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Abstract - DEFG is our declarative language and framework for the efficient generation of OpenCL GPU applications.  Using 

our new DEFG implementation, run-time and lines-of-code comparisons are provided for three well-known algorithms: Sobel 

image filtering, breadth-first search and all-pairs shortest path.  The DEFG declarative language and corresponding OpenCL 

kernels provide complete OpenCL applications. The lines-of-code comparison demonstrates that the C/C++ DEFG applications 

require significantly less coding than hand-written CPU-side OpenCL applications. The run-time results demonstrate 

equivalent, or better, performance characteristics compared to the hand-written applications.   
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1 Introduction 
 This paper is a continuation of our previous work [1], 

where  a description of the DEFG prototype and its associated 

performance results were introduced.  This paper describes 

our completed DEFG Version 2 and reports on the early 

promising tests results showing significant improvement in  

performance and functionality. 

Producing high performance computing (HPC) software 

for use on graphical processing units (GPUs) is often a 

difficult and daunting task.  This type of software tends to 

require the use of specialized, parallel algorithms and requires 

the use of low-level application programming interfaces 

(APIs), in the context of a thorough understanding of the GPU 

architecture.  The Declarative Framework for GPUs (DEFG) 

provides a domain-specific computer language (DSL) 

designed to assist the software developer.  It mitigates the 

need for a deep understanding of the full CPU-side OpenCL 

API, therefore allowing the developer to focus on the 

algorithms being used and on the most efficient usage of the 

overall GPU architecture. 

Our research in processing large, sparse graphs on GPUs 

has, out of necessity, led to the direct development of DEFG.  

As these large graphs tend to lack locality of reference, the 

parallel algorithms needed to process them efficiently tend to 

be complex.  Sample problem domains range from graph 

problems such as the Breadth-First Search (BFS), Single-

Source Shortest Path (SSSP), and All-Points Shortest Path 

(APSP) to iterative matrix inversion, parallel prefix 

computation, image processing, and parallel sorting.  Using 

DEFG permits us to focus on the algorithms, which are coded 

mainly in the GPU kernels, and to spend less time focusing on 

the CPU-side code.  In this full implementation of DEFG, we 

have implemented and measured, in terms of lines-of-code 

and run-time performance, three well-known algorithms: 

Sobel image filtering for edge detection [2] and from the 

graph theory: BFS and APSP [3].    

Common GPU environments in use today, such as 

OpenCL [4] and NVIDIA’s proprietary CUDA [5], tend to 

provide low-level, very specialized APIs. Their usage requires 

an understanding of complex, CPU-side APIs [6].  DEFG 

provides several higher-level design patterns that abstract the 

CPU-side coding to a declarative level.  Much as the now-

ubiquitous relational databases accept database requests as 

declarative SQL statements and quickly return the requested 

data, DEFG uses design patterns and declarative statements to 

produce high performance CPU-side code, which performs 

the desired computations.  Once the developer has produced 

the kernel code to be executed on the GPU, DEFG simplifies 

the task of executing this kernel code.  Complex CPU-side 

operations outside the context of the DEFG design patterns 

can be utilized within DEFG as callable functions.   

This DEFG implementation consists of a parser written 

in Java, using ANTLR 3 [7], a Java-based optimizer, and a 

code generator, which is written in C++.   The parser handles 

syntax checking and results in an abstract syntax tree, 

expressed as an XML document.  This tree is then optimized 

for run-time performance and decorated with cross-reference 

information needed for code generation.  The tree is then 

processed by a code generator, which uses the TinyXML2 

library [8] to accept the XML-based tree.  For example, the 

twelve lines of DEFG code expressed in Figure 1 result in 

approximately 460 lines of C/C++ code, a snippet of which is 

shown in Figure 2.  The OpenCL kernel executed by this code 

is shown in Figure 3.  Note that this generated OpenCL code 
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is designed to execute on any OpenCL-supported device, 

including the CPU. 

OpenCL is an open and cross-platform standard for 

developing high performance applications on parallel 

hardware.  This standard is supported by major vendors 

including NVIDIA, AMD, and Intel.  There are two major 

components defined by the standard: the OpenCL C 

programming language used on the parallel device and the 

CPU-side APIs for C/C++ that provide access to the device’s 

OpenCL kernels.  The CPU manages the execution of the 

kernels on the OpenCL parallel device. 

The CPU-side code obtains the kernel source code and 

then calls the appropriate OpenCL APIs to compile this kernel 

source code.  In addition, the OpenCL CPU-side code 

acquires and manages the low-level buffers accessed by the 

device kernel.  These required actions tend to make the CPU-

side code quite verbose and often complex; additional API 

complexity is added by the OpenCL requirement to support 

many different types of parallel platforms and devices, 

examples being CPUs, GPUs, and even specialized FPGA [9] 

and DSP [10] hardware.  This flexibility unfortunately adds 

numerous specialized API parameters to the OpenCL API.  It 

can be argued that the OpenCL API is unnecessarily complex, 

not easily learned, and somewhat hard to use and debug.  

DEFG takes over much of the burden of writing the OpenCL 

CPU-side code, thus permitting the developer to focus on the 

device kernels and the actual parallel algorithms. 

We approached our work as follows: using three existing 

OpenCL applications and using their existing OpenCL kernels 

without any changes, we replaced the existing CPU-side code 

with the DEFG-generated code.  The DEFG source modules 

needed on average about 90% fewer lines of code.  We then 

compared the computational performance of the three 

applications over two different OpenCL platforms.  

Performance variations between the DEFG results and the 

reference results were identified and analyzed.  

Section 2 describes related work and includes a 

description of the three existing OpenCL applications, which 

we used as reference/benchmark applications and converted to 

DEFG.  The DEFG language is briefly described in Section 3. 

We then present our experimental results in terms of lines-of-

code counts and run times in Section 4.  A summary of 

ongoing and future work is presented in the last section.   

 

2 Related Work 
Numerous attempts have been made to construct 

languages, compilers, and tools to make the production of 

high performance parallel solutions easier.  In 2005, Shen et 

al. [11] talked about the “holy grail” of parallelization, which 

is the automated parallelization of serial programs, being out 

of reach.  However, progress is being made. One approach 

towards the efficient production of GPU-based parallel 

solutions is the use  of   domain-specific  languages (DSL).  

DEFG is a DSL, a language and associated tools that facilitate 

the production of OpenCL applications.   Martin Fowler 

defines a DSL as a “computer programming language of 

limited expressiveness focused on a particular domain,” and 

suggests that DSLs can be broken into two categories: 

internal DSLs and external DSLs [12].  DSLs of both 

varieties have been produced for GPU-based HPC. 

Internal DSLs for GPU-based HPC include extensions to 

Python such as: PyGPU [13], PyCUDA [14], and PyOpenCL 

[15]. These DSLs tend to consist of Python wrappers placed 

around a particular GPU API.  There are also C/C++ 

extensions such as Bacon [16]. Aside from DEFG, other GPU 

external DSLs include the SPL digital signal processing 

language [17] and the MATLAB Parallel Computing Toolbox 

(which supports CUDA and permits passing some MATLAB 

functions to the GPU and permits GPU kernel execution 

[18]).   Both MATLAB and DEFG require that the GPU 

kernel be provided.    

The BFS and APSP implementations we chose for our 

DEFG testing are existing implementations, easily obtained 

from software development kits (SDKs) and benchmarks [19-

20].  Obviously, there exist other published algorithms and 

implementations that may provide better overall run-time 

performance but that is not the primary goal of this research.  

We have implemented a subset of these algorithms in DEFG 

and will present our results in a future paper.  For example, 

Merrill, et al. suggest a much faster BFS solution which uses 

prefix sum to help distribute the work among GPU threads 

without locking [21].  For APSP, Katz and Kider provide a 

method for using tiling with the Floyd-Warshall APSP 

algorithm to minimize GPU global memory access times [22]. 

 

3 DEFG Framework Language 
The DEFG declarative language consists of a number of 

declare, execute and call statements, and some optional 

statements such as sequence/times and loop/while. An 

example DEFG source file is shown in Figure 1.  The declare 

statement is used to name the DEFG application, define and 

name the GPU kernels to be executed, define any required 

scalar variables such as a graph’s node count, and define the 

buffers to be given to the GPU. Lines 1 to 8, in the DEFG 

sample, express declare statements.  The syntax on line 6, 

enclosed in “[[“and”]]” symbols, is our method for setting the 

global grid size.  The call statement is used to invoke C/C++ 

functions, e.g., to obtain the input data; the sample has call 

statements on lines 9 and 11. The execute statement on line 

10 is used to execute the kernel.  The flow of control is a 

design pattern built into DEFG.   

The optional DEFG statements can be used to provide 

support for more complex design patterns where the kernels 

may have to be executed a variable number of times. Figure 4 

contains a DEFG example which executes the kernel once for 

each graph node.  Figure 4, line 9, shows the sequence 

statement application.  DEFG contains statements to process 

scalar values returned by kernels. This capability was used in 

the DEFG BFS solution to conditionally stop the parallel 

device processing.  DEFG Version 2 generates OpenCL 1.1 

code in keeping within the limits of NVIDIA’s current 

OpenCL support [23].  
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4 Discussion of Results 
To test the viability of DEFG, we selected three existing 

OpenCL solutions based on well-known algorithms: Sobel 

image filtering and Floyd-Warshall APSP, both from the 

AMD APP SDK [17], and breadth-first search from the 

OpenDwarfs benchmark [18].  We will refer to these solutions 

as SOBEL, FW, and BFS, respectively. SOBEL was chosen 

because it represents the class of simpler GPU problems, 

where a single kernel is called once and because it has 

significant RAM locality of reference.  DEFG can support 

several concurrent GPU devices, in a declarative manner, and 

SOBEL provides a good test case for this added capability.  

This capability will be more fully covered in a future paper. 
FW and BFS were selected because they represent two 

different classes of graph-oriented GPU problems, with the 

BFS solution requiring multiple GPU kernels.  The FW 

algorithm simply requires that a common operation be 

repeated for each graph node. In this FW implementation, the 

OpenCL kernel is called once for each node.  This call-for-

each-node behavior must be managed from the CPU-side.  

The OpenDwarfs BFS implementation is based on the work by 

Harish [24] and uses a version of Dijkstra’s algorithm [3].  

The actual OpenDwarfs code is an OpenCL port of the BFS 

CUDA code from the Rodinia benchmark [25].  This BFS 

implementation requires that a pair of kernels be repeated until 

success is indicated by the second kernel.  This repetition is 

managed by the CPU-side code. 

All three of these were converted to DEFG, keeping the 

unmodified OpenCL kernels.  The conversions to DEFG 

produce exactly the same results as the corresponding 

reference version.  Before discussing the performance results, 

we summarize the hardware and software used. The tests were 

run on two configurations, which we call CPU and GPU-Tesla 

T20, which are listed in Table 1.   

In terms of developer-written module line count results, 

the three DEFG versions were much smaller than their 

reference counterparts.  Table 2 shows the line counts for 

SOBEL, BFS, and FW. Shown are the number of lines of 

DEFG declarative code, the number of lines of generated 

code, and the estimated number of non-comment lines in the 

reference version. This data is shown graphically in Plot 1.  

On average, the DEFG code is 4.2 percent of the generated 

code, and 5.1 percent of the reference code.  It should be 

noted that the reference code tended to include additional 

functionality and that the DEFG generated-code counts 

include an additional 150 lines of template code used to 

identify and select the requested GPU devices. 

The run-time performance comparison turned out to be 

very interesting.  The raw run times, in milliseconds, are 

presented in Table 3.  Plot 2 shows this data presented in 3D 

form. The results shown are the average of ten runs done for 

each case.  Where we encountered unexpected results, we 

often reran the tests with manual code changes to isolate the 

underlying technical causes.  We made these code changes to 

both the DEFG and reference OpenCL code.  However, the 

numbers shown here are only the original times, i.e., those 

prior to any manual code modifications. 

SOBEL is the simplest application and the run-time 

performance results obtained are comparable, as expected.  

The SOBEL results are shown on the graph in purple.  The 

DEFG performance was slightly faster on the CPU and GPU-

Tesla T20.  DEFG needed 23.0 ms and 3.7 ms, respectively, 

while the reference case needed 24.8 ms and 4.1 ms. 

The run-time results of the FW tests, which are shown in 

green, surprised us.  We saw no obvious explanation for why 

DEFG should be substantially faster.   We reviewed the 

OpenCL code for both DEFG and the AMD SDK-supplied 

reference case, and did not find any significant differences in 

buffer usage or the OpenCL API functions used.  We did 

notice that the reference case was using asynchronous events 

(when not required) and we temporarily disabled them and 

reran the reference case.   The FW T20 reference case run 

times dropped three-fold from an average 51.2 ms to 17 ms.   

This difference was later traced to what we identified as an 

error in the reference case’s OpenCL event handling.  

The BFS run-time comparisons used two different 

graphs.  The first graph has 4,096 nodes, shown in blue on the 

graph, and the second has 65,536 nodes, shown in red.  Our 

earlier prototype version of DEFG was substantially slower 

than the reference BFS; prototype DEFG needed 59.4 ms to 

perform what the reference case BFS did in 11.3 ms.  The 

DEFG Version 2 buffer-use optimization reduced the average 

BFS T20 run time from 59.4 ms to 8 ms!  This drastic 

improvement in performance is due to the optimizer’s removal 

of unneeded buffer transfer operations between the CPU and 

GPU. 

We cannot leave the BFS performance topic without 

noting that the OpenCL CPU configuration’s performance was 

better than the GPU performance for the Tesla 4,096 node 

case.  We postulate that this is explained by the BFS 

implementation being used.  This graph algorithm 

implementation is based on the work by Harish [24], which 

does not compensate for the lack of RAM cache found in 

many GPU designs.  The CPU version most likely fared so 

well due to the multiple levels of memory caching provided by 

the Intel I3; it is likely that the 4,096 node test case fit entirely 

into the Intel I3’s cache.   

In summary, these four comparison tests have shown 

that, at least in these cases, the declarative approach used in 

DEFG can be used to produce OpenCL applications with 

fewer lines of code and comparable, or better, performance 

levels. 

 

5 Ongoing and Future Work 
This full DEFG implementation has shown that our 

declarative approach is able to produce good results with less 

code written while maintaining similar run-time performance, 

at least for this family of test cases.  The addition of buffer 

optimization has greatly benefited its buffer management 

performance and, hence, the overall run times.  DEFG also 

will significantly benefit from the addition of high-

performance data loaders and result displays, as well as 
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simple debugging aids such as logging and formatted buffer 

dumps.  We have already enhanced the DEFG toolkit to 

support the use of multiple GPUs and to generate callable 

C/C++ modules.  We have implemented the generation of 

human-readable OpenCL C/C++ code, which is a starting 

point for the creation of customized GPU applications. 

DEFG was developed as a result of a specific need; that 

need being the rapid and efficient production of CPU-side 

code for use in GPU-based parallel algorithms research.  Our 

DEFG results continue to be very promising.  DEFG provides 

a tool to achieve the quick utilization of new OpenCL kernels 

and algorithms.  Given this success, we anticipate enhancing 

DEFG further and eventually making it publicly available.  

The DEFG toolkit should be a useful asset in future GPU 

high-performance algorithms research. 

 

  
Plot 1: Size Comparison of Module Sizes Plot 2: Performance Comparison of Run Times 

 

 

Table 1:  Test Configurations 

Name Configuration Data 

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU) 

GPU-Tesla 
T20 

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM, 
using NVIDIA OpenCL SDK 4.0,  NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M 
RAM 

  

 

Table 2: Lines of Code Table 3: Run-time Performance, in milliseconds 
 

 

 DEFG DEFG  

 Declarative Generated Reference 

BFS 42 620 364 

FW 12 481 478 

SOBEL 12 467 442 

 CPU GPU-Tesla T20 

 DEFG Reference DEFG Reference 

BFS-
4096 

1.5 2.6 4.3 5.8 

BFS-
65536 

12.3 14.2 8.0 11.3 

FW 111.8 152.0 6.0 51.2 

SOBEL 23.0 24.8 3.7 4.1 
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6 Sample Code Figures 

 

01. declare application  sobel 
02.  declare integer Xdim (0) 
03.               integer Ydim (0)  
04.               integer BUF_SIZE (0) 
05.  declare gpu gpuone ( * ) 
06.  declare kernel  sobel_filter SobelFilter_Kernels  ([[2D,Xdim,Ydim ]] ) 
07.  declare integer buffer image1 ( Xdim Ydim ) halo (1) 
08.               integer buffer image2 ( Xdim Ydim ) halo (1)  
09.  call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))  
10.  execute run1 sobel_filter ( image1(in) image2(out) ) 
11.  call disp_output (image2(in) Xdim (in) Ydim (in) ) 
12. end 
Figure 1:  Sample DEFG Code 
 
// *** buffers in 
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE * 
sizeof(int)),(void *) image1, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1); 
if (status != CL_SUCCESS) { handle error } 
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2); 
if (status != CL_SUCCESS) { handle error } 
// *** execution 
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ; 
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
// *** result buffers 
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
Figure 2:  Snippet of Generated OpenCL Code 

 
__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) { 
              uint x = get_global_id(0);  uint y = get_global_id(1); 
              uint width = get_global_size(0);  uint height = get_global_size(1);  
              float4 Gx = (float4)(0);  float4 Gy = Gx; 
              int c = x + y * width; 
              /* Read each texel component and calculate ..*/ 
              if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1) 
              { 
                            float4 i00 = convert_float4(inputImage[c - 1 - width]); 
                            // similar lines omitted 
                            float4 i22 = convert_float4(inputImage[c + 1 + width]); 
                            Gx =   i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 - i22; 
                            Gy =   i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02  -  i22; 
                            /* taking root of sums of squares of Gx and Gy */ 
                            outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2)); 
              } 
} 

Figure 3:  Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [18] 
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01. declare application  floydwarshall 
02.   declare integer NODE_CNT (0) 
03.                 integer BUF_SIZE (0) 
04.   declare gpu gpuone ( any ) 
05.   declare kernel  floydWarshallPass FloydWarshall_Kernels  ( [[ 2D,NODE_CNT ]] ) 
06.   declare integer buffer buffer1 ( BUF_SIZE ) 
07.                 integer buffer buffer2 ( BUF_SIZE ) 
08.   call init_input (buffer1(in) buffer2(in) NODE_CNT(out) $BUF_SIZE(out))  
09.   sequence NODE_CNT times 
10.     execute run1 floydWarshallPass ( buffer1(inout) buffer2(inout) NODE_CNT(in) DEFG_CNT(in) ) 
11.   call disp_output (buffer1(in) buffer2(in) NODE_CNT(in)) 
12. end 
Figure 4:  Sample DEFG Code Showing a Sequence 
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