

PDPTA'14: LATE BREAKING PAPER

1

A second generation of DEFG:

 Declarative Framework for GPUs

Robert Senser and Tom Altman

Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO

robert.senser@ucdenver.edu
1
, tom.altman@ucdenver.edu

1
 Contact author.

Abstract - DEFG is our declarative language and framework for the efficient generation of OpenCL GPU applications. Using

our new DEFG implementation, run-time and lines-of-code comparisons are provided for three well-known algorithms: Sobel

image filtering, breadth-first search and all-pairs shortest path. The DEFG declarative language and corresponding OpenCL

kernels provide complete OpenCL applications. The lines-of-code comparison demonstrates that the C/C++ DEFG applications

require significantly less coding than hand-written CPU-side OpenCL applications. The run-time results demonstrate

equivalent, or better, performance characteristics compared to the hand-written applications.

Keywords: OpenCL, algorithms, declarative language, C++

1 Introduction
 This paper is a continuation of our previous work [1],

where a description of the DEFG prototype and its associated

performance results were introduced. This paper describes

our completed DEFG Version 2 and reports on the early

promising tests results showing significant improvement in

performance and functionality.

Producing high performance computing (HPC) software

for use on graphical processing units (GPUs) is often a

difficult and daunting task. This type of software tends to

require the use of specialized, parallel algorithms and requires

the use of low-level application programming interfaces

(APIs), in the context of a thorough understanding of the GPU

architecture. The Declarative Framework for GPUs (DEFG)

provides a domain-specific computer language (DSL)

designed to assist the software developer. It mitigates the

need for a deep understanding of the full CPU-side OpenCL

API, therefore allowing the developer to focus on the

algorithms being used and on the most efficient usage of the

overall GPU architecture.

Our research in processing large, sparse graphs on GPUs

has, out of necessity, led to the direct development of DEFG.

As these large graphs tend to lack locality of reference, the

parallel algorithms needed to process them efficiently tend to

be complex. Sample problem domains range from graph

problems such as the Breadth-First Search (BFS), Single-

Source Shortest Path (SSSP), and All-Points Shortest Path

(APSP) to iterative matrix inversion, parallel prefix

computation, image processing, and parallel sorting. Using

DEFG permits us to focus on the algorithms, which are coded

mainly in the GPU kernels, and to spend less time focusing on

the CPU-side code. In this full implementation of DEFG, we

have implemented and measured, in terms of lines-of-code

and run-time performance, three well-known algorithms:

Sobel image filtering for edge detection [2] and from the

graph theory: BFS and APSP [3].

Common GPU environments in use today, such as

OpenCL [4] and NVIDIA’s proprietary CUDA [5], tend to

provide low-level, very specialized APIs. Their usage requires

an understanding of complex, CPU-side APIs [6]. DEFG

provides several higher-level design patterns that abstract the

CPU-side coding to a declarative level. Much as the now-

ubiquitous relational databases accept database requests as

declarative SQL statements and quickly return the requested

data, DEFG uses design patterns and declarative statements to

produce high performance CPU-side code, which performs

the desired computations. Once the developer has produced

the kernel code to be executed on the GPU, DEFG simplifies

the task of executing this kernel code. Complex CPU-side

operations outside the context of the DEFG design patterns

can be utilized within DEFG as callable functions.

This DEFG implementation consists of a parser written

in Java, using ANTLR 3 [7], a Java-based optimizer, and a

code generator, which is written in C++. The parser handles

syntax checking and results in an abstract syntax tree,

expressed as an XML document. This tree is then optimized

for run-time performance and decorated with cross-reference

information needed for code generation. The tree is then

processed by a code generator, which uses the TinyXML2

library [8] to accept the XML-based tree. For example, the

twelve lines of DEFG code expressed in Figure 1 result in

approximately 460 lines of C/C++ code, a snippet of which is

shown in Figure 2. The OpenCL kernel executed by this code

is shown in Figure 3. Note that this generated OpenCL code

mailto:robert.senser@ucdenver.edu
tom.altman@ucdenver.edu

PDPTA'14: LATE BREAKING PAPER

2

is designed to execute on any OpenCL-supported device,

including the CPU.

OpenCL is an open and cross-platform standard for

developing high performance applications on parallel

hardware. This standard is supported by major vendors

including NVIDIA, AMD, and Intel. There are two major

components defined by the standard: the OpenCL C

programming language used on the parallel device and the

CPU-side APIs for C/C++ that provide access to the device’s

OpenCL kernels. The CPU manages the execution of the

kernels on the OpenCL parallel device.

The CPU-side code obtains the kernel source code and

then calls the appropriate OpenCL APIs to compile this kernel

source code. In addition, the OpenCL CPU-side code

acquires and manages the low-level buffers accessed by the

device kernel. These required actions tend to make the CPU-

side code quite verbose and often complex; additional API

complexity is added by the OpenCL requirement to support

many different types of parallel platforms and devices,

examples being CPUs, GPUs, and even specialized FPGA [9]

and DSP [10] hardware. This flexibility unfortunately adds

numerous specialized API parameters to the OpenCL API. It

can be argued that the OpenCL API is unnecessarily complex,

not easily learned, and somewhat hard to use and debug.

DEFG takes over much of the burden of writing the OpenCL

CPU-side code, thus permitting the developer to focus on the

device kernels and the actual parallel algorithms.

We approached our work as follows: using three existing

OpenCL applications and using their existing OpenCL kernels

without any changes, we replaced the existing CPU-side code

with the DEFG-generated code. The DEFG source modules

needed on average about 90% fewer lines of code. We then

compared the computational performance of the three

applications over two different OpenCL platforms.

Performance variations between the DEFG results and the

reference results were identified and analyzed.

Section 2 describes related work and includes a

description of the three existing OpenCL applications, which

we used as reference/benchmark applications and converted to

DEFG. The DEFG language is briefly described in Section 3.

We then present our experimental results in terms of lines-of-

code counts and run times in Section 4. A summary of

ongoing and future work is presented in the last section.

2 Related Work
Numerous attempts have been made to construct

languages, compilers, and tools to make the production of

high performance parallel solutions easier. In 2005, Shen et

al. [11] talked about the “holy grail” of parallelization, which

is the automated parallelization of serial programs, being out

of reach. However, progress is being made. One approach

towards the efficient production of GPU-based parallel

solutions is the use of domain-specific languages (DSL).

DEFG is a DSL, a language and associated tools that facilitate

the production of OpenCL applications. Martin Fowler

defines a DSL as a “computer programming language of

limited expressiveness focused on a particular domain,” and

suggests that DSLs can be broken into two categories:

internal DSLs and external DSLs [12]. DSLs of both

varieties have been produced for GPU-based HPC.

Internal DSLs for GPU-based HPC include extensions to

Python such as: PyGPU [13], PyCUDA [14], and PyOpenCL

[15]. These DSLs tend to consist of Python wrappers placed

around a particular GPU API. There are also C/C++

extensions such as Bacon [16]. Aside from DEFG, other GPU

external DSLs include the SPL digital signal processing

language [17] and the MATLAB Parallel Computing Toolbox

(which supports CUDA and permits passing some MATLAB

functions to the GPU and permits GPU kernel execution

[18]). Both MATLAB and DEFG require that the GPU

kernel be provided.

The BFS and APSP implementations we chose for our

DEFG testing are existing implementations, easily obtained

from software development kits (SDKs) and benchmarks [19-

20]. Obviously, there exist other published algorithms and

implementations that may provide better overall run-time

performance but that is not the primary goal of this research.

We have implemented a subset of these algorithms in DEFG

and will present our results in a future paper. For example,

Merrill, et al. suggest a much faster BFS solution which uses

prefix sum to help distribute the work among GPU threads

without locking [21]. For APSP, Katz and Kider provide a

method for using tiling with the Floyd-Warshall APSP

algorithm to minimize GPU global memory access times [22].

3 DEFG Framework Language
The DEFG declarative language consists of a number of

declare, execute and call statements, and some optional

statements such as sequence/times and loop/while. An

example DEFG source file is shown in Figure 1. The declare

statement is used to name the DEFG application, define and

name the GPU kernels to be executed, define any required

scalar variables such as a graph’s node count, and define the

buffers to be given to the GPU. Lines 1 to 8, in the DEFG

sample, express declare statements. The syntax on line 6,

enclosed in “[[“and”]]” symbols, is our method for setting the

global grid size. The call statement is used to invoke C/C++

functions, e.g., to obtain the input data; the sample has call

statements on lines 9 and 11. The execute statement on line

10 is used to execute the kernel. The flow of control is a

design pattern built into DEFG.

The optional DEFG statements can be used to provide

support for more complex design patterns where the kernels

may have to be executed a variable number of times. Figure 4

contains a DEFG example which executes the kernel once for

each graph node. Figure 4, line 9, shows the sequence

statement application. DEFG contains statements to process

scalar values returned by kernels. This capability was used in

the DEFG BFS solution to conditionally stop the parallel

device processing. DEFG Version 2 generates OpenCL 1.1

code in keeping within the limits of NVIDIA’s current

OpenCL support [23].

PDPTA'14: LATE BREAKING PAPER

3

4 Discussion of Results
To test the viability of DEFG, we selected three existing

OpenCL solutions based on well-known algorithms: Sobel

image filtering and Floyd-Warshall APSP, both from the

AMD APP SDK [17], and breadth-first search from the

OpenDwarfs benchmark [18]. We will refer to these solutions

as SOBEL, FW, and BFS, respectively. SOBEL was chosen

because it represents the class of simpler GPU problems,

where a single kernel is called once and because it has

significant RAM locality of reference. DEFG can support

several concurrent GPU devices, in a declarative manner, and

SOBEL provides a good test case for this added capability.

This capability will be more fully covered in a future paper.
FW and BFS were selected because they represent two

different classes of graph-oriented GPU problems, with the

BFS solution requiring multiple GPU kernels. The FW

algorithm simply requires that a common operation be

repeated for each graph node. In this FW implementation, the

OpenCL kernel is called once for each node. This call-for-

each-node behavior must be managed from the CPU-side.

The OpenDwarfs BFS implementation is based on the work by

Harish [24] and uses a version of Dijkstra’s algorithm [3].

The actual OpenDwarfs code is an OpenCL port of the BFS

CUDA code from the Rodinia benchmark [25]. This BFS

implementation requires that a pair of kernels be repeated until

success is indicated by the second kernel. This repetition is

managed by the CPU-side code.

All three of these were converted to DEFG, keeping the

unmodified OpenCL kernels. The conversions to DEFG

produce exactly the same results as the corresponding

reference version. Before discussing the performance results,

we summarize the hardware and software used. The tests were

run on two configurations, which we call CPU and GPU-Tesla

T20, which are listed in Table 1.

In terms of developer-written module line count results,

the three DEFG versions were much smaller than their

reference counterparts. Table 2 shows the line counts for

SOBEL, BFS, and FW. Shown are the number of lines of

DEFG declarative code, the number of lines of generated

code, and the estimated number of non-comment lines in the

reference version. This data is shown graphically in Plot 1.

On average, the DEFG code is 4.2 percent of the generated

code, and 5.1 percent of the reference code. It should be

noted that the reference code tended to include additional

functionality and that the DEFG generated-code counts

include an additional 150 lines of template code used to

identify and select the requested GPU devices.

The run-time performance comparison turned out to be

very interesting. The raw run times, in milliseconds, are

presented in Table 3. Plot 2 shows this data presented in 3D

form. The results shown are the average of ten runs done for

each case. Where we encountered unexpected results, we

often reran the tests with manual code changes to isolate the

underlying technical causes. We made these code changes to

both the DEFG and reference OpenCL code. However, the

numbers shown here are only the original times, i.e., those

prior to any manual code modifications.

SOBEL is the simplest application and the run-time

performance results obtained are comparable, as expected.

The SOBEL results are shown on the graph in purple. The

DEFG performance was slightly faster on the CPU and GPU-

Tesla T20. DEFG needed 23.0 ms and 3.7 ms, respectively,

while the reference case needed 24.8 ms and 4.1 ms.

The run-time results of the FW tests, which are shown in

green, surprised us. We saw no obvious explanation for why

DEFG should be substantially faster. We reviewed the

OpenCL code for both DEFG and the AMD SDK-supplied

reference case, and did not find any significant differences in

buffer usage or the OpenCL API functions used. We did

notice that the reference case was using asynchronous events

(when not required) and we temporarily disabled them and

reran the reference case. The FW T20 reference case run

times dropped three-fold from an average 51.2 ms to 17 ms.

This difference was later traced to what we identified as an

error in the reference case’s OpenCL event handling.

The BFS run-time comparisons used two different

graphs. The first graph has 4,096 nodes, shown in blue on the

graph, and the second has 65,536 nodes, shown in red. Our

earlier prototype version of DEFG was substantially slower

than the reference BFS; prototype DEFG needed 59.4 ms to

perform what the reference case BFS did in 11.3 ms. The

DEFG Version 2 buffer-use optimization reduced the average

BFS T20 run time from 59.4 ms to 8 ms! This drastic

improvement in performance is due to the optimizer’s removal

of unneeded buffer transfer operations between the CPU and

GPU.

We cannot leave the BFS performance topic without

noting that the OpenCL CPU configuration’s performance was

better than the GPU performance for the Tesla 4,096 node

case. We postulate that this is explained by the BFS

implementation being used. This graph algorithm

implementation is based on the work by Harish [24], which

does not compensate for the lack of RAM cache found in

many GPU designs. The CPU version most likely fared so

well due to the multiple levels of memory caching provided by

the Intel I3; it is likely that the 4,096 node test case fit entirely

into the Intel I3’s cache.

In summary, these four comparison tests have shown

that, at least in these cases, the declarative approach used in

DEFG can be used to produce OpenCL applications with

fewer lines of code and comparable, or better, performance

levels.

5 Ongoing and Future Work
This full DEFG implementation has shown that our

declarative approach is able to produce good results with less

code written while maintaining similar run-time performance,

at least for this family of test cases. The addition of buffer

optimization has greatly benefited its buffer management

performance and, hence, the overall run times. DEFG also

will significantly benefit from the addition of high-

performance data loaders and result displays, as well as

PDPTA'14: LATE BREAKING PAPER

4

simple debugging aids such as logging and formatted buffer

dumps. We have already enhanced the DEFG toolkit to

support the use of multiple GPUs and to generate callable

C/C++ modules. We have implemented the generation of

human-readable OpenCL C/C++ code, which is a starting

point for the creation of customized GPU applications.

DEFG was developed as a result of a specific need; that

need being the rapid and efficient production of CPU-side

code for use in GPU-based parallel algorithms research. Our

DEFG results continue to be very promising. DEFG provides

a tool to achieve the quick utilization of new OpenCL kernels

and algorithms. Given this success, we anticipate enhancing

DEFG further and eventually making it publicly available.

The DEFG toolkit should be a useful asset in future GPU

high-performance algorithms research.

Plot 1: Size Comparison of Module Sizes Plot 2: Performance Comparison of Run Times

Table 1: Test Configurations

Name Configuration Data

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU)

GPU-Tesla
T20

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM,
using NVIDIA OpenCL SDK 4.0, NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M
RAM

Table 2: Lines of Code Table 3: Run-time Performance, in milliseconds

 DEFG DEFG

 Declarative Generated Reference

BFS 42 620 364

FW 12 481 478

SOBEL 12 467 442

 CPU GPU-Tesla T20

 DEFG Reference DEFG Reference

BFS-
4096

1.5 2.6 4.3 5.8

BFS-
65536

12.3 14.2 8.0 11.3

FW 111.8 152.0 6.0 51.2

SOBEL 23.0 24.8 3.7 4.1

PDPTA'14: LATE BREAKING PAPER

5

6 Sample Code Figures

01. declare application sobel
02. declare integer Xdim (0)
03. integer Ydim (0)
04. integer BUF_SIZE (0)
05. declare gpu gpuone (*)
06. declare kernel sobel_filter SobelFilter_Kernels ([[2D,Xdim,Ydim]])
07. declare integer buffer image1 (Xdim Ydim) halo (1)
08. integer buffer image2 (Xdim Ydim) halo (1)
09. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))
10. execute run1 sobel_filter (image1(in) image2(out))
11. call disp_output (image2(in) Xdim (in) Ydim (in))
12. end
Figure 1: Sample DEFG Code

// *** buffers in
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE *
sizeof(int)),(void *) image1, &status);
if (status != CL_SUCCESS) { handle error }
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1);
if (status != CL_SUCCESS) { handle error }
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status);
if (status != CL_SUCCESS) { handle error }
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2);
if (status != CL_SUCCESS) { handle error }
// *** execution
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ;
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL);
if (status != CL_SUCCESS) { handle error }
// *** result buffers
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL);
if (status != CL_SUCCESS) { handle error }
Figure 2: Snippet of Generated OpenCL Code

__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) {
 uint x = get_global_id(0); uint y = get_global_id(1);
 uint width = get_global_size(0); uint height = get_global_size(1);
 float4 Gx = (float4)(0); float4 Gy = Gx;
 int c = x + y * width;
 /* Read each texel component and calculate ..*/
 if(x >= 1 && x < (width-1) && y >= 1 && y < height - 1)
 {
 float4 i00 = convert_float4(inputImage[c - 1 - width]);
 // similar lines omitted
 float4 i22 = convert_float4(inputImage[c + 1 + width]);
 Gx = i00 + (float4)(2) * i10 + i20 - i02 - (float4)(2) * i12 - i22;
 Gy = i00 - i20 + (float4)(2)*i01 - (float4)(2)*i21 + i02 - i22;
 /* taking root of sums of squares of Gx and Gy */
 outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2));
 }
}

Figure 3: Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [18]

PDPTA'14: LATE BREAKING PAPER

6

01. declare application floydwarshall
02. declare integer NODE_CNT (0)
03. integer BUF_SIZE (0)
04. declare gpu gpuone (any)
05. declare kernel floydWarshallPass FloydWarshall_Kernels ([[2D,NODE_CNT]])
06. declare integer buffer buffer1 (BUF_SIZE)
07. integer buffer buffer2 (BUF_SIZE)
08. call init_input (buffer1(in) buffer2(in) NODE_CNT(out) $BUF_SIZE(out))
09. sequence NODE_CNT times
10. execute run1 floydWarshallPass (buffer1(inout) buffer2(inout) NODE_CNT(in) DEFG_CNT(in))
11. call disp_output (buffer1(in) buffer2(in) NODE_CNT(in))
12. end
Figure 4: Sample DEFG Code Showing a Sequence

7 References
[1] Senser, R. and Altman, T. "DEF-G: Declarative

Framework for GPU Environment." Proceedings of The 2013

International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA’13), vol II,

pp. 490-496, World-comp.org, 2013.

[2] Vincent, O. and Folorunso, O. "A descriptive algorithm

for sobel image edge detection." Proceedings of Informing

Science & IT Education Conference (InSITE), pp. 97-107,

2009.

[3] Cormen, T. et al. Introduction to Algorithms (3rd ed.).

MIT Press and McGraw-Hill, 2009.

[4] The OpenCL Specification 1.1, [Online]. Available:

http://www.khronos.org/opencl/

[5] CUDA 5 Programing Guide, [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide

[6] OpenCL Reference Pages, [Online]. Available:

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

[7] ANTLR 3, [Online]. Available: http://www.antlr3.org/

[8] Tiny XML2, [Online]. Available:

http://www.grinninglizard.com/tinyxml2/index.html

[9] Altera Corporation OpenCL, [Online]. Available: http:

www.altera.com/opencl

[10] Texas Instruments OpenCL, [Online]. Available:

http://e2e.ti.com/support/dsp/omap_applications_processors/f/

447/t/132798.aspx

[11] Shen, J. and Lipasti, M. Modern Processor Design:

Fundamentals of Superscalar Processors. Boston: McGraw-

Hill Higher Education, 2005.

[12] Fowler, M. Domain-specific Languages, Addison-

Wesley Professional, 2010.

[13] PyGPU, [Online]. Available:

http://fileadmin.cs.lth.se/cs/Personal/Calle_Lejdfors/pygpu/

[14] PyCUDA, [Online]. Available:

http://mathema.tician.de/software/pycuda

[15] PyOpenCL, [Online]. Available:

http://mathema.tician.de/software/pyopencl

[16] Tuck, N. "Bacon: A GPU Programming Language With

Just in Time Specialization (Draft)." University of

Massachusetts Lowel, Lowel MA 01854.

[17] Xiong, J. et al. “SPL: a language and compiler for DSP

algorithms.” Proceedings of the ACM SIGPLAN 2001

conference on Programming language design and

implementation (PLDI '01), pp. 298-308, ACM, New York,

NY, USA, 2001.

[18] Matlab Parallel Computing Toolbox, [Online].

Available: http://www.mathworks.com/products/parallel-

computing/

[19] AMD APP SDK 2.8, [Online]. Available:

http://developer.amd.com/tools/heterogeneous-

computing/amd-accelerated-parallel-processing-app-sdk/

[20] OpenDwarfs Benchmark, [Online]. Available:

https://github.com/opendwarfs/OpenDwarfs

[21] Merrill D. et al. “Scalable GPU graph traversal.”

Proceedings of the 17th ACM SIGPLAN symposium on

Principles and Practice of Parallel Programming (PPoPP

'12), pp. 117-128, ACM, New York, NY, USA, 2012.

[22] Katz, G. and Kider J. "All-pairs shortest-paths for large

graphs on the GPU." Proceedings of the 23rd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics

hardware, pp. 47-55. Eurographics Association, 2008.

[23] NVIDIA Cuda Zone – OpenCL, [Online] Available:

https://developer.nvidia.com/opencl

[24] Harish, P. and Narayanan, P. "Accelerating large graph

algorithms on the GPU using CUDA." High Performance

Computing–HiPC 2007, pp. 197-208, 2007.

[25] Rodinia GPU Benchmark, [Online]. Available:

http://lava.cs.virginia.edu/Rodinia/

http://www.khronos.org/opencl/
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.antlr3.org/
http://www.grinninglizard.com/tinyxml2/index.html
http://www.altera.com/opencl
http://e2e.ti.com/support/dsp/omap_applications_processors/f/447/t/132798.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/f/447/t/132798.aspx
http://fileadmin.cs.lth.se/cs/Personal/Calle_Lejdfors/pygpu/
http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pyopencl
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/parallel-computing/
https://github.com/opendwarfs/OpenDwarfs
https://developer.nvidia.com/opencl
http://lava.cs.virginia.edu/Rodinia/

