vol. 22, issue 2, 207-216. 

[15] Li, H.,Wang, Y., Zhang, D., Zhang, M., Chang, E. 2008. 
PFP: Parallel FP-Growth for Query Recommendation. In 
Proc. of the 2008 ACM Conf. on Recommender systems 
(2008). 107-114. 

[16] Zaki, M. J. 1999. Parallel and Distributed Association 
Mining: A Survey. In IEEE Concurrency Journal (Oct-Dec 
1999). vol. 7, issue 4, 14- 45. 

[17] Garg, R., Mishra, P. K. 2009. Some Observations of 
Sequential, Parallel and Distributed Association Rule Mining 
Algorithms. In the IEEE Proc of the 2009 Int. Conf. on 
Computer and Automation Engineering (March 2009). 

[18] Moonesinghe, H. D. K., Chung, M.J., Tan P.N. Fast Parallel 
Mining of Frequent Itemsets, Michigan State University. 

[19] Tanbeer, S.K., Ahmed, C.F., Jeong, B.S. 2009. Parallel and 
Distributed Frequent Pattern Mining in Large Databases. In 
Proc. of the 11th IEEE Int. Conf. on High Performance 
Computing and Communications (2009). 407 -414. 

[20] Li, J., Liu, Y., Liao, W., Choudhary, A. 2006. Parallel Data 
Mining Algorithms for Association Rules and Clustering. In 
CRC Press (2006), 3-5. 

[21] Zaki, M., Parthasarathy, S., Ogihara, M., Li, W. 1997. New 
algorithms for fast discovery of association rules. In Proc. of 
Knowledge Discovery and Data Mining (1997). 283-286. 

[22] Liu, L., Li, E., Zhang, Y., Tang, Z. 2007. Optimization of 
Frequent Itemset Mining on Multiple-core Processor. In 
Proc. of the 33rd Int. Conf. on Very Large Databases (2007). 
1275-1285. 

[23] Chen, D., Lai, C., Hu W., Chen, W., Zhang, Y., Zheng, W. 
2006. Tree partition based parallel frequent pattern mining 
on shared memory systems. In Proc. of the 20th Int. Conf. on 
Parallel and distributed processing (2006), 313-320. 

[24] Zaiane, O. R., El-Hajj, M.,Lu, P. 2001. Fast parallel 
association rule mining without candidacy generation. In 
Proc. of the IEEE 2001 Int. Conf. on Data Mining (ICDM, 
2001), 665-668. 

[25] Bienia, C. 2008. The PARSEC Benchmark Suite: 
Characterization and Architectural Implications (PARSEC - 
freqmine). Princeton University Technical Report TR-811-08 
(Jan. 2008). Available at http://parsec.cs.princeton.edu. 

[26] Frequent Itemset Mining Implementations Repository, 
Available at http://fimi.ua.ac.be 

[27] Vu, L., Alaghband, G. 2012. Mining Frequent Patterns Based 
on Data Characteristics. In Proc. of the 2012 Int. Conf. on 
Information and Knowledge Engineering (Jul. 2012). 369-
375. 

[28] Uno, T.,Kiyomi, M.,Arimura, H. 2004. LCM ver. 2: Efficient 
Mining Algorithms for Frequent/Closed/Maximal Itemsets. 
In Proc. of ICDM Workshop on FIMI, (2004). 

0

2

4

6

8

10

12

2 4 6 8 10 12

S
pe

ed
up

cores

Chess
Connect
Accidents
Retail
Kosarak

54


