- H)
E
«
—]
&
(7]
=
(<]
£2
=
(&}

John Hennessy

Stanford University

The Future of
Systems Research

After 20 years in academia and the Silicon

Valley, the new Provost of Stanford University

calls for a shift in focus for systems research.

Performance—Ilong the centerpiece—needs

t’s time to be more forceful in thinking about some of
the problems that we ought to be working on in the

® computer systems research communities. The perfor-

mance increases over the past 15 years have been truly
amazing, but it will be hard to continue these trends by
sticking to the basically evolutionary path we are on.

We need to rethink the types of problems we should
be addressing in terms of how we exploit parallelism
within processors and how we build memory hierar-
chies. We need to move toward a more integrated
approach that doesn’t treat hardware and software as
separate entities. And we need to look for new focuses
for research.

WHERE WE’VE COME FROM

To look at performance trends, I plotted processor
performance for the past 10 years based on the SPEC
benchmarks. Although the performance increases are
generally amazing, what’s really impressive is the inte-
ger performance. We might have expected huge per-
formance gains on the floating-point side—there is lots
of parallelism in floating-point calculations—but the
fact that we’ve managed to grow performance this dra-
matically on the integer side is pretty astounding.

Computer architects are largely indebted to inte-
grated circuit technology for these gains because it
provided the fuel for this revolution by shrinking den-
sities and giving us more transistors. CMOS technol-

0018-9162/99/$10.00 © 1999 IEEE

to share the spotlight with availability,

maintainability, and other qualities.

ogy has followed Moore’s law for more than 20 years.

The real magic that computer architects have man-
aged is not only in using those faster transistors—
which of course gives you better clock rate—but also
in making good use of the exploding number of tran-
sistors. Each linear shrink gives you both a linear
improvement in clock rate and a quadratic increase in
the number of transistors.

So the architecture community’s job has been to
turn this exploding transistor count into performance.

Premiere Computer
Architecture Gonference

These ideas were first presented at the 26th
Annual International Symposium on Computer
Architecture. This joint [IEEE Computer Society/
ACM conference is the leading research conference
in computer architecture, often offering the first
glimpses of research that will influence commercial
computer designs in subsequent years.

For example, this year’s conference presented a
session on value prediction, a technique under active
consideration by several microprocessor design
teams.

In 2000, ISCA will meet in Vancouver, BC; see
http://www.cs.rochester.edu/~ISCA2k for details.

August 1999



All of the ideas developed over the past 15 to 30
years—pipelining, multiple-instruction issue, and var-
ious caching methods—have been about using those
extra transistors to produce performance.

When you think about what today’s machines do—
they look at the instruction stream dynamically, find
the parallelism on the fly, execute instructions out of
order, and speculate on branch outcomes—it’s amaz-
ing that they work.

Similarly, it’s amazing that caches and memory hier-
archies are hiding the latency between processors and
DRAM(dynamic random access memory). Today’s
processors run 30 to 50 times faster than DRAM.

But in another way, the ideas built into these
machines are less astounding: They were all basically
around (conceptually) 15, 20, even 25 years ago. In
some sense, we’ve been following an evolutionary path
in computer architecture for the past 15 to 20 years.
It has taken a lot of research and innovation to flesh
out these concepts, but thoughtful research had laid
the groundwork much earlier.

Although this description is from a hardware per-
spective, the key to delivering increased performance
has been accompanying innovations on the compiler
side. So the interplay between hardware and software
is also important.

WHERE WE ARE TODAY

Today the wide variety of approaches to processor
architecture falls into two broad categories:

* software techniques that focus on using compiler
technology to find instruction-level parallelism
and speculation opportunities and perform alias
pointer analysis; and

o techniques that focus on performing the same
functions in hardware.

The software techniques are less complex and can
look further down an instruction stream. Software tech-
niques, however, are at a disadvantage because they
don’t usually have information about the executing pro-
gram that is as accurate as that available to a hardware
technique. That is, hardware makes decisions based on
the program as it actually runs; software can only guess
about what will happen at runtime.

The primary advantage of hardware techniques is
that they yield more stable performance across a range
of programs and don’t require as complex a compila-
tion process. But they do so at the cost of added com-
plexity.

What puzzles me is that it’s not clear thar either the
software or hardware techniques are obviously best.
The answer may be a blend, but, as of now, we don’t
understand how to blend the ideas from these
approaches together.

All these approaches seek to improve execution time
through exploitation of parallelism. One way to
increase the amount of parallelism we exploit is to use
more explicit approaches to exploiting parallel pro-
cessing. Unfortunately, making programs run well on
today’s parallel processors involves a tremendous
amount of effort—way too much. We need a more
evolutionary approach to these problems, the
approach needs to be more integrated, and we need
to think about hardware and software as a contin-
uum, not as separatc parts.

TOWARD AN INTEGRATED APPROACH

To support an integrated approach, we probably

New Era, New Expectations

It’s really been amazing how much
progress we’ve made in terms of the com-
puter systems we build. What I love
about working in computing is the
dynamism between academic research
and the industry over the past 20 years.
We researchers have the best of both
worlds: We get to work in this great field
and have this tremendous impact on a
giant industry. Well, sometimes it’s a
small impact, but the industry is now big
enough so thart it magnifies our contribu-
tions enormously.

We’re on the threshold of a new era in
which computing is ubiquitous, where
everyone will use information services and

Computer

everyday utilities. When everyone starts
using these systems, guess what? They
expect them to work and to be easy to use.
They’ve been sold on this promise, and,
believe me, they expect us to deliver. The
general public thinks the Web and the
Internet are their future.

Given these circumstances, the oppor-
tunity for disappointing them is giant.
Computer people are pretty tough char-
acters—we’re used to networks that aren’t
up and computers that crash. But com-
puting will move into the everyday lives
of people who turn on the TV and expect
it to work. Computing will become like
an automobile, which people expect to
work most of the time and break down
very gradually. Consumers are used to

products that work and to having that
commitment from the products they buy.

Computer people are, I believe, oblig-
ated to think about this mismatch of
expectations and reality, which will only
get worse. By the time parts of industry
wake up to these expectations, it may be
too late. So industry should articulate the
future challenges and technology gaps for
the research community. In this way,
when industry realizes how important
these commitments to reliability are
becoming, they will find that the research
community has explored the technology.
Such was the case when industry came to
the research communities to find the tech-
nology to building faster processors and
better memory hierarchies.



need to think about different forms of parallelism and
changes in the ways we use memory hierarchies.

Paralielism

Programs need to be more explicit about paral-
lelism, but the transition from the existing methods
for writing programs to the next generation of meth-
ods has to be a gentle slope. The new methods will
need to build on existing methods, such as instruction-,
loop-, and task-level parallelism, but it must treat them
as corncepts on a continuum; today we treat them as
completely different entities.

To accomplish this integration, we need innovative
software and more research into algorithms. We need
research into what happens to algorithms when you
have caches on machines. We need algorithms that
reflect the fact that caches are the only efficient way to
access memory and that modern DRAMs do not really
provide random access in the sense that all locations
are equally costly to access.

Modern memory hierarchies are extremely compli-
cated, so we will need abstractions that encourage pro-
grammers to focus on locality without requiring that
they become experts in computer architecture.

Memory hierarchies

It’s even time to question whether explicit memory
hierarchies have a role. We’re not going to completely
abandon the idea of caches, but there could be some-
thing in addition to caches that would help.

Today we see that caches often consume 80 percent
of the total transistors and 50 percent of the area.
That’s a good-news/bad-news situation. The good
news is that caches are easy to design; designers can
use up lots of transistors in a relatively straightfor-
ward way. For some programs, larger caches provide
enhanced performance.

But we’re getting to the point where we probably
can’t rely strictly on larger caches to continue to hide
the CPU-DRAM gap. So this problem represents a
complex set of trade-offs, the understanding of which
could benefit from further research.

Along these lines, one topic we need to investigate
is exploiting the interaction between parallelism and
memory systems. There really are opportunities here;
multithreading is one of them.

POST PC

These integrated approaches, like most computers
systems research, focus on performance, and the com-
puter industry has been supremely successful at deliv-
ering better performance. Although I don’t advocate
abandoning performance, it should share the spotlight
with some other qualities, which are increasing in
importance with emerging, new applications of com-
puting.

tecture: There’s been a lot of discussion in the architecture community
about limits to instruction-level parallelism, memory walls, and so on, but
P'm not quite so pessimistic. Instead, I simply see these problems as hills we
are trying to climb while pushing a big rock. And we’ve been pushing rocks
up these hills for something like 15 to 20 years.

There isn’t an immediate wall or a cliff that will set an absolute bound
on performance, but the slope of the hill is certainly getting a lot steeper,
and you need a lot more people pushing that big rock. Occasionally, we
have processors that get so big they roll backwards down the hill, rolling
over the design team. So we can keep on pushing our ever larger rocks up
these hills, but it’s going to get harder and harder, and it may not be the
smartest use of all our design talent.

The new applications come from the new era we
are moving into; Post PC is the name David Patterson
gives it. Maybe post-desktop is better, because desk-
top systems have been the focus for so many years,
and we’re changing our focus.

Information appliances are absolutely a big part of
the future, and Mark Weiser’s views on ubiquitous
computing were right all along. I'm just sorry he
passed away earlier this year and won'’t see the real
explosion in information appliances, which he so
insightfully predicted. These devices offer limited func-
tionality, so they’re cheap and easy to use—which is
much more than I can say for most of our current
computers—and they come in an explosive variety.

We’re moving into a world where there are many
more than just one or two computers per person. It’s
an Internet- and Web-centric environment in which
services are the killer applications. In such a world,
your net connection becomes more important than
any one computing device.

I learned the importance of a net connection when
the power connector on my laptop broke after I
arrived at the Federated Computing Research
Conference. My battery ran down, so the night before
my plenary speech, I couldn’t access my presentation!
But because I had a net connection, I contacted my
son, who knows something about computers. He e-
mailed my presentation to Mark Horowitz, who put
it on a flash card in his portable and then transferred
it onto Dave O’Felt’s machine—and that’s how I had
a presentation that day.

This was a lesson about the value of redundancy
and the importance of communications. The first qual-
ity that’s critical in information services is that they’re
reliable—we expect them to always be up, and they
usually are. Thank God both my kid and the machine
at Stanford were up!

The second critical quality is that information ser-
vices scale with demand. For example, if you try to
get to E*Trade on a day when the stock market’s going
crazy, you’'ll have a terrible time. If you try to get to the
Olympics’ Web site during the Olympics, you’ll have
a terrible time. And yet, those are the most important
times to be able to get the service.

This shift to information appliances is also chang-

August 1999



700

600

500

400

300

Units shipped (millions)

0 Embedded processors
0O PC processors

1996

Figure 1. Marketing
projections show
shipments of embed-
ded processors out-
pacing those of PC
processars.

Jaznb]

1997

1998 1999 2000 2001 2002 2003

ing the microprocessor world. Sales of embedded
microprocessors are outpacing those for micro-
processors for desktop systems. Now, you might think
all these embedded processors are going into auto-
mobiles, microwave ovens, or similar low-end control
applications; but that’s not true. Figure 1 shows only
32- and 64-bit microprocessors—they’re not the ones
in cars and can openers. Last year, the number of
shipped embedded processors exceeded the number
of those destined for desktop systems. In the next five
years, these embedded processors are expected to out-
number PC processors by about three to one. The
world is changing,.

NEW FOCUS

Given this dramatic change, what should the com-
puter industry and computer research focus on? I
think the focus will be on different sorts of problems,
and although still important, performance should be
less of an emphasis. Instead, other qualities will
become crucial:

e Availability of both of appliances and services is
key. For example, during my laptop problems,
there should have been another way to plug in
the power adapter.

® Maintainability enhances availability by pre-
venting failure and making recovery easy.

o Scalability of services also becomes an issue as
user demand grows.

In all these new areas, metrics will be important. Cost
will become more crucial, both for the appliance and
per transaction at a server. And performance will
remain important, but the benchmarks will be differ-
ent: Communication performance will be key, and per-
formance will be limited by available power since
many appliances will not have wall plugs.

Availahility

Webster’s Revised Unabridged Dictionary defines
availability as “the quality of having sufficient power,
capability, or efficacy for the project.” What I like
about this definition is that it includes both a notion
that the service is there and that it can get the job
done. Availability has to spcak to achieving a perfor-

Computer

mance level, which allows you to operate, as well as
just being up.

Our challenge is quite simple. Both software and
hardware components are inherently unreliable, and
the key question is, how do you build reliable systems
from unreliable components? It’s a problem at the level
of individual machines, as well as servers, because
individual machines simply crash too often. Imagine
what would happen if your car broke down and
crashed as often as your computer; automobile man-
ufacturers would be out of business.

We really need to pay more attention to making the
machines more reliable both on the hardware and soft-
ware sides. For servers—if access to services on servers
is the killer app—availability is the key metric. And we
can’t depend solely on the reliability of individual com-
ponents to support availability. The interaction berween
software and hardware in large, integrated systems
inevitably seems to produce failures. Research needs to
address the difficulty in putting those components
together and their unexpected interactions.

When I say this, fault-tolerance research immedi-
ately comes to mind. Fault tolerance is a hard problem
and has been here forever; some say there won’t be
any progress in this area. I don’t think we should give
up on fault tolerance yet; perhaps there are other ways
to approach it.

For example, a key insight is that systems often fail
gradually. In real hardware, catastrophic failures hap-
pen, but they usually happen when you take the power
adapter out of your machine, break it, and can’t get
power anymore—as [ did with my laptop.

Many other failures are gentle. For example, a file
system initially often displays small errors indicating
problems with the file system data structure or under-
lying problems with the disk hardware. These small
problems often occur many times before a cata-
strophic failure that leads to the entire disk becoming
inaccessible. Many systems simply hide these small
transient failures by error correction techniques or
retries, thus maintaining availability but sometimes
ignoring the evidence. We need research that defines
more techniques that help ensure this gradual failure.

Encapsulation or confinement of faults is one key
technique that can minimize the impact of failures. An
example of the use of this technique comes from the
Stanford project developing the Hive operating sys-
tem, in which Mendel Rosenblum and his colleagues
are using a large, shared-memory machine. A disad-
vantage of having a shared-memory infrastructure is
that when you get a bug, your data can be scattered
across the machine. So can we do anything to confine
faults and aid recovery?

According to this research, the answer is “yes,”
and-—this is another key insight—confinement and
recovery can work much better with the right hard-



ware support. Hardware support can cost almost
nothing and play a vital role in bringing a processor
back after a failure.

Another example of how reliability can be im-
proved comes from the research on RAID (redundant
arrays of inexpensive disks) systems. RAID is a par-
ticularly interesting concept, since it demonstrates
how redundancy can improve availability as well as
performance.

Maintainability

ENIAC had 19,000 tubes, and its initial uptime was
terrible because tubes would burn out all the time. Its
operators realized that the biggest cause of fatlures
were filament failures that were exacerbated by turn-
ing the machine on and off. So they kept the machine
powered up 24 hours a day. This action was step one
in improved ENIAC reliability.

The next problem was the “infant mortality” of tubes,
so the operators started doing burn-in on the tubes—
checking them before installation—early (step two).

Step three was establishing a maintenance schedule
that replaced tubes whether or not they were com-
pletely dead. Having the machine down while you
search through 19,000 tubes is not particularly effi-
cient. So you enhance availability by maintaining the
machine—you replace stuff before it breaks.

As an example, Figure 2 shows some data from the
UC Berkeley IStore project. It shows that you start to
get errors on disks before they go solidly bad, so the
disk is trying to tell you something is becoming a prob-
lem. This is a good time to swap the disk out before it
fails completely, an action that enhances availability.

The other key part to maintainability is ease of
upgrading for both hardware and software. I still
upgrade my own PC because I want to understand the
pain we put users through when they upgrade. Major
software upgrades—such as replacing the operating
system to support upgraded hardware—are a major
pain in the neck. This is a problem we need to pay
more attention to.

As another example, think about the servers at
Yahoo. The system administrators there absolutely
have to upgrade, add disks, change disks, and add
hardware. And they have to be live all the time because
an around-the-world user community is using the ser-
vice 24 hours a day. Any maintenance they do has to
be done online.

Some people assume information appliances will be
so cheap that they don’t need maintenance—we’ll just
throw them away. This is a wasteful notion and isn’t
environmentally conscious either. Such appliances
ought to be both hardware and software upgradable.
Many designers of such appliances are opting to have
some mechanism to download software because they
believe that at least software will be upgraded.

10
9t ABINSUBBOBOOOSS | ¢ Disk hardware }
w 8F o o . fa]lurf.ss
% 7L ¢ SCSi time outs
T
o 6F
5
) SF . . -
.—
o 4+ ¢ ¢ o o . 3
o 3 B . * o . *
=
2+ LR . ¢ o
1r * o ¢ o o
O | | - | * [ * 4 L
0 © o 0 © ) [°0) 0
o o) N a o) I o) o
Y] = 3 = Pl ] ~ 3
= hy = N o o N Q
0 [~ 59 0 o0 o0 o0 0

Scalability

According to Greg Papadopoulos, chief technology
officer at Sun, the amount of online storage on servers
is currently scaling faster than Moore’s law. This fact
gives you some idea of the urgency with which the
research community should be considering scalabil-
ity issues.

System issues. How do we design a system that
must scale to large sizes while providing full func-
tionality and almost perfect availability? For such
large systems, performance remains a problem. We
don’t know how to design really big systems to work
as well as we think they should. In my mind, there
are two underlying issucs:

* modularity concerns how we construct the sub-
systems that will make up a large, scalable sys-
tem, and

¢ composability concerns how we compose com-
ponents in a way that maintains and makes the
system’s overall functionality reliable.

Scalability is critical for systems that are inherently
large—systems like the Internet, Web servers, and mod-
ern microprocessors. We nced to build them as subsys-
tems and compose them. With the size and complexity
of today’s hardware and software systems, modular,
composable design is the only approach that works. Yet,
we understand very little about how to compose sub-
systems while maintaining correct functionality. Research
into this area would be a well-spent investment.

Microprocessor design. As an example of the need
to use more modular design, Table 1 shows three gen-

Table 1. Scalability of MIPS microprocessor design.

Figure 2. Data from
the UC Berkeley
IStore project shows
several disk errors
before disks go
solidly bad.

Design
Transistor team
count (no. of

(millions)  people)

Year

Processor shipped

Time to
design

release

(months)

Verification
(percentage
of total
etfort)

R2000
R4000
R10000

1985
1991
1996

e A8
140 %A
6.80

15
20
>35

August 1999



mn

1.8
[ bitvector
1.6 - coma
141 Odyn_ptr
sci

Normalized execution time

8 16 32
(a) No. of processors

128

Normalized execution time

1 8 16 32 128
(b) No. of processors

Figure 3. Execution time for each processor is normalized to the time for bitvector for
the given number of processors. Shorter execution time is befter. Under one 128-
processor configuration (a) the algorithms dyn_ptr and sci have the best performance.
Under another configuration (b) dyn_ptr has the worst performance.

erations of MIPS microprocessors in which transis-
tor counts go from 0.1 million to 6.8 million, team
sizes grow from 20 to more than 100 people, and
design time increases from 15 months to three years.
But the most important change is the fraction of the
team that works on verification: from 15 to more
than 35 percent.

The good news about multimillion-transistor chips
is that they work. The bad news is that it takes more
people to design them, and the number continues to
climb. The Pentium design team is probably two to
three times larger than the largest project in this table,
and Pentium verification supposedly employed close
to half the entire design effort.

Computer

Larg= ~:cale multiprocessors. As another example,
consider our abihity to understand performance in
large-scale multiprocessors. The data from experi-
ments on the Flash machine at Stanford, shown in
Figure 3, quantifies how well coherence algorithms
scale as processor count, problem size, and cache size
change. To assess the four algorithms studied,
researchers used two different versions of basically
the same application, running them with different
cache sizes and slightly different levels of compiler
tuning. What’s interesting is that the best coherence
algorithm is radically different in these two situations.
The configuration in Figure 3a shows that the coher-
ence algorithms dyn_ptr and sci have the best perfor-
mance at 128 processors, while in Figure 3b (data for
a configuration using smaller caches and less opti-
mized code), dyn_ptr has the worst performance!

This data says that we really don’t understand these
performance algorithms; we can’t predict their behav-
ior. The only way you can understand them is by
doing a detailed simulation that takes a long time to
run and includes all the underlying hardware details.
And worst of all, we don’t have a coherency scheme
that does well under all these situations: from small to
large processor counts, different levels of optimiza-
tion, and differing cache sizes. It seems clear that we
don’t really understand performance scalability in
these large systems.

Metrics and other key issues

A key issue in any sort of scientific research is the
whole question of metrics. The difficulty, of course,
is that scalability, availability, and maintainability are
tougher to evaluate than performance.

Even performance evaluation was not such a
smooth road as you might think. In the early days,
we were using MIPS or megaflops and running bench-
marks like Dhrystone and Whetstone before SPEC.
So performance evaluation—this relatively simple
task—was actually a mess, and we didn’t understand
the decomposition of performance into its contributing
factors or analysis based on cycles per instruction, which
are now second nature for us to use.

This lack of metrics was one reason I and the other
developers of RISC had a hard time selling those ideas:
We really couldn’t explain in a scientific way what was
going on. So performance wasn't so clear cut early on.

Evaluating cost is still difficult because volume has
such a big effect on it, due to manufacturing costs as
well as research and development amortization. In place
of cost, we use some more basic measures like silicon
area or power.

Power and silicon area have become more important
constraints on designers in the Post PC era. In earlicr
times, microprocessor designers put little emphasis on
cost and often designed chips with as large a silicon arca



as possible. With the explosion of low-cost devices, cost-constrained
processors with more modest die area have become much more
important,

Similarly, battery-based information appliances and systems
without fans dramatically increase the importance of power, which
in earlier times was given a lower priority. Power limitations and
cost sensitivity are transforming processor design for information
appliances, and cost and power will need to become important
parts of our metrics.

Any metrics that we develop also need to continue paying atten-
tion to performance because there’s clearly a trade-off between
availability and performance, and maintainability and perfor-
mance.

delivered to Stanford in 1979. As a measure of our indus-

try’s progress since then, my current desktop machine indi-
cates mixed improvement. My desktop is slightly more reliable
than the Alto. It is not, though, much easier to use. Given that the
processor is 1,000 times faster, you might expect applications to
be significantly better. But I have the experience to tell you that
Word, although certainly better, is not 1,000 times better than

g | 1 wenty years have elapsed since the first Xerox Altos were

1 R LV for your in-box.

sigyn Up Today for
the IEEE
Computer
Society's
e-News

Be alerted to
¢ articles and
special issues

¢ conference news

e submission and

registration
deadlines
¢ interactive forums

I Available for
@ FREE to

CoMPLU
members.

[
SOUTE Y

http:llcbm:puter.orgle-News

Bravo (the Alto’s text processor) by a long shot.

This simple comparison says there are a lot of challenging prob-
lems left in systems research. We need to think long and hard about
where to direct our efforts. <

John Hennessy became provost of Stanford University on 1 July.
He is a pioneer in RISC architecture, having initiated the MIPS
project, and also led the Stanford DASH (distributed architec-
ture for shared memory) project. Hennessy has a PhD in com-
puter science from the State University of New York, Stony
Brook. Together with David Patterson, he is the coauthor of
Computer Architecture: A Quantitative Approach and Computer
Organization & Design: The Hardware/Software Interface (Mor-
gan Kaufmann, San Francisco, 1998). He is a member of the
IEEE, the ACM, the National Academy of Engineering, and the
American Academy of Arts and Sciences.

Contact the author at Stanford Univ., Office of the Provost, Bldg.
10, Stanford, CA 940305-2061; jlb@usop.stanford.edu.

With Your Products Were Here!

Send yu,uf préd'ammf
the world in as many as
43 languages.

 time. and with e
” ’;I”‘?"gf)’a you. wod!

www.lingosys.com



