
GPU DECLARATIVE FRAMEWORK

by

ROBERT W. SENSER, JR.

B.S., University of Wyoming, 1973

M.A., University of Hawaii, 1975

M.S., University of Hawaii, 1975

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Computer Science and Information Systems

2014



c© 2014

ROBERT W. SENSER, JR.

ALL RIGHTS RESERVED



This thesis for the Doctor of Philosophy degree by

Robert W. Senser, Jr.

has been approved for the

Computer Science and Information Systems Program

by

Gita Alaghband, Chair

Tom Altman, Advisor

Michael Mannino

Boris Stilman

Tam N. Vu

November 7, 2014

ii



Senser, Robert W., Jr. (Ph.D., Computer Science and Information Systems)

GPU Declarative Framework

Thesis directed by Professor Tom Altman.

ABSTRACT

This dissertation presents our novel declarative framework, called the Declarative

Framework for GPUs (DEFG). GPUs are highly sophisticated computing devices,

capable of computing at very high speeds. The framework makes the development

of OpenCL-based GPU applications less complex, and less time consuming. The

framework’s approach is two-fold. First, we developed the DEFG domain-specific

language in such a way that it uses primarily declarative statements, and design

patterns, to define the CPU actions to manage GPU kernels. This approach makes

the GPU processing power more accessible. It does this by lowering the amount

of specialized GPU knowledge the GPU software developer must possess. It also

decreases the volume of code written, meaning these applications can be written more

easily and quickly. The second aspect of our approach is the addition of high-value

GPU capabilities, most notably the declarative utilization of additional GPU devices.

The use of multiple devices, in this DEFG manner, allows for scaling the application

run-time performance without rewriting the entire application. This aspect of DEFG

makes developing multiple-GPU applications faster and more straightforward.

In this dissertation, we describe DEFG’s novel parser, optimizer and code gen-

erator, as well as, provide detailed descriptions of DEFG’s domain specific language

and associated design patterns. Taken together, these components make it possible

for the developer to write DEFG source and generate C/C++ programs containing

highly optimized OpenCL requests that provide high-performance.

In order to demonstrate the viability of DEFG, we produce applications related

iii



to common areas of computer science: image filtering, graph processing, sorting, and

numerical algebra, specifically iterative matrix inversion. We select these applications

because each one explores different aspects of GPU use and OpenCL. Taken together,

they demonstrate DEFG’s ability to function well over a wide range of applications.

To show DEFG’s capabilities in image processing, we implement the Sobel operator

and median image filter applications, with an emphasis on multiple-GPU process-

ing. Our graph-processing, breadth-first search application shows DEFG’s ability to

process large irregular data structures, with multiple GPUs. In the sorting realm,

the novel roughly sorting application shows DEFG’s GPU-based sorting capability.

Finally, the numerical algebra application, an interesting iterative matrix inversion

implementation, exhibits DEFG’s ability to implement iterative, GPU-based, numer-

ical processing.

DEFG’s domain specific language is able to use mainly declarations to describe

the CPU actions needed to manage complex GPU actions. We demonstrate that this

approach to GPU-oriented software development succeeds through the production of

our OpenCL applications.

The form and content of this abstract is approved. I recommend its publication.

Approved: Tom Altman

iv



This work is dedicated to the memory of my parents, Robert W. Senser and Maria

E. Senser, and my younger brother, Dwight W. Senser, Ph.D., whose precious life

was lost to a fool with a handgun. You three Sensers showed me the way.

v



ACKNOWLEDGEMENTS

Getting this work to the “finish line” was not an easy task. Two people’s extensive

support has been beyond measure:

To my intrepid advisor, Tom Altman, my deepest thank you. You brought out

my best, tolerated my worst, and made it possible for me to run with my passions.

Most of all, to my wonderful wife, Linda Senser, who supported me through the

worst moments, who laughed with me through the nuttiest, and who never gave up

(even when I wanted to): danke sehr.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 GPU Software Development . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II. RELATED WORK: Graphics Processing Units and OpenCL 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Basic Overview of CPUs, GPUs, and PRAMs . . . . . . . . . 7
2.3 Modern GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 OpenCL and GPU Basics . . . . . . . . . . . . . . . . . . . . 10
2.6 Parallelization and Domain-Specific Languages . . . . . . . . 14

III. OVERVIEW OF DEFG AND ITS PERFORMANCE . . . . 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 DEFG Framework and DEFG Language . . . . . . . . . . . . 17
3.3 Viability of DEFG . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . 21

IV. DEFG THEORY OF OPERATIONS . . . . . . . . . . . . . . . 24

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



4.2 DEFG Design Patterns . . . . . . . . . . . . . . . . . . . . . 25
4.3 DEFG Internal Operations . . . . . . . . . . . . . . . . . . . 37

V. NEW AND DIVERSE DEFG APPLICATIONS . . . . . . . . 48

5.1 Application: Image Filters . . . . . . . . . . . . . . . . . . . . 50
5.2 Application: Breadth-First Search . . . . . . . . . . . . . . . 65
5.3 Application: Sorting Roughly Sorted Data . . . . . . . . . . . 86
5.4 Application: Altman Method of Matrix Inversion . . . . . . . 106

VI. ACCOMPLISHMENTS, OBSERVATIONS, AND FUTURE
RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 DEFG Accomplishments . . . . . . . . . . . . . . . . . . . . . 118
6.2 Some Noteworthy Observations . . . . . . . . . . . . . . . . . 119
6.3 Conflicting DEFG Aims and Static Optimization . . . . . . . 121
6.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 DEFG Technical Improvements . . . . . . . . . . . . . . . . . 124

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A. DEFG User’s Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.2 Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 DEFG Examples . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.4 Common DEFG Design Patterns . . . . . . . . . . . . . . . . 138
A.5 DEFG Language Reference . . . . . . . . . . . . . . . . . . . 142
A.6 DEFG Advanced Features . . . . . . . . . . . . . . . . . . . . 161
A.7 How to Execute the DEFG Translator . . . . . . . . . . . . . 165
A.8 DEFG Error Handling . . . . . . . . . . . . . . . . . . . . . . 166

B. Source Code and Other Items . . . . . . . . . . . . . . . . . . . 168

B.1 Hardware and Software Description . . . . . . . . . . . . . . 168
B.2 Suggested DEFG Technical Improvements . . . . . . . . . . . 168
B.3 The DEFG Mini-Experiment with Four GPUs . . . . . . . . . 170
B.4 DEFG Application Source Code . . . . . . . . . . . . . . . . 172
B.5 DEFG Diagnostic Source Code . . . . . . . . . . . . . . . . . 190
B.6 DEFG Major Components . . . . . . . . . . . . . . . . . . . 193

viii



LIST OF FIGURES

Figure

2.1 OpenCL Developer’s View . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Sample DEFG Code . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Snippet of Generated OpenCL Code . . . . . . . . . . . . . . . . . . 18
3.3 Snippet of Sobel OpenCL Kernel Code . . . . . . . . . . . . . . . . 18
3.4 Sample DEFG Code Showing a Sequence . . . . . . . . . . . . . . . 19
3.5 Application Lines-of-Code Comparison . . . . . . . . . . . . . . . . 21
3.6 Application Run-Time Performance Comparison . . . . . . . . . . . 22
4.1 DEFG Translation-Steps Diagram . . . . . . . . . . . . . . . . . . . 38
4.2 Sample XML Output From DEFG Parser . . . . . . . . . . . . . . . 40
4.3 Sample XML Output Snippet From DEFG Optimizer . . . . . . . . 41
4.4 DEFG Code Generation Diagram . . . . . . . . . . . . . . . . . . . 45
4.5 C/C++ Snippet for sobel filter Kernel Execution . . . . . . . . . . 47
5.1 Sobel Operator Performed with DEFG: Before and After Images . . 53
5.2 Median 5× 5 Filter Performed with DEFG: Original, Noised-Added,

and After-Processing Images . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Kernel Code for Median Filter with 3× 3 Neighborhood . . . . . . 56
5.4 Image Schematic Showing Overlap with 2 GPUs . . . . . . . . . . . 57
5.5 DEFG Code to Execute the 5× 5 Median Filter . . . . . . . . . . . 58
5.6 Plot of Filter by Image, Average Run Times . . . . . . . . . . . . . 61
5.7 Prefix Sum based Buffer Allocation . . . . . . . . . . . . . . . . . . 69
5.8 BFS Application’s DEFG Loop . . . . . . . . . . . . . . . . . . . . 72
5.9 BFS Application’s kernel1 . . . . . . . . . . . . . . . . . . . . . . . 73
5.10 BFS Application’s kernel2 . . . . . . . . . . . . . . . . . . . . . . . 73
5.11 BFSDP2GPU Application’s kernel1a2 . . . . . . . . . . . . . . . . . 77
5.12 BFSDP2GPU Application’s kernel1b . . . . . . . . . . . . . . . . . 77
5.13 BFSDP2GPU DEFG Pseudo Code . . . . . . . . . . . . . . . . . . 79
5.14 BFS Versus BFSDP2GPU Run Times with Rodinia Graphs . . . . . 81
5.15 LR, RL, and DM Pseudo Code . . . . . . . . . . . . . . . . . . . . 90
5.16 LRmax and RLmin Kernels . . . . . . . . . . . . . . . . . . . . . . 91
5.17 DM and UB Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.18 RSORT DEFG Declare Statements . . . . . . . . . . . . . . . . . . 93
5.19 RSORT DEFG Executable Statements . . . . . . . . . . . . . . . . 95

ix



5.20 Plot of Sort Run Times for 223 (8,388,608) Items . . . . . . . . . . . 97
5.21 Two Server Plot of Sort Run Times with 223 Items . . . . . . . . . . 100
5.22 Plot of Run-Time Breakout with 223 Items . . . . . . . . . . . . . . 102
5.23 Abbreviated RSORT DEFG Executable Statements . . . . . . . . . 104
5.24 Plot of Sort Run Times with 226 Items . . . . . . . . . . . . . . . . 105
5.25 Plot of Sort Run Times with 227 Items . . . . . . . . . . . . . . . . 106
5.26 IMIFLX Application Processing Loop . . . . . . . . . . . . . . . . . 111
5.27 SweepSquares Kernel Source Code . . . . . . . . . . . . . . . . . . . 113
5.28 Table and Plot of M500 Matrix Norm Values . . . . . . . . . . . . . 115
B.1 Run-Time Comparison with 1, 2 and 4 GPUs . . . . . . . . . . . . 171

x



LIST OF TABLES

Table

2.1 GPU Performance Constraints . . . . . . . . . . . . . . . . . . . . . 10
3.1 Test Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Lines of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Run-time Performance, in Milliseconds . . . . . . . . . . . . . . . . 21
5.1 Execution Times on Hydra Server, in Milliseconds . . . . . . . . . . 57
5.2 Images Used with Filter Application Testing . . . . . . . . . . . . . 59
5.3 Run Times for Various Images . . . . . . . . . . . . . . . . . . . . . 60
5.4 Detailed Run Times for BUFLO Image . . . . . . . . . . . . . . . . 62
5.5 Run Times for pthread Experiment . . . . . . . . . . . . . . . . . . 63
5.6 Rodinia Graph Characteristics . . . . . . . . . . . . . . . . . . . . . 80
5.7 Run Times of BFS Versus BFSDP2GPU, in Seconds . . . . . . . . . 81
5.8 SNAP graph characteristics . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Run Times from SNAP Graphs, BFS Versus BFSDP2GPU, in Seconds. 82
5.10 Run Times, in Seconds, for Sorting 223 (8,388,608) Items . . . . . . 98
5.11 Two Server Run Times with 223 Items, in Seconds . . . . . . . . . . 101
5.12 Run-Time Breakout with 223 Items, in Seconds . . . . . . . . . . . . 102
5.13 Sort Run Times on Hydra with 226 Items, in Seconds . . . . . . . . 105
5.14 Sort Run Times on Hydra with 227 Items, in Seconds . . . . . . . . 105
5.15 Comparison of M1000 Run Times . . . . . . . . . . . . . . . . . . . 113
5.16 IMIFLX Inversion Results for Various Matrices . . . . . . . . . . . . 117
A.1 A Partial List of DEFG Loaders and Functions . . . . . . . . . . . . 161
B.1 Testing Configurations, Hardware and Software . . . . . . . . . . . 168

xi



GLOSSARY

BFSDP2GPU Multiple-GPU, breadth-first search DEFG application. 30

CUDA NVIDIA-provided capability to execute C/C++ on NVIDIA GPUs. 2

DEFG Framework to declaratively create GPU applications. 3

GPU Acronym for Graphics Processing Unit. 1

IMIFLX Iterative matrix inversion DEFG application. 110

LVI Acronym for Large Very Irregular, applied to graphs. 65

MEDIAN Median image filter DEFG application. 54

OpenCL Kronos Group specification to execute C/C++ on GPUs. 2

PRAM Acronym for the abstraction Parallel Random Access Machine. 6

RSORT Roughly sorting DEFG application. 33

SIMD Acronym for Single Instruction, Multiple Data. 9

SIMT Acronym for Single Instruction, Multiple Thread. 8

SISD Acronym for Single Instruction, Single Data. 67

SOBEL Sobel image filter DEFG application. 19

xii



CHAPTER I

INTRODUCTION

1.1 GPU Software Development

The graphics processing unit (GPU) is a hardware component having the potential

to rapidly execute computer algorithms and code. The raw double-precision float-

ing point throughput of GPUs now exceeds two tera floating-point operations per

second (TFLOPS). One GPU, the AMD Radeon HD 7990, can perform 8.2 single-

precision TFLOPS and 2.04 double-precision TFLOPS [3]. This computational capa-

bility comes at an attractive cost of $1K retail, and has made GPUs very attractive

for executing non-graphic applications. The high throughput provided by GPUs has

been used in the high performance computing (HPC) scientific community to develop

many types of applications.

However, while the GPU hardware costs are relatively low, GPU software devel-

opment costs can be prohibitively high. The software development process associated

with GPUs can be complex and more costly than standard software development

because of the architecture of GPU hardware and the specialized software develop-

ment environments needed for GPU programming. Achieving high performance in

a GPU environment requires the developer to understand not only the application

requirements and parallel software, but also the additional unique characteristics of

the GPU hardware. The unique characteristics add complexity, and many pertinent

low-level details, to the development environment.

1



This dissertation presents a novel OpenCL programming framework, which is

designed to lower the software development complexity, and thus, the costs of HPC

GPU usage. Our approach to simplifying OpenCL programming is two-fold: first, we

make use of declarative statements and design patterns to define the CPU-side of a

GPU application, thereby lowering the number of lines of code written, and lessening

the low-level GPU knowledge needed by the developer.

Second, we add options such as the utilization of multiple GPU devices to scale the

application run-time performance without the need to rewrite the application. For

certain application types, computing power can be added, in the form of additional

GPU devices, without adding significant software development costs.

1.2 Motivation

Developing software for use in high performance computing is often a difficult un-

dertaking. It not only requires a thorough understanding of the application problem

being solved and the algorithms used to solve the problem. It also requires an in-

depth understanding of the unique characteristics of the hardware platform being

utilized. When the platform is parallel in nature, the software becomes even more

difficult to write due to the added complexities of parallel execution [47]. The HPC

use of GPUs for general processing fits into this latter category of especially difficult

software development.

The GPU has been shown to have very high throughput capabilities [71]. Ideally,

existing HPC software would be moved to the GPU, and the GPU’s high through-

put would be immediately available. And at first glance, this appears to be possible

because both of the common GPU programming environments, NVIDIA’s Compute

Unified Device Architecture (CUDA) and Kronos Group’s OpenCL Specification, pro-

vide the capability to execute C/C++ code as GPU kernels [65, 70]. Unfortunately,

GPU software produced this way tends to have very poor performance characteristics.

2



High performance GPU programming requires the use of specialized, parallel algo-

rithms and GPU-specific, low-level application programming interfaces (APIs). This

use, in turn, requires that the developer possess a thorough understanding of the over-

all GPU hardware architecture. For example, the developer must avoid the major

issues of memory latency and instruction path divergence, if he or she wants to obtain

high levels of GPU performance. The result is that GPU software development tends

to be both complex and time consuming [34].

In this dissertation, we present a novel declarative framework, called the Declara-

tive Framework for GPUs (DEFG), which makes development of OpenCL-based GPU

applications less complex, and less time consuming [82, 80, 81]. It mitigates the need

for a deep understanding of the full CPU-side API used with technologies, such as

OpenCL. DEFG allows the developer to focus on the algorithms being used and the

most efficient usage of the overall GPU architecture.

In addition, to clearly show DEFG’s viability, we demonstrate its use and perfor-

mance with four diverse, general GPU applications. Each application puts different

demands on the framework, thereby showing the framework’s applicability, flexibility,

and general robustness. Here robustness refers to the framework’s ability to elegantly

handle differing applications’ demands and requirements. For certain applications,

the DEFG approach makes it possible to scale the application to multiple GPU cards

without application changes. This application scaling is made possible by declar-

ing the nature of the application and developing the application GPU kernels, then

having the framework generate the code to interconnect the CPU and GPU(s) in a

high-performance manner.

1.3 Contributions

In addition to the construction of the novel DEFG framework, our research contributes

two groups of OpenCL applications. The first group consists of three existing OpenCL

3



applications that were converted to DEFG. These DEFG conversions showed the

run-time performance of DEFG matching, or exceeding, that of the native OpenCL

applications. And, this level of performance was achieved with the software developer

writing fewer lines of code, relative to the corresponding, original OpenCL application.

The second group contains four new OpenCL applications, which are used as

DEFG use-cases. These latter applications demonstrate the applicability of DEFG

in diverse domains, ranging from graph processing to sorting. Each of these appli-

cations is measured and analyzed. In some cases, the analysis includes comparisons,

in terms of run-time performance and other metrics, between DEFG and non-DEFG

application versions.

In summary, this dissertation makes the following contributions to computer sci-

ence:

• The design, implementation, testing, and analysis of our novel Declarative

Framework for GPUs (DEFG).

• Application: Sobel and Median image filtering using multiple GPUs

Provides DEFG implementation, measurement, and analysis [86, 87].

• Application: Breadth-first search application using multiple GPUs

Provides GPU algorithmic design, DEFG implementation, measurement, and

analysis [38, 59].

• Application: Sorting roughly (partially) sorted data

Provides GPU algorithmic design, DEFG implementation, measurement, and

analysis [9, 10].

• Application: Altman’s iterative method of matrix inversion

Provides GPU algorithmic design, DEFG implementation, measurement and

analysis [7].

4



1.4 Delimitations

The two most common GPU programming environments are the Kronos Group’s

OpenCL Specification and NVIDIA’s CUDA. CUDA is limited to only NVIDIA prod-

ucts, whereas OpenCL is supported by many hardware vendors and can be run on

CPUs and other devices [65, 70]. Due to OpenCL’s wider applicability and higher

level of API flexibility, our work focuses on OpenCL.

This dissertation covers a wide range of interesting application areas, algorithms,

and GPU-related topics such as GPGPU, OpenCL, and the DEFG domain-specific

language. However, there are also some related topics that are specifically omitted.

In particular, this work does not focus on highly specialized, GPU-generation-specific

or product-unique, algorithms and techniques. The GPU technology is constantly

changing and overly-focused techniques, helpful for a specific family or generation of

GPUs, may soon be obsolete.

This “constantly changing” characteristic can be observed with the latest gener-

ations of GPU cards, such as the NVIDIA Fermi and Keplar GPUs. They contain

L1 and L2 memory caches, lacking in many previous GPU designs [64, 66]. These

hardware memory caches tend to make software-provided data caches held in GPU

thread-local storage obsolete.

5



CHAPTER II

RELATED WORK: Graphics Processing Units and OpenCL

2.1 Introduction

Technologies, such as OpenCL and CUDA, make it possible to run nearly standard C

code on graphics processing units (GPUs). GPUs are auxiliary processors that can be

packaged on separate cards, included on the central processing unit (CPU) mother

board, or manufactured within the CPU’s integrated-circuit die.1 When OpenCL

and CUDA are used to solve general problems with GPUs, the acronym “GPGPU,”

which stands for General-Purpose computation of Graphics Processing Units, is often

used [69]. With these technologies, one can run parallel algorithms on GPUs with the

expectation of achieving high performance. At a first glance, it may be tempting to

use basic parallel random access machine (PRAM) algorithms on GPUs, since GPUs

appear to supply the majority of the functionality required by the PRAM model.

However, we will see that software based only on basic PRAM algorithms tends to

perform poorly on GPUs. The solution to this performance issue lies in avoiding the

common GPU performance pitfalls such as instruction path divergence and excessive

memory latency.

1An integrated-circuit die is a small section of semiconductor material.

6



2.2 Basic Overview of CPUs, GPUs, and PRAMs

CPUs tend to have a limited number of cores (often less than 16) with significant

amounts of cache memory and a limited number of software-managed threads. These

CPUs have architectures with specialized logic for predictive branching, out of order

instruction execution, and other advanced techniques – all of this aimed at keep-

ing the CPU busy processing instructions. GPUs tend to have hundreds of cores

that can simultaneously handle thousands of hardware-managed threads. CPUs per-

form thread switches under software control, whereas GPUs have hardware-managed

threads. GPUs can switch between threads with no significant delays, because there

is no software-managed context switching involved. Memory caching may be present

on newer GPU designs, but when a given thread stalls, GPUs tend to rely on their

fast thread switching to keep the processors executing instructions. With the large

number of GPU threads, the expectation is that there is going to be a dispatch-

able thread available. CPUs, on the other hand, tend to rely on memory caching to

minimize memory-access-induced stalls [30].

The GPU architecture has a resemblance to the conceptual PRAM. This acronym

refers to an abstract model of a machine with memory easily shared between the

parallel processors and the presence of as many parallel processors as required [14,

42].2 From a high-level view, GPUs, with their shared memory and large number of

processors and threads, are similar to PRAMs. They appear to be loosely equivalent

as each has uniform shared-access to global memory and a large number of concurrent

processors. However, to get high performance at a low cost, the GPU architecture

has a number of features which make this “equivalence” view incorrect. As will be

seen in the discussion on GPU performance, the techniques used to get high levels of

GPU performance are contrary to the unrestricted nature of the PRAM model.

2For our purposes, we can ignore the four different types of PRAMs outlined by Berman since,
in practice, PRAMs and GPUs are not very similar.

7



2.3 Modern GPUs

The modern GPU is a specialized electronic circuit that is common in almost all

computers. Most personal computers now include some type of GPU. The commod-

ity nature of GPUs has helped keep their unit costs low, though they have achieved

the potential to exhibit very high throughput [78]. The GPU was originally de-

signed to provide high-speed graphical rendering computer-generated graphics. With

the advent of NVIDIA’s Computer Unified Device Architecture, the programming of

NVIDIA GPUs for non-graphics use became a more straight-forward process [95]. The

OpenCL Specification appeared after CUDA and provides for similar programming

capabilities over a much wider range of GPU cards and devices [34, 70].

Before CUDA and OpenCL, the problem to be solved in parallel on a GPU had to

be re-factored as a rendering display problem, and when the rendering was completed,

the display raster image had to be captured and reformatted to generate output re-

sults. Now, OpenCL and CUDA make it possible to program GPUs in nearly standard

C, using common programming constructs. A key point is that OpenCL and CUDA

make it possible to code algorithms, possibly designed for the PRAM model, on the

GPU in a manner that does not require presenting the problem as a graphical render-

ing problem. GPUs can now solve non-rendering problems without resorting to exotic

technologies and approaches. Current generation GPUs can process double precision

floating point numbers, and high-end GPUs support error correcting memory [66, 65].

As alluded to above, the hypothetical PRAM model and the GPU may appear to

be similar. However, the modern GPU is a very specialized piece of hardware and has

unique characteristics that make it problematic to code PRAM algorithms directly

onto a GPU [42]. Two of these characteristics are listed in Table 2.1. Instruction

Path Divergence relates to the nature of the GPU’s instruction processing.

The GPU can be described as a Single Instruction, Multiple Thread (SIMT) type

of parallel processor. SIMT is very similar to the well-known Single Instruction,

8



Multiple Data (SIMD) model of the parallel processor. However, it is different in

that work items (threads) can follow different paths through the same code, but at

a significant performance penalty [42]. With many current GPU designs, each work-

item, in a work-group, executes exactly the same instruction. But, the instructions

not in an active work-item, meaning not on the current execution code path, have

their results voided. The impact of this GPU design technique is that the work-items

not on the current instruction path are effectively inactive. The work-items are not

doing any worthwhile work, resulting in a performance loss.

The GPU global memory access delays relate to the high clock speed of the GPU

relative to the lower speed of associated global memory. Historically, many GPU

designs lacked any type of hardware caching of global memory. More recent GPU de-

signs, such as the NVIDIA Fermi and Keplar designs, do provide some global memory

caching [66]. The lack of a cache, or sufficient cache size, is normally compensated

for by the GPU rapidly shifting between its hardware-managed threads. At the time

a given thread stalls for a memory access, the notion is that another of the hardware-

managed threads is ready to dispatch. When solving application problems with high

locality of memory reference, this approach works well. However, when solving cer-

tain classes of problems with classic algorithms, such as graph-theoretic problems or

sparse matrix problems, there may not be a work-item ready to dispatch due to the

lack of locality of memory reference. This dispatching irregularity usually results in

poor performance.

In summary, when the program code to be executed by a GPU is not designed

for GPU use, it may perform very poorly due to instruction path divergence and

global-access induced memory stalls. In order to get beyond these issues, software

developers can write GPUs programs that access other classes of memory to achieve

and use special coding techniques, which are able to avoid excessive instruction path

divergence.

9



Table 2.1: GPU Performance Constraints

Constraint Description
1 Instruction Path Divergence Occurs when threads take

different paths through the
code.

2 Global Memory Access Characteristics Each access to global mem-
ory needs the time to exe-
cute 200-500 instructions.

2.4 GPGPU

The acronym GPGPU, which stands for General-Purpose computation of Graphics

Processing Units, refers to the use of GPUs to solve general problems beyond the

rendering of graphical images. Scientists and software developers noticed that early

GPUs provided very fast parallel processing for operations such as scaling and shad-

ing. Noticing the high levels of performance achieved, and the low costs, these sci-

entists and developers began to formulate non-graphical problems in graphical terms

and then perform the processing on inexpensive GPUs. This was a breakthrough, as

it showed that GPUs could effectively be used for high performance non-graphical

computing, with low hardware costs. As time passed, products like OpenCL and

CUDA made it much easier to perform general-purpose computing on GPUs [69].

The term GPGPU now refers both to the early efforts of doing general-purpose com-

putation on graphics-only GPUs [48] and to the wider field of doing general-purpose

computation on any type of GPU, be it fully programmable or not [69].

2.5 OpenCL and GPU Basics

The OpenCL specification is managed by the non-profit consortium Khronos Group,

and OpenCL-enabled products are supplied by many software and hardware ven-

dors [34]. This specification enables the development of applications over a range

of devices, not all of them GPUs. These OpenCL-enabled devices are supplied by

10



vendors such as NVIDIA, AMD/ATI, and Intel. Altera has recently announced the

availability of OpenCL for its high-end FPGA cards [6].

OpenCL devices are programmed in C and the CPU-side of the OpenCL applica-

tion can be programmed in C or via a C++ wrapper. There are third-party OpenCL

bindings for a number of other languages including Java, Python, and Microsoft’s

.NET. It is worth noting that the GPU programming models supplied by OpenCL

and NVIDIA’s CUDA are similar conceptually, but not at all the same at the source

code level [48]. The use of CUDA is limited to only NVIDIA hardware.

OpenCL is part of the very dynamic graphics hardware and software arena; here,

continuous product changes and enhancements are the norm. The features and limits

present today may be significantly different in a year – this means that OpenCL

is subject to frequent updates. As stated earlier in the Delimitations section, this

work does not focus on highly specialized, GPU-generation-specific coding techniques,

but instead focuses on algorithms, techniques, and approaches for solving GPGPU

problems that are applicable to OpenCL over a range of applications and products.

2.5.1 GPU Developer’s View and Execution Model

The developer’s view of the GPU code is that of one or more kernels. As men-

tioned above, OpenCL kernels are functions written in the C programming language.

OpenCL provides extensions to C that facilitate the execution of the kernel on the

GPU. These extensions provide special GPU variable types and access to OpenCL-

specific GPU internal variables. OpenCL also provides CPU-side C extension; these

extensions provide the complex CPU-side OpenCL API. This API provides a large

number of varied CPU functions, and function options. Included are functions to

copy buffers of memory to and from the GPU, invoke GPU kernels, and manage er-

ror conditions. From a high-level perspective, the CPU copies the required memory

buffers to the GPU and then requests that kernels be executed. When the kernels

11



GPU

Global Memory

Grid

Work-group 1 (expanded)

Local Memory

Work-item m Private M.

. . .

Work-item 2 Private M.

Work-item 1 Private M.

Work-group 2

L. Mem.

W. Items
. . . . . .

Work-group n

L. Mem.

W. Items

Figure 2.1: OpenCL Developer’s View

are finished, the CPU can request buffers be copied back from the GPU.

A kernel is executed by a work-item; work-items are grouped into work-groups ;

work-groups are grouped into a grid. The developer sees the program code and

its execution in terms of kernels, work-items, work-groups, and grids. Figure 2.1

contains a diagram expressing these relationships. At a given time, each work-item

is executing one kernel. Each work-item has access to the shared global memory, a

limited amount of work-group shared memory, and it’s own private memory. How

these different types of memory are used by the kernel has a major impact on the

GPU performance, because access to the plentiful global memory is relatively slow.

It is often necessary to design GPU algorithms that permit reused data to be kept in

local memory or private memory [65]. Both local memory and private memory tend

to be high-speed RAM, packaged within the GPU itself.

Developers program the GPU kernels and set the characteristic of the work-groups

12



and grid. However, OpenCL uses wavefronts to execute the work-groups, and hence

the work-items. The work-groups are executed in arbitrary order, and may or may

not execute in parallel. This arbitrary-ordering characteristic of work-group execu-

tion impacts the developer, because the order of work-group execution can not be

predicted. The algorithms and code used cannot be dependent on work-group order-

ing. The work-items in a work-group all utilize the same program counter and they

can share the local work-group memory [61].

2.5.2 GPU Performance

As the program counter is shared, and since the SIMT model is being used, it is

possible for the behavior of one work-item to impact the other work-items in the

work-group. In particular, when a decision statement or a loop causes instruction path

divergence, the work-items not on the instruction path still execute the instructions at

the program counter, but the instruction’s actions are voided. This means the work-

items not on the current path are effectively paused. Depending on the length of the

diverged path, the non-active work-items can stay paused for a relatively long period

of time. Instruction path divergence is a major issue in getting high performance

from GPUs [65, 34].

GPUs are very fast processors, but the time it takes to access global memory

can stall the GPU for approximately 200-800 instruction cycles, depending on the

actual GPU. This delay is caused by memory latency. CPUs have similar memory

latency issues, and are designed with sophisticated, multi-level memory caches to help

alleviate this performance issue. As mentioned previously, GPUs may also have caches

but, in general, GPUs use a different solution to the memory latency issue: GPUs

rapidly dispatch another thread that is not stalled. It becomes the developer’s task

to utilize an algorithm that facilitates the availability of a dispatchable thread. This

is one of the areas where the PRAM view of GPUs breaks down; PRAMS do not have

13



this type of requirement. Techniques such as data pre-fetch, use of local registers, and

use of local shared memory are often employed to mitigate memory latency issues in

GPUs. The GPU’s hardware registers and local memory are accessible with minimal

delays and the pre-fetching of data involves using techniques to pre-load the required

data into local storage or a software cache [48].

An additional major GPU performance consideration occurs when transferring

data between the CPU and the GPU. As a high-performance GPU is often provided

on a separate card, located on a “slow” PCI Express bus, the movement of data

between the CPU and GPU is slow relative to the performance of the GPU [30]. This

performance difference, between the PCI Express bus data transfer rate and the GPU

throughput rate, is a major concern in achieving high performance [65].

When using complex algorithms, achieving high performance with OpenCL can

be a complex and difficult undertaking. In order to achieve good GPU performance,

Farber suggests the following three basic rules for GPGPU programming [30]: (1) get

the data on the GPU and leave it there; (2) give the GPU ample work to do;3 and, (3)

focus on the reuse of data within the GPU to avoid memory bandwidth limitations.

These three basic rules form the basic tenants for DEFG’s generation of OpenCL

code.

2.6 Parallelization and Domain-Specific Languages

Numerous attempts have been made to construct languages, compilers, and tools to

make the production of high performance parallel solutions easier. In 2003, Shen et al.

talked about the holy grail of parallelization, which is the automated parallelization

of serial programs, being out of reach [83]. However, progress is being made. One

approach towards the efficient production of GPU-based parallel solutions is the use

3Of these three rules, perhaps this one is the most complex. Finding ways to always have the
GPU working is not easy in the face of possibly hidden instruction path divergence and memory
latency issues.

14



of a domain-specific language (DSL). DEFG is a DSL, a language and related tools

that facilitate the production of OpenCL applications. Martin Fowler defines a DSL

as a computer programming language of limited expressiveness focused on a particular

domain, and suggests that DSLs can be broken into two categories: internal DSLs

and external DSLs [32]. DSLs of both varieties have been produced for GPU-based

high performance computing.

Internal DSLs for GPU-based HPC include extensions to Python, such as PyGPU,

PyCUDA, and PyOpenCL [50, 49, 53]. These DSLs tend to consist of Python wrap-

pers placed around a particular GPU’s API. There are also C/C++ extensions, such

as Bacon [92]. Aside from DEFG, other GPU external DSLs include the SPL digi-

tal signal processing language and the MATLAB Parallel Computing Toolbox. The

MATLAB toolbox supports CUDA and it permits passing some MATLAB functions

to the GPU. It also permits direct GPU kernel execution [57, 100]. Both MATLAB

and DEFG require that the GPU kernel be provided by the developer.

DSLs have the ability to provide high-level abstractions for complex computing

tasks; they can be used to hide complexity [32]. In this dissertation, we show a DSL,

namely DEFG, which provides abstractions for the complex CPU code that must be

written for OpenCL GPU applications. These abstractions are produced in such a

way that the developer is shielded from a great deal of complexity encountered when

using the various OpenCL API functions and options [45].

15



CHAPTER III

OVERVIEW OF DEFG AND ITS PERFORMANCE

3.1 Introduction

This chapter provides an overview of DEFG and summarizes its capabilities and

performance [80, 81]. Later chapters will describe the internal workings of DEFG and

its associated design patterns, and show the use of DEFG with additional applications.

In addition, Section A of the Appendix provides a full description of the DEFG

language. Here, we present three sample DEFG application solutions and discuss the

way DEFG relates to the application’s OpenCL host code and kernel code. We focus

our attention on the basics of the DEFG environment and actual DEFG performance

results, in terms of both developer productivity and run times.

We approach this discussion of the DEFG implementation as follows: using three

existing OpenCL applications and their existing OpenCL kernels without any changes,

the existing host CPU is replaced with DEFG-generated code. The DEFG source

modules need, on average, about 90% fewer lines of code than the corresponding

hand-written host OpenCL modules. We compare the computational performance

of the three applications over two different OpenCL platforms, which we call CPU

and GPU-Tesla. Performance variations between the DEFG and reference results are

identified and analyzed. The next few pages summarize the DEFG implementation

and DEFG language, as well as the three existing OpenCL applications we use as

reference applications and their conversion to DEFG. We then present a preliminary

16



look at our experimental results, in terms of lines of code and run times.

3.2 DEFG Framework and DEFG Language

The DEFG implementation consists of a parser written in Java, utilizing ANTLR3

[11], a Java-based optimizer specific to DEFG, and our code generator, which is

written in C++. The parser handles syntax checking and results in an abstract

syntax tree, expressed as an XML document. The XML syntax tree is then optimized

for run-time performance and decorated with cross-reference information needed for

code generation. Finally, this tree is processed by our code generator, which uses the

TinyXML2 library to accept the XML-formatted tree [91]. For example, the twelve

lines of DEFG code shown in Figure 3.1 result in approximately 460 lines of C/C++

code, a snippet of which is shown in Figure 3.2. The OpenCL kernel executed by

this code is shown in Figure 3.3. Note that this generated OpenCL code is intended

to execute on any supported OpenCL device, including the CPU. With OpenCL, the

CPU can function as both the host and the device to execute the kernel.

The DEFG declarative language consists of a number of declare, execute and call

statements, and optional statements, such as sequence/times and loop/while. An

example DEFG source file is shown in Figure 3.1. The declare statement is used to

name the DEFG application, to define and name the GPU kernels to be executed, to

define any required scalar variables such as a graph’s node count, and to define the

01. declare application sobel

02. declare integer Xdim (0)

03. integer Ydim (0)

04. integer BUF_SIZE (0)

05. declare gpu gpuone ( * )

06. declare kernel sobel_filter SobelFilter_Kernels ( [[ 2D,Xdim,Ydim ]] )

07. declare integer buffer image1 ( Xdim Ydim )

08. integer buffer image2 ( Xdim Ydim )

09. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

10. execute run1 sobel_filter ( image1(in) image2(out) )

11. call disp_output (image2(in) $Xdim (in) $Ydim (in) )

12. end

Figure 3.1: Sample DEFG Code

17



// *** buffers in

cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,

(BUF_SIZE * sizeof(int)),(void *) image1, &status);

if (status != CL_SUCCESS) { handle error }

status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1);

if (status != CL_SUCCESS) { handle error }

cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

(BUF_SIZE * sizeof(int)),(void *) NULL, &status);

if (status != CL_SUCCESS) { handle error }

status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2);

if (status != CL_SUCCESS) { handle error }

// *** execution

size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ;

status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size,

NULL, 0, NULL, NULL);

if (status != CL_SUCCESS) { handle error }

// *** result buffers

status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0,

BUF_SIZE * sizeof(int), image2, 0, NULL, NULL);

if (status != CL_SUCCESS) { handle error }

Figure 3.2: Snippet of Generated OpenCL Code

__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) {

uint x = get_global_id(0); uint y = get_global_id(1);

uint width = get_global_size(0); uint height = get_global_size(1);

float4 Gx = (float4)(0); float4 Gy = Gx;

int c = x + y * width;

/* Read each texel component and calculate ..*/

if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1)

{

float4 i00 = convert_float4(inputImage[c - 1 - width]);

// similar lines omitted

float4 i22 = convert_float4(inputImage[c + 1 + width]);

Gx = i00 + (float4)(2) * i10 + i20 - i02 - (float4)(2) * i12 - i22;

Gy = i00 - i20 + (float4)(2)*i01 - (float4)(2)*i21 + i02 - i22;

/* taking root of sums of squares of Gx and Gy */

outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2));

}

}

Figure 3.3: Snippet of Sobel OpenCL Kernel Code

buffers to be transmitted to and from the GPU device. Lines 1 to 8, in the DEFG

sample, express declare statements. The line 6 statement syntax that is enclosed in

“[[” and “]]” brackets is our method of setting the global grid size. The call statement

is used to invoke C/C++ functions, e.g., to obtain the input data; this sample has

call statements on lines 9 and 11. The execute statement on line 10 is used to execute

the kernel. The flow of control is a design pattern built into DEFG and, in this case,

it executes the statements in order, after the declare statements.

The optional statements can be used to provide support for more complex design

18



patterns where the GPU kernels may have to be executed a variable number of times.

Figure 3.4 contains a DEFG example which executes the kernel once for each graph

node. Figure 3.4, line 9, shows the use of the sequence statement. DEFG also contains

additional looping statements to process scalar values returned by the GPU kernels.

This capability is used in the DEFG breadth-first search solution to conditionally

stop the parallel device processing. DEFG generates OpenCL 1.1 code in keeping

within the limits of NVIDIA’s current OpenCL support [67].

01. declare application floydwarshall

02. declare integer NODE_CNT (0)

03. integer BUF_SIZE (0)

04. declare gpu gpuone ( any )

05. declare kernel floydWarshallPass FloydWarshall_Kernels ( [[ 2D,NODE_CNT ]] )

06. declare integer buffer buffer1 ( $BUF_SIZE )

07. integer buffer buffer2 ( $BUF_SIZE )

08. call init_input (buffer1(in) buffer2(in) $NODE_CNT(out) $BUF_SIZE(out))

09. sequence NODE_CNT times

10. execute run1 floydWarshallPass ( buffer1(inout) buffer2(out) NODE_CNT(in) DEFG_CNT(in) )

11. call disp_output (buffer1(in) buffer2(in) NODE_CNT(in))

12. end

Figure 3.4: Sample DEFG Code Showing a Sequence

3.3 Viability of DEFG

In order to test the viability of DEFG, we selected three existing OpenCL applications

based on well-known algorithms: Sobel image filtering and Floyd-Warshall all pairs

shortest path (APSP), both from the AMD APP SDK, and breadth-first search from

the OpenDwarfs benchmark [1, 31]. We will refer to these applications as SOBEL,

FW, and BFS, respectively. SOBEL was chosen (1) because it represents the class

of less-complex GPU problems, where a single kernel is called once and (2) because

it has significant RAM locality of reference. DEFG supports concurrent execution

on multiple GPU devices, in a declarative manner, and SOBEL provides a good test

case for this added support. This multiple-GPU support is discussed later in Section

5.1.

FW and BFS were selected because they represent two different classes of graph-

19



Table 3.1: Test Configurations

Name Configuration Data

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using
AMD OpenCLSDK 2.8 (no GPU)

GPU-Tesla T20 Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron
2427 Processor, 2.2 GHz, 24 GB RAM, using NVIDIA OpenCL
SDK 4.0, NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and
2687M RAM

Table 3.2: Lines of Code

DEFG
Declarative Generated Reference

BFS 42 620 364
FW 12 481 478
SOBEL 12 467 442

oriented GPU problems, with BFS being the more complex to implement in DEFG.

The FW algorithm requires that a common operation be repeated for each graph node.

In this implementation, FW’s GPU kernel is called once for each node. This call-for-

each-node behavior must be managed from the CPU host, and hence from DEFG. The

OpenDwarfs BFS implementation is based on the work by Harish and Narayanan,

and uses a version of Dijkstra’s algorithm [22, 38]. The actual OpenDwarfs BFS code

is an OpenCL port of the CUDA code from the Rodinia benchmark [85]. This BFS

implementation requires that a pair of kernels be repeated until success is indicated

by the second kernel. This repetition is managed by the CPU host code.

All three of these applications were converted to DEFG, keeping the unmodi-

fied OpenCL kernels. The conversions to DEFG produce exactly the same results

as the corresponding reference version. Before discussing the performance results,

we summarize the hardware and software used. The tests were run on two different

configurations, which we call CPU and GPU-Tesla T20. These configurations are

described in Table 3.1. In GPU performance terms, the CPU configuration is sig-

nificantly less powerful than GPU-Tesla T20 because the CPU is not using a GPU

resource; it executes the kernel on the CPU.

20



Table 3.3: Run-time Performance, in Milliseconds

CPU GPU-Tesla T20
DEFG Ref. DEFG Ref.

BF-4096 1.5 2.6 4.3 5.8
BF-65536 12.3 14.2 8.0 11.3
FW 111.8 152.0 6.0 51.2
SOBEL 23.0 24.8 3.7 4.1

Figure 3.5: Application Lines-of-Code Comparison

3.4 Discussion of Results

In terms of developer-written module line-count results, the three DEFG modules

were much smaller than their reference counterparts. Table 3.2 lists the line counts

for SOBEL, BFS, and FW; shown are the number of lines of DEFG declarative code,

the number of lines of DEFG-generated OpenCL code, and the estimated number of

non-comment lines in the OpenCL reference version. This data is shown graphically

in Figure 3.5. On average, the DEFG code is 3.9 percent of the generated code, and

5.6 percent of the reference code. It should be noted that the reference code tended to

include additional functionality and that the DEFG generated-code counts included

an additional 150 lines of template code used to identify and select the requested

GPU devices.

21



Figure 3.6: Application Run-Time Performance Comparison

The run-time performance comparison turned out to be very interesting. The raw

run times, in milliseconds, are presented in Table 3.3. Figure 3.6 presents this data in

3D form. The results shown are the application averages, over ten individual runs for

each application. When unexpected results were encountered, we performed reruns

with temporary manual code modifications in an effort to isolate the root causes of

the unexpected behaviors. At different times, these code changes were made into

both the DEFG and reference OpenCL code. However, the numbers shown here are

only the original times, i.e., those prior to any manual code modifications.

SOBEL is the simplest application and the run-time performance results between

DEFG and the reference cases are comparable. The SOBEL results are shown on the

graph in purple. The DEFG performance was slightly faster on all of the configura-

tions. This similarity of results is not surprising as the OpenCL CPU host operations

to execute SOBEL are not complex.

The run-time results of the FW tests, which are shown in green, were a surprise to

us. We saw no obvious explanation for why DEFG should be consistently faster. For

example, with GPU-Tesla T20 the reference FW needed 51.2 ms while DEFG FW

consumed only 6 ms. We reviewed the OpenCL code for both DEFG and the AMD

SDK-supplied reference case, and did not find any significant differences in buffer

22



usage or the OpenCL API functions used. We did notice that the reference case was

using asynchronous events, when not in fact required, and we temporarily disabled

them and reran the reference case. The FW reference case run times on the Tesla

T20 dropped three-fold from an average 51.2 ms to 17 ms. We feel the DEFG Tesla

time of 6 ms and the reference case time of 17 ms are reasonably close and this test

tends to show that, for this implementation of the Floyd-Warshall algorithm, both

the DEFG and reference run times were reasonably comparable.

The BFS run-time comparisons used two different graphs. The first graph has

4,096 nodes, with the results shown in blue on the graph, and the second has 65,536

nodes, shown in red. As a historical note, our earlier prototype version of DEFG

BFS was substantially slower than the reference version of BFS; the prototype DEFG

needed 59.4 ms to perform what the reference BFS did in 11.3 ms. The full DEFG

version contains buffer management optimization. When the full DEFG is used, the

59.4 run time drops to 8.0 ms. This dramatic improvement in performance was due

to the DEFG optimizer’s removal of unneeded buffer transfer operations.

We cannot leave the BFS performance topic without noting that the OpenCL

CPU configuration’s performance was better than GPU performance for the 4,096

node case. We postulate that this is explained by the BFS implementation being

used. This graph algorithm implementation is based on the work by Harish [38],

which does not compensate for the lack of memory caching on many GPUs. The

CPU version most likely fared so well due to the multiple levels of memory caching

provided by the Intel I3; it is also likely that the 4,096 node case fit entirely in the

Intel I3’s cache.

In summary, these experiments have shown that, at least with these three ap-

plications, the declarative approach used in DEFG can be used to produce OpenCL

applications with fewer lines of code and comparable run-time performance levels,

relative to hand-written OpenCL application host code.

23



CHAPTER IV

DEFG THEORY OF OPERATIONS

4.1 Introduction

Our Declarative Framework for GPUs (DEFG) generates the CPU-side code for

OpenCL GPU applications. One of the principle DEFG goals is to make the de-

velopment of GPU software less onerous and difficult. The OpenCL GPU APIs tend

to be numerous, very complex, and verbose. DEFG hides much of this complexity

and removes unneeded verbosity. Our approach enables the developer, where possi-

ble, to declare what is needed and have the DEFG software generate the solution to

produce what is needed.

Another principal goal is to have DEFG generate code that is humanly readable,

allowing DEFG to also function as a learning tool. The developer can declare what

is needed and then review the generated DEFG code for insights into how to utilize

OpenCL in separate, non-DEFG applications. We use static optimization techniques

as much as possible, so as to have the DEFG-generated code be readable. This

approach tends to avoid the use of complex optimization and dynamic-decision code

at run time. We avoid them because their use tends to make the generated code

large, heavy with called modules, and rather hard to understand.

As with the CPU, the GPU has limits; it has finite amounts of processing power

and memory. In order to get beyond the limits present in a single GPU, a DEFG

aim is to facilitate the use of multiple GPUs within a single application. GPU kernel

24



designs often break their work into small units that have minimal interactions with

each other. With these types of designs, spreading the work over additional GPU

hardware is relatively easy to do, if the work can be partitioned in a reasonable way.

DEFG provides for this work partitioning in a number of common application use

cases. These cases will be described in the section on DEFG Design Patterns.

This Theory of Operations Chapter is divided into two main sections, plus a

smaller third section. Section 4.2 talks about the DEFG Design Patterns and stays

at a rather high level. It is written from the point of view of a developer wanting to use

DEFG. Section 4.3 dives into the concepts and notions behind the workings of DEFG

and provides numerous specific implementation details. This second subsection is

written from the point of view of the intrepid soul wishing to understand the inner

workings of the DEFG environment. Section 6.2.1 explores why a DSL is useful for

GPU software development.

4.2 DEFG Design Patterns

In software engineering, the term design pattern is often ambiguous; different re-

searchers, designers, and developers may view the notion of a design pattern with

varied experiences, expectations and requirements.1 So as to avoid confusion, we will

define what we mean by a DEFG design pattern after we provide a brief overview

of the DEFG domain. We will then describe the existing common DEFG design

patterns. Before proceeding, we note that a given domain may use only certain

commonly described software engineering design patterns and may introduce unique

design patterns of its own.

The DEFG language is a domain specific computer language, commonly called a

“DSL”. As such, it is intended to be used to solve problems within its limited domain.

The DEFG domain mainly consists of providing the CPU-side code for OpenCL

1We know this to be true from our own extensive software engineering experiences.

25



applications. A key concept here is that DEFG generates a limited range of solutions

and this limited range is reflected in its design patterns. Many of the common software

engineering design patterns such as fork-join, from process control, pipeline, from data

management [58], and observer [33], from object-oriented programming, do not apply

to DEFG.

For purposes of this dissertation, we will use the Gamma, et al. definition of a

design pattern [33]; a design pattern “is a solution to a problem in a context.” Some

of our design patterns are very simple and others are quite complex. When describ-

ing our more complex patterns, we will follow the Gamma approach of describing

the DEFG patterns with four essential elements: the pattern name, the problem ad-

dressed, the solution provided, and the consequences of use.

4.2.1 DEFG Invocation Patterns

4.2.1.1 Sequential-Flow Pattern

The Sequential-Flow pattern is the default behavior of DEFG. In DEFG programs,

all of the statements after the declare statements are executable statements and the

default behavior is to execute these in order, from top to bottom. DEFG programs

that use this pattern, and not the Single-Kernel Repeat Sequence and Multiple-Kernel

Loop patterns, discussed next, tend to have the following structure:2

declare application <name>

declare integer ...

declare gpu ...

declare kernel ...

declare integer buffer ...

call <get data CPU function> ....

execute <GPU kernel> ...

call <consume data CPU function> ...

end

For some DEFG applications, this simple behavior is sufficient to provide the

2Three dots, an ellipsis, represent omitted text and text between < and > represents the name
of applications, kernels, functions, etc.

26



basis for a solution. Each referenced GPU kernel and GPU function is executed once

and the execution occurs in the order listed. The call and execute statements can be

mixed in any order. This design pattern is clearly shown in our SOBEL and MEDIAN

digital filter applications3.

4.2.1.2 Single-Kernel Repeat Sequence Pattern

When a given kernel needs to be repeatedly executed a fixed number of times, and

this number is known before the kernel is executed, the Single-Kernel Repeat Se-

quence design pattern is used. This pattern provides the preferred DEFG approach

to repeatedly executing a kernel for a preset number of iterations. Whenever pos-

sible, this pattern is preferred over the Multiple-Kernel Loop pattern because the

DEFG optimizer can more easily deal with the OpenCL data transfer operations.

The Invoke-While pattern (see below) has more interaction concerns and may not

optimize as well by DEFG. This Single-Kernel Repeat Sequence pattern may be used

within the Multiple-Kernel Loop pattern to help perform complex operations. DEFG

programs using this pattern tend to have this structure:

declare application <name>

declare integer ...

declare gpu ...

declare kernel ...

declare integer buffer ...

....

sequence <number> times

execute <GPU kernel> ...

...

end

The referenced GPU kernel is executed <number> times. This design pattern

is very handy when a self-contained iteration operation must be executed, and is

demonstrated in our Floyd-Warshall (FW) application.

3The DEFG application names are capitalized.

27



4.2.1.3 Multiple-Kernel Loop Pattern

Sometimes the number of times a GPU kernel, or other group of DEFG statements,

needs to be repeatedly executed is not known in advance. For this case, DEFG

provides this Multiple-Kernel Loop pattern. The range and flexibility of this de-

sign pattern, and the loop/while DEFG statements that implement it, are purposely

limited by this domain specific language so as to enable our very useful DEFG opti-

mizations. The main limit imposed is that this design pattern cannot be embedded.

The Multiple-Kernel Loop design pattern tends to have this style of DEFG coding:

declare application <name>

declare integer ...

declare gpu ...

declare kernel ...

declare integer buffer ...

...

loop

...

execute ...

...

execute ...

...

while <variable> <condition> <constant>

...

end

We note that this pattern can contain the previous two patterns. The consequence

of this pattern’s non-embedded limit is that some algorithms/applications may have

to be re-factored; however, as re-factoring for GPU use is common, our experience

is that this will not likely be an issue for the developer. We have found that by

having the GPU kernels perform the work and having the CPU manage the work, this

pattern’s limits are not frequently encountered. Of course, there may be applications

where this type of re-factoring is not desirable or possible. In this case, using DEFG

might not be the correct software development tool. Our BFS applications show this

Multiple-Kernel Loop pattern in use; it is also used in our iterative matrix inversion

(IMI) application.

28



4.2.2 DEFG Concurrent-GPU Patterns

Providing support for applications to utilize more than a single GPU is a primary aim

of DEFG. In order to provide this capability with minimal code changes, we supply

several design patterns. The Multiple-Execution pattern engages additional GPUs.

4.2.2.1 Multiple-Execution Pattern

This pattern is both simple and deceptively complex. It is simple in the sense that

with several simple code changes, any non-BLAS4 DEFG program can be changed

to utilize more than a single GPU. It is complex in that it only makes sense to do

this if the algorithms and kernels used by the application can support multiple-GPU

operations. Additional comments about this pattern are given later in Section 5.1

and in Section A of the Appendix.

The problem this design pattern addresses is the need for more GPU processing

power and memory. The solution it provides is to engage additional GPUs in the

application execution. The benefits of adding more GPUs, when the algorithms and

kernels permit, may seem rather obtuse from a distance. However, if the application

data needing to be processed on the single GPU is a single byte larger than the RAM

available on the single-GPU, the application will fail. The ability to get a solution

by utilizing a second, already-available GPU without having to rewrite the entire

application is a significant advantage.

4The BLAS design pattern is discussed below.

29



This pattern is engaged by using a declare gpu statement that selects multiple

GPU devices, and using multi exec statements (instead of execute statements). The

consequences of using this pattern are enormous. If the application is not designed

correctly, it will fail or worse, produce wrong results. If the application is designed

for multiple GPU use, there is the potential for getting results more quickly, handling

larger application data sets, or both. DEFG programs that use this pattern tend to

have this structure:

declare application <name>

declare integer ...

declare gpu <name> ( all )

declare kernel ...

declare integer buffer ...

...

multi_exec ...

...

end

A number of our applications, including: SOBELM, MEDIANM, RSORTM and

BFSDP2GPU, use this pattern. The BFSDP2GPU application utilizes this pattern

in a much more complex manner compared to the other listed applications. This

breadth-first search application has active communications between its two GPUs

and it also manages the multiple-thread updating of its shared buffer with the Prefix-

Allocation pattern, which is discussed below. The BFSDP2GPU application is specif-

ically discussed in Section 5.2.

4.2.2.2 Divide-Process-Merge Pattern

This pattern is used in association with the multi-GPU pattern. It is as much of a set

of design guidelines as it is a pattern that activates additional DEFG features. When

the Multiple-Execution pattern is active, DEFG’s default behavior is to automatically

divide the data buffers into segments of equal size and give each segment to a unique

GPU. DEFG also correspondingly lowers the size of the work-group for each GPU.

30



We note that this behavior can be changed by using the buffer options, as discussed

in Section A of the Appendix.

When DEFG is left in its default multi-GPU buffer behavior, the developer must

be certain that this mode of operation fits the application’s requirements. It may

be the case that the CPU function used to display, or further process, the resulting

data may have to take special steps. In particular, our RSORTM application has

special merge processing in the CPU function that writes the resulting sorted data to

disk. This design pattern uses the default multi-GPU buffer behavior, which splits

the buffers into equal segments. Our RSORTM application makes use of this pattern

and is discussed in Section 5.3.

4.2.2.3 Overlapped-Split-Process-Concatenate Pattern

This pattern is also used in association with the multi-GPU pattern. It is mutually

exclusive to the preceding Divide-Process-Merge pattern. This pattern is engaged by

adding the halo option to the buffers holding the GPU data, as shown in this DEFG

abbreviated code:

declare application <name>

declare integer ...

declare gpu <name> ( all )

declare kernel ...

declare integer buffer ... halo (<n>)

...

multi_exec ...

...

end

Some data contains boundaries or edges that bring about special processing re-

quirements when work splitting is engaged. The obvious case for this is the two-

dimensional image filtering. But, it also shows up in applications such as moving-

average calculation and digital signal processing. When the dimensions of these edges

are fixed in size and known in advance, this pattern can be used to have DEFG au-

tomatically duplicate the edge data between GPUs. DEFG manages internally the

31



insertion of the duplicated information at the splits of the data; it also removes these

overlaps when the data is returned. The halo buffer option causes DEFG to use

this special processing and the associated n value provides the size of the overlapped

area. For a 1D structure, the n value represents individual elements. For a 2D struc-

ture, n provides the number of overlapped (image) lines. This design pattern is very

effectively used in our SOBELM and MEDIANM image processing applications.

4.2.3 DEFG Prefix-Allocation Pattern

As part of DEFG, a number of OpenCL kernels are supplied. These kernels include:

bermanPrefixSumP1, bermanPrefixSumP2b, and getCellValue. The first two kernels

are based on the prefix sum algorithms given in Berman [14]. This very abbreviated

code shows these kernels being used:

...

multi_exec run2 PrefixSumP1( offset (out) ...

...

sequence KCNT times

multi_exec run2 PrefixSumP2b (offset2 (inout) offset (inout) ...

...

multi_exec run3 getCellValue( offset2 (in) ...

...

These three kernels form a general prefix sum capability that can be used from any

DEFG application. We considered using other prefix sum (prefix scan) algorithms;

however, they had the power-of-2 buffer size requirement, which is not acceptable

here, since DEFG is intended to be used in general-purpose manner. The provision

of a prefix sum capability in DEFG makes it possible to allocate the space in a

shared buffer without having to use performance-impacting, low-level synchronization

constructs. The ideas behind this buffer allocation approach are discussed in Section

5.2. The getCellValue kernel returns the last value in the results buffer, which is equal

to the number of items used when allocating buffer space.

32



This code does not show some of the “housekeeping” steps needed to manage the

buffer passed to the getCallValue. These steps and the full parameter lists for the

kernels can be observed in our multi-GPU BFSDP2GPU application’s source code.

The source code for these kernels is given in the Source Code Appendix, Section B.4.

4.2.4 DEFG Dynamic-Swap Pattern

This design pattern represents the DEFG capability we added to logically swap GPU

buffers. The use of this pattern increases DEFG performance and makes the DEFG

source code easier to read. It is common to see a given GPU kernel repeated a

number of times where the output from the previous iteration is the input to the

current iteration. DEFG assigns a fixed name to each GPU buffer. Arrays of buffers

are not supported. This pattern enables the content of two fixed-name buffers to

be swapped without actually moving the data between the buffers – the buffers are

“interchanged” by just swapping their respective CPU references. This pattern is

used via the interchange statement, as shown in this abbreviated DEFG code:

...

declare integer buffer <bufferA> ...

declare integer buffer <bufferB> ...

...

interchange(<bufferA> <bufferB>)

...

This very handy design pattern is used in our RSORT application.

4.2.5 DEFG Code-Morsel Pattern

The Code-Morsel design pattern came about after our surrender to the elegant power

of small C/C++ code snippets. After a great deal of thought, we included in DEFG

the capability to insert arbitrary snippets of C/C++ code. As we utilized this facility,

we came to view these snippets as very useful and we, correspondingly, gave them a

33



positive name; we called them “morsels.” DEFG morsels can be used in a number of

ways. We break down their use into two categories: cosmetic and functional.

Cosmetic morsels are generally benign and are used to do things like add descrip-

tive program output or assist with application debugging. They do not participate

in the basic processing of the application. Functional morsels do participate in the

active processing of the application and they can add a lot of power to the application.

Unfortunately, they also have the potential to create hideous, hard-to-find bugs.

The code in the morsels is not parsed by DEFG. This means the DEFG optimizer

has no indication what the morsel is doing as far as consuming data or updating

it. Morsels are used via the include and code statements. Appendix Section A, the

DEFG User’s Guide, provides additional morsel-usage information. Shown here is an

abbreviated morsel sample:

...

code [[ printf("version %s size: %d, logSize: %d\n", ... ]]

...

loop

...

// something in this loop sets values in buffer againPart ...

...

code [[again = againPart[0] + againPart[2]; ]]

while again ne 0

...

The first code statement used above is cosmetic and the second is functional.

Cosmetic morsels are used in many of our applications and functional morsels are

used heavily in the BFSDP2GPU application.

34



4.2.6 DEFG Anytime Pattern

Anytime processing is our facility to stop an algorithm or kernel before its normal

ending point, so that results can be presented earlier. This is not program termination

associated with an error. Here is an abbreviated DEFG sample:

...

loop

...

loop_escape at < n > ms

...

while again ne 0

...

A common use of the anytime approach is to release the current application results

when an event, such as the passage of a certain amount of time, occurs. Of course,

this type of processing is only of value if the application’s algorithms and design

facilitate the presence of incremental results. This pattern is used in our iterative

matrix inversion application and described in Section 5.4.

4.2.7 DEFG BLAS-Usage Pattern

The BLAS-Usage pattern enables the use of BLAS-based double-precision matrix

multiplication from the AMD clMath library [2].5 This pattern is used with the

DEFG blas statement. This abbreviated DEFG code shows its use:

...

declare double < ds > ...

double < ds > ...

declare double buffer <bufferA> ...

double buffer <bufferB> ...

double buffer <bufferC> ...

...

blas ( < d1 > * < bufferA > * < bufferB > + < d2 > * <bufferC>

-> <bufferC> )

...

Here d1 and d2 are scalar variables; bufferA, bufferB, and bufferC are buffers

5DEFG has the potential to include other capabilities from this, and other OpenCL-oriented,
application libraries.

35



holding the matrices. The results are stored in bufferC. This design pattern is used

in our iterative matrix inversion (IMI) application.

4.2.8 When to consider not using DEFG

After describing DEFG and it’s design patterns, it is important to note that using

DEFG to create certain types of OpenCL applications might not be a wise choice.

Here are the application characteristics we have identified that indicate that DEFG

use may be questionable:

1. The application has “tight” integration with other components concerning re-

source sharing, threading models, specialized GUI processing, etc.

This tight integration is likely to lead to problems since DEFG manages all its

resources (connection handles, buffers, GPUs, etc.) as though it is the sole user.

DEFG is designed to be used by a single operating system thread; it is not a

multi-threaded CPU application.

2. Some of the application’s OpenCL operations are conditionally executed.

It is possible to put conditional DEFG morsels around the DEFG execute and

multi exec statements. However, this approach is likely to create issues as the

DEFG optimizer cannot be depended upon to have the application’s variables

and buffers updated with the correct content.

3. Complex CPU processing is integrated with the GPU processing.

This item is similar to the previous one. If the complex CPU processing can

be put into functions invoked with the DEFG call statement, this approach will

likely work. If the complex code is inserted with DEFG morsels, the problems

described in the previous point are likely to occur.

4. Complex error handling, such as ignoring an error or restarting after an error,

is in use.

36



When DEFG encounters an error condition, it expects to terminate its pro-

cessing. The DEFG User’s Guide, presented in Appendix Section A, describes

how the DEFG generated-error text and the call to the exit() function can be

redirected. However, DEFG does not generate code to continue execution after

an error.

4.3 DEFG Internal Operations

4.3.1 The DEFG Translator

The general design of our DEFG Translator is diagrammed in Figure 4.1. The trans-

lator is really a compiler; it inputs the DEFG source code and outputs C/C++ code,

which is then used by a standard compiler. We use the term translator with our

DEFG tool, instead of the more common compiler term, to simplify describing the

interactions of the DEFG translator and the standard compiler.

Before describing the specifics of how DEFG programs become C/C++ programs,

let us consider what type of application is produced by DEFG. If we ignore the GPU

aspects of DEFG, we can say that DEFG is a domain specific language (DSL) that

has two main facets. First, DEFG actions rely upon the flow of control options just

described; in other words, DEFG has a fixed set of inter-mixable execution-flow mod-

els that it follows. Second, DEFG marshals data for movement to remote devices and

it manages these devices with optimized remote procedure calls (RPCs). In addition,

there are provisions to insert additional CPU actions into the DEFG programs via the

use of the DEFG call and code statements. However, while DEFG facilitates the exe-

cution of these additional actions, it does not “understand” or “manage” them; they

exist outside the context of the DEFG Translator. We now describe our translator in

detail.

The translation is done in three steps, as depicted in Figure 4.1. The DEFG

source code, stored in a text file, is processed by the DEFG Parser and the results of

37



Figure 4.1: DEFG Translation-Steps Diagram

the compilation are stored in an XML document. The resulting XML document, also

having been stored in a text file, is substantially updated by the DEFG Optimizer.

The optimized XML document is then used by the DEFG Code Generator, along

with a C/C++ code template. The XML is parsed by the code generator, processed,

and the final C/C++ program is written out. This program, stored in a normal

text file, is then further processed as a standard C/C++ program. When an error

is encountered by our translator, it stops processing the input, writes error text, and

terminates. The additional step showing compilation by a standard compiler is not

shown in Figure 4.1. Programs generated by DEFG have the potential to run on

mobile processors, as discussed in the Section A.6 of the Appendix.

4.3.1.1 The DEFG Parser

The DEFG parser is written in the Java version of ANTLR 3 [11]. The full DEFG

grammar for our translator is shown in the Section B.6 of the Appendix. Our DEFG

grammar definition, used by ANTLR, contains embedded Java statements. These

Java statements output the XML snippets that, in total, form the resulting XML

document. The XML document contains a full description of the parsed DEFG pro-

38



gram, stored in an easy-to-process XML form. Our parser detects simple DEFG

syntax errors, but does not do any verification of references between DEFG state-

ments. These more complex checks are done by our optimizer.

We now focus on the parser inputs and outputs. The input used for the sample

output example below is shown in Chapter III, Figure 3.1. Figure 4.2 shows the

generated XML output. Some XML nodes and attributes have been omitted and

replaced with ellipsis (“...”) to keep the size of the figure manageable. In the figure,

line 1 is a comment that notes the translation date and the name of the input file.

The next line provides the application name, sobel ; the main XML attribute marks

this as a program to create an application and not a C/C++ function.

XML was chosen for the intermediate abstract syntax tree format because, in

Java, XML documents can be easy to create and relatively easy to parse. In addition,

this generated XML document is stored in a simple text file and it is easily viewed

from any number of tools. The readability of XML is sometimes disputed, but it is

humanly readable and having the abstract parse tree visible as an XML document

made the parser and optimizer debugging somewhat easier.

Lines 3 through 5 show that three integer variables are defined. Lines 6 through

8 define the GPU devices to be used. In this case, the GPU selected will be the first

device that the OpenCL run time presents, because of the “∗” setting. The OpenCL

kernel to be used, sobel filter, is defined in lines 9 through 11. Lines 12 and 13 define

the buffers to be used, image1 and image2, and their respective sizes. The call to

the init input() function is defined next, in lines 14 through 19. Note the included

references to the image1, Xdim, Ydim, and BUF SIZE buffers and variables. Each

buffer or variable has an associated mode attribute. These mode settings are critical

for the correct operation of the DEFG optimization. The code generated from lines

20 through 23 will cause the sobel filter kernel to be executed on the selected GPU.

These lines will be further decorated by the optimizer; as shown below. Finally,

39



01. <!-- built with V09: 2014/08/29 07:24:05 from sobel.txt -->

02. <application name="sobel" main="y">

03. <variable type="integer" alloc="y" name="Xdim" value="0"/>

04. <variable type="integer" alloc="y" name="Ydim" value="0"/>

05. <variable type="integer" alloc="y" name="BUF_SIZE" value="0"/>

06. <gpu name="gpuone">

07. <device name="*"/>

08. </gpu>

09. <kernel name="sobel_filter" module="SobelFilter_Kernels">

10. <parm>[[ 2D,Xdim,Ydim ]]</parm>

11. </kernel>

12. <buffer type="integer" name="image1" size="Xdim" dim2="Ydim" ... />

13. <buffer type="integer" name="image2" size="Xdim" dim2="Ydim" ... />

14. <call name="init_input">

15. <use_buffer name="image1" mode="in"/>

16. <use_buffer name="Xdim" mode="out"/>

17. <use_buffer name="Ydim" mode="out"/>

18. <use_buffer name="BUF_SIZE" mode="out"/>

19. </call>

20. <execution mode="single" kernel="sobel_filter" ...>

21. <use_buffer name="image1" mode="in"/>

22. <use_buffer name="image2" mode="out"/>

23. </execution>

24. <call name="disp_output">

25. <use_buffer name="image2" mode="in"/>

26. <use_buffer name="Xdim" mode="in"/>

27. <use_buffer name="Ydim" mode="in"/>

28. </call>

29. </application>

Figure 4.2: Sample XML Output From DEFG Parser

lines 24 through 28 define that the disp output() function be run on the CPU. The

application end is marked in line 29.

4.3.1.2 The DEFG Optimizer

For clarity, we will now start exclusively using the term “tree” to denote the XML

document holding the DEFG program’s abstract syntax tree. The DEFG optimizer

is a Java program that has three basic purposes: (1) it looks for and reports DEFG

coding errors not detectable by the parser, (2) it decorates the tree with cross reference

and optimization information, and (3) it reforms the tree branches by relocating

selected requests to move GPU buffers to optimal tree locations. The decorating

of the tree with cross reference information is critical for the correct functioning

of the DEFG code generator. The code generator handles one tree branch (DEFG

statement) at a time and requires that the tree has all of the information needed for a

40



...

20. <execution kernel="sobel_filter" mode="single" ...>

21. <use_buffer name="image1" mode="in "arg="0" move="toDev" type="integer" .../>

22. <use_buffer name="image2" mode="out" arg="1" move="none" type="integer" .../>

23. </execution>

...

Figure 4.3: Sample XML Output Snippet From DEFG Optimizer

single statement’s code generation included on each tree branch. This requirement for

complete information on each branch has made the code generator, discussed below,

more straight-forward.

DEFG optimization occurs in two forms. The first form applies to all DEFG call,

execute, and multi exec statements. The in, out, and inout options, on the associated

variables and buffers, are used to determine when the contents of a given variable or

buffer need to be transferred between the CPU and GPU. These transfers are only

performed if the given option setting indicates the need to update the data from the

CPU or GPU. Figure 4.3 shows a snippet of the decorated tree for the execution of the

sobel filter kernel. Lines 20 through 23 correspond with the same lines in Figure 4.2.

We can see that lines 21 and 22 now contain additional information. In particular,

Figure 4.3 shows that more information, such as the argument count, data type, and

required-movement setting, is present. The move attribute setting of toDev, present

on line 21, is optimization information that will inform the code generation when to

actually transfer the given buffer.

The second form of DEFG optimization is the relocation of certain buffer move-

ment operations to locations outside of loops. When a given call, execute, or multi exec

statement accesses variables or buffers that are not modified inside a given loop, the

request for the data is moved to a tree location that precedes the loop. This move-

ment of certain requests prevents unneeded and repetitive data movement operations

from being executed at run time.

The DEFG loop/while statements are limited and cannot be embedded inside other

41



loops. There are several reasons for this DEFG limit, but the main one relates to

the optimizations performed. The optimizer has to “understand” the DEFG looping

and we found that the optimization could be performed reasonably, if we limited

the DEFG loop/while statement power by forbidding embedding. To be clear, the

DEFG sequence statement can be embedded in loop/while statements; a loop/while

just cannot be embedded in another loop/while. More will be said about these limits

in Chapter VI, on future research. We believe there is a better approach, based on

using a less static optimization technique.

The implementation of these two optimizations in DEFG has given the DEFG-

generated code good performance. The performance is similar to that achieved with

hand-written C/C++ OpenCL applications, at least in the applications we tested. We

believe that these optimizations are one of the anchor facilities of DEFG; they help

make DEFG a viable application generation approach by providing good run-time

performance.

4.3.1.3 The DEFG Code Generator

The generation of the DEFG application code is a complicated, non-trivial endeavor.

It is so for a number of reasons. The code generator has to create C/C++ code that

produces the desired result, on multiple operating system platforms.6 We support

OpenCL GPUs from different vendors. In addition, the code generator has to produce

code for two modes of operation: single GPU execution and multiple GPU execution.

It is also tasked with generating code that a person will be comfortable reading.

Although OpenCL is a defined standard, it has multiple implementer-defined features

and options [70]. Where possible, we have used the simplest, common-denominator

approaches; when these caused errors or produced poor performance, we used more

advanced, and sometimes environment-specific, approaches. The developer is shielded

6We have limited our formal testing to Linux and Windows.

42



from all these issues by DEFG; it handles the many details of developing C/C++ code

for GPU use.

A high-level diagram of the DEFG Code Generator is shown in Figure 4.4. The

DEFG Code Generator is written in C/C++, executes on Windows, and uses the

TinyXML2 [91] library to parse its input XML file. An early step in its processing

is accessing the text file which holds the DEFG template C/C++ code. The DEFG

template is copied directly to the file containing the generated code. This template

provides the “boiler plate” code that initializes the run-time resources and selects the

one or more devices for run-time processing; it also contains special markers. These

markers are placeholders that are replaced by the unique code generated for each

DEFG translation.

Speaking abstractly, the first major step in the code generation is producing the

GPU device selection and device management code. Here, the OpenCL environment

and command queues are created, the GPU needed kernels are loaded, and the re-

quired CPU memory buffers are allocated. The CPU buffer memory is obtained with

C-style malloc() calls and is of a fixed size. This size is changeable, at run time, by the

DEFG MAX BUF environment variable. Once allocated, the buffers are segregated

and managed by the generated DEFG code.

From a high level, after the environment is established, the steps outlined in the

middle box of Figure 4.4 are performed. These operations generate the code for the

DEFG statements defined in the input tree. After these operations are completed,

the code to release all of the resources and terminate the application is generated.

After the code generation is completed, the output file is available for compilation by

a standard compiler.

In the remainder of this section, we will focus on the basic operations outlined in

the middle box of Figure 4.4. These operations consist of: (1) GPU-Oriented Oper-

ations, (2) CPU-Oriented Operations, and (3) Loop/While Statement Operations.

43



The optimized syntax tree is processed one branch at a time, beginning with the

root. For each non-declare statement in the tree, a single operation type from one of

these three groups is performed. We will summarize each of these operations below.

We note, in advance, that the multiple-GPU support buffer options: halo, multi, and

nonpartable are handled in the buffer movement code generation and in the execute

NDRange code generation. Through this layering and abstraction, these complex

buffer options are handled without greatly impacting the more basic DEFG code

generation for marshaling buffers, making OpenCL API calls, and handling errors.

The GPU-oriented code generation operation is made up of two phases. The

first phase is only done when required by the move attributes in the input tree. It

consists of generating the OpenCL code to create buffers and to transfer variables

and buffers. The OpenCL GPU device buffers are only created when actually used.

They are transferred (actually copied) when their contents are valid on the CPU and

not the GPU. This can happen if the generated CPU-side code updates a variable or

buffer on the CPU. It is the job of the DEFG optimizer to manage this coordination

of transfers.

The second phase of this operation consists of generating the code to invoke the

requested kernel or call the BLAS library. With the GPU kernel invocations, each

selected GPU has the kernel arguments set and the kernel started via the OpenCL

clEnqueueNDRangeKernel() API call. Code is generated to describe any detected

error indications.

The CPU-oriented code generation has four options, depending on the DEFG

statement being handled. For a code statement the text between the “[[” and “]]”

delimiters is inserted directly into the generated code. The use of code statement,

called a “morsel,” is discussed in the User’s Guide, Section A in the Appendix. The set

statement’s code generation consists of simply copying the associated value into the

referenced scalar variable. This statement may seem very limited in power. However,

44



Figure 4.4: DEFG Code Generation Diagram

45



the DEFG optimizer is aware of its actions. This causes any needed transfer opera-

tions to be generated, if this field is then referenced from a GPU. The DEFG timer

statements cause the generation of code to start, stop, and read the DEFG-provided

CPU timer.

The most interesting CPU-oriented code generation involves the DEFG call state-

ment. The transfer code is generated only when required by the move attributes in

the input tree; it transfers (copies) variables and buffers from the GPU to the CPU.

After these optional actions are completed, the call to the defined C/C++ function

is made. The DEFG call is part of the DEFG optimizer processing; CPU variables

and buffers are only updated with GPU content when the GPU content has been

updated.

The loop and while operation generates the C/C++ code to implement the DEFG

loop and while statements. Due to some unwanted behavior in the way C/C++ local

variables are scoped, we use the C/C++ if and goto statements to implement this

DEFG looping capability.

In Figure 4.5, we show a snippet of the C/C++ code generated for the DEFG

execute statement shown in Figure 3.1, line 10. This snippet causes execution of

the sobel filter kernel with image1 as input and image2 holding the resulting filtered

image.

This snippet has had many of the less important C/C++ lines and parameters

removed; these removals are marked with ellipsis (“...”). The generated code includes

comments to facilitate the code being “human readable.” The first eleven lines show

the conditional execution of a buffer creation on the GPU device. The next six lines

show the transfer of the image1 to the GPU device and the setting of the first two

arguments for the kernel execution on the device. The last two lines show the staging

of the kernel’s execution in the OpenCL command queue.

This chapter has described the DEFG translator. Our design splits the trans-

46



// *** KERNEL: <<<< sobel_filter >>>>

// *** WRITE FIELD: image1(in-toDev)

...

if (defg_create_1 == 0) {

defg_create_1 = 1;

...

defg_buffer_image1[0] = clCreateBuffer(defg_context, ..., &defg_status);

if (defg_status != CL_SUCCESS) {

// error handling, etc

...

}

}

...

defg_status = clEnqueueWriteBuffer(defg_Queue[0], defg_buffer_image1[0], ...);

...

defg_status = clSetKernelArg(defg_sobel_filter[0], 0, ...);

...

defg_status = clSetKernelArg(defg_sobel_filter[0], 1, ...);

...

// *** EXECUTION: sobel_filter

defg_status = clEnqueueNDRangeKernel(defg_Queue[0], defg_sobel_filter[0], ...);

if (defg_status != CL_SUCCESS) {

// error handling, etc

...

}

...

Figure 4.5: C/C++ Snippet for sobel filter Kernel Execution

lation processing into three steps, which works well, as it allows us to separate the

complexities inherent in optimization and code generation. The middle step, the

optimization step, really keeps the error detection and high-level optimization away

from the down-and-dirty OpenCL-oriented code generation. For DEFG to support

the CUDA product, which has similarities to OpenCL, but also has differences, a new

code generator would need to be provided; the parser and optimizer would remain

largely unchanged.

47



CHAPTER V

NEW AND DIVERSE DEFG APPLICATIONS

In order to demonstrate the power and viability of DEFG, we designed and im-

plemented a set of new applications using DEFG and OpenCL. Some of these new

applications are based on our existing SOBEL and BFS applications, discussed in

Chapter III. The others are entirely new implementations.

Our first new applications consist of two image filters. The first filter is an en-

hanced Sobel operator filter for multiple-GPU operation and the second is a median

filter, functioning in single-GPU and multiple-GPU modes. We refer to our filtering

applications as SOBEL and MEDIAN and may sometimes add a suffix to indicate

additional functionality. For example, SOBELM is our multiple-GPU version of SO-

BEL.

In the next new application, multiple-GPU support is added to the existing DEFG-

based BFS application. Here, parallel prefix scan is applied in a novel and interesting

way to dynamically manage the buffers passed between the different GPU devices.

Prefix scan’s allocation of the buffer space to individual GPU threads makes it possible

to manage the shared buffers without the costs of slow, atomic locking on buffer

structures. This application is referred to as BFSDP2GPU.

The new RSORT application is our proof-of-concept implementation of roughly

sorting. Roughly sorting is used when the data to be sorted is already partially in

sequence. This sorting approach scans the data, computes a measure of disorder and

then breaks the data into segments, which are individually sorted [9, 10].

48



Our final new DEFG application implements the Altman iterative matrix inversion

algorithm [7, 8] and is referred to as IMI. In this application, DEFG forms an inter-

face layer between the application’s logic and the Basic Linear Algebra Subprograms

(BLAS) numerical library [2].

Each of our new applications is described, and analyzed, in this chapter. The

analysis for each application varies based on the goals for each. For example, our

image filtering applications show the ease with which DEFG can provide the CPU-

side code for high-performance, multiple-GPU applications. We carefully measure the

respective run-time performances. On the other hand, the iterative matrix inversion

application shows the ability of DEFG to be expanded to use existing GPU libraries.

It is not related to multiple-GPU operations and, hence, we are not as interested in

run-time performance. We are more concerned with the sizes and types of matrices

that can be processed.

In Designing Scientific Applications on GPUs [23], Raphael Couturier talks about

the implementation of GPU applications. He groups them into categories by image

processing, optimization, numerical applications, and adds software development.

Our mix of applications directly map to three of Couturier’s four categories.

The image filtering applications implement the Sobel operator and the median fil-

ter. Touching on the Couturier topic of numerical applications, in particular solving

sparse linear systems, is the DEFG iterative matrix inversion application. This DEFG

environment, with its multiple GPU support, touches the recurring Couturier topic of

enabling the support of applications over multiple GPUs. These applications provide

a good mixture of GPU solutions that demonstrate the power of DEFG.

The run-time results were obtained using the Hydra server at the University of

Colorado Denver’s Computer Science and Engineering Department, with a few excep-

tions. In these exceptions, results were obtained using other hardware and we clearly

note these exceptions.

49



5.1 Application: Image Filters

5.1.1 Problem Definition and Significance

Image filters can be used to enhance the quality of images, as well as, to locate

the edges contained in images. In this section, two DEFG image applications will

be discussed: Median filtering and the Sobel operator, both within the context of

single-GPU and multiple-GPU operations. Single-GPU operation refers to executing

the DEFG application on a single GPU; likewise, multiple-GPU operation refers to

executing the DEFG application on multiple GPUs. Having the option to execute a

given DEFG application on multiple GPUs provides the potential to obtain results

more quickly and to solve larger problems.

5.1.2 Related Work

The Sobel operator can be used for image edge detection and is designed to ap-

proximate the gradient value at the specific pixel being processed [84]. A computed

gradient value that is relatively high represents a hill, slope or wall, that is, an edge.

The Sobel operator for edge detection was first described in an unpublished 1968 ar-

ticle from the Stanford AI Lab by Irwin Sobel and Jerome Fredman: A 3×3 Isotropic

Gradient Operator for Image Processing [21, 86]. This operator computes an approx-

imation of two gradients using a pair of 3 × 3 convolution masks, one mask for the

horizontal estimation of the gradient and one for the vertical [93]. There are other

similar operators including the Robinson operator and the Kirsh operator, differing

in the weights used in the convolution mask [87].

The median filter was outlined by Tukey, in 1971, for use in signal smoothing

and it is a special case of a rank filter [43, 87]. It is commonly used to enhance the

quality of an image by forcing points with highly varied intensities to be similar to

their neighbors [84]. The median value of a given pixel’s neighbors is computed and

50



is used to replace the pixel’s value. The processed pixel is normally centered in its

neighborhood. In our median filter work, neighborhoods of 3 × 3 and 5 × 5 pixels

are used. This type of filtering has many uses, including that of noise removal, which

is an instance of “smoothing.” Variations in the median filter include increasing the

size of the neighborhood and changing the shape of the neighborhood.

Over time, numerous improvements to the Sobel operator have been proposed.

Since the Sobel operator only uses a 3 × 3 mask, it is very sensitive to noise in

the image. Ma, et al. [56] proposed an improved Sobel algorithm using a median

computation, based on a larger 5 × 5 mask. Using color images, Wesolkowski, et

al. [96] demonstrated that the Sobel operator shows good edge detection results, as

compared with other similar operators. Wang [94] showed how a filter based on the

Sobel operator can be used as an integral component of a vehicle identification system

where the Sobel operator is used to highlight the contour of the vehicle against the

environment around the vehicle. In our work, we use the Sobel operator in its original

form, with a 3× 3 mask.

5.1.3 Approach to Research

We begin our DEFG Application Chapter with the Sobel operator and median fil-

ter applications because they represent the class of straight-forward GPU problems,

where a single kernel is called once and there is significant locality of memory refer-

ence. This locality-of-reference characteristic tends to provide for good GPU perfor-

mance without having to create a complex kernel or set of kernels. The median filter

presents an application that is similar to the Sobel operator, but is more computa-

tionally intense, especially when using neighborhoods of size 5 × 5. This increased

computational intensity is useful when exploring the performance characteristics of

the multiple-GPU DEFG versions.

Our single-GPU Sobel and median filter implementations show that DEFG han-

51



dles single-invocation OpenCL kernels with minimal developer effort, and with good

performance. When performing multiple-GPU DEFG processing, the Sobel and me-

dian filters provide more complex usage cases since the images sent to each GPU

must overlap slightly and DEFG needs to manage this data overlap. A goal of DEFG

is to enable multiple GPU operations with very limited changes to DEFG code. Our

expectation is that when this DEFG capability is used appropriately, the OpenCL

kernels will not require modifications.

A few words of caution concerning the DEFG multiple-GPU capabilities: of

course, the OpenCL kernels must have been implemented using GPU coding tech-

niques that permit multiple GPU operations. DEFG makes the utilization of multiple-

GPU-capable kernels less work for the developer, but it does not provide any “Holy

Grail” (see Shen [83]) for automatic parallelization of existing algorithms and code.

DEFG provides a number of design patterns that support multiple-GPU pro-

cessing. Multiple-GPU image applications can use DEFG’s Overlapped-Split-Process-

Concatenate design pattern to handle those neighborhood masks that are at the

image edges. Since the Sobel operator and median filter require at least a 3 × 3

neighborhood mask, some image content must be repeated so that the edge pixels at

the image-split locations are present where they are needed. Each GPU must have

in memory the pixels it requires. When these separately processed images are later

concatenated to reform the final image, this overlapped image content must be taken

into consideration. The Overlapped-Split-Process-Concatenate design pattern han-

dles this overlapping in a generalized and easy-to-use manner. The DEFG buffer halo

option facilitates this design pattern; it provides DEFG with the needed information

to correctly split and reform images. The halo option is discussed in Chapter IV and

in the User’s Guide, Appendix Section A.

52



5.1.4 Additional Background

5.1.4.1 Single-GPU DEFG Sobel Operator Application

In Section 3.4, we discussed our DEFG-based version of the Sobel operator, utilizing

the Sobel kernel from the AMD Application SDK 2.8 [1]. The CPU-side OpenCL

code was replaced by DEFG-generated code. This DEFG Sobel implementation pro-

duced exactly the same results as the SDK version and showed very similar run-time

performance. Figure 5.1 shows the results of running the Sobel operator with the

DEFG. The image on the left is the input image and the image on the right shows

the filtered results. The edges of the highway lane markers, tree tops, and cloud

banks are delineated and highlighted. The filter has the effect of highlighting changes

in color.

5.1.4.2 Single-GPU DEFG Median Filter Application

Our filter application research efforts involve using the DEFG multiple-GPU support

to produce enhanced application performance characteristics. However, it became

clear that the Sobel operator was not computationally intense, in terms of run time,

relative to the time it takes to move the image to and from the GPU; a large portion

of the GPU-based Sobel Filter execution time was consumed moving the image to

and from the GPU.

Figure 5.1: Sobel Operator Performed with DEFG: Before and After Images

53



Figure 5.2: Median 5× 5 Filter Performed with DEFG: Original, Noised-Added, and
After-Processing Images

Therefore, a second filter application was added: the MEDIAN filter. The median

filtering was supported in both 3 × 3 and 5 × 5 neighborhood versions. This DEFG

CPU-side program to support the median filter was very similar to the Sobel version.

The significant differences between these two filter applications were in the corre-

sponding OpenCL kernel code. Figure 5.2 shows the results of having run the median

5× 5 filter with DEFG. The left-most image is the original image. The middle image

consists of the original image with approximately 2 percent of the pixels replaced by

black “noise” pixels. The right-most image shows the results of running the median

application to clean up the noise. A careful examination of the resultant image shows

that the noise was removed, but the quality of the image suffered as a result. One

can see that, in the right-most image, the blades of grass are somewhat blurred and

the clouds are less clear; some of the quite sharp cloud edges have been dulled.

Figure 5.3 shows the Median filter kernel code, with a 3×3 neighborhood. Lines 12

through 20 moved the neighborhood pixels into the sort buf array. Lines 21 through

29 ordered the elements in the array and line 30 copied the middle pixel value, the

median, to the pixel being processed.1 The larger 5×5 version of this kernel was very

similar to this 3× 3 version; the major difference was that 25 pixels were sorted and

1The sorting algorithm used here was not highly optimized, helping ensure that this median filter
kernel is more computationally intense than our Sobel operator kernel.

54



the middle element of the resulting 25-item array was chosen as the new pixel value.

We note that these two kernels from our single-GPU work were used in our

multiple-GPU work without modification. This was in line with our aim of, where pos-

sible, obtaining DEFG multiple-GPU support without having to recode the OpenCL

kernel or make substantial changes to the DEFG code. In the best case, we expect

that the changes to the DEFG code are simple changes to the declarative statements

and the simple switching of execute statements to exec multi. The algorithms and

kernels that are suitable for this relatively easy switch to multiple-GPU processing

tend to be self-contained and have simple data access patterns. Some computer scien-

tists describe these as embarrassingly parallel, perfectly parallel, or pleasingly parallel

algorithms [98]. Embarrassingly parallel or not, applications that use multiple GPUs

still need the infrastructure code present to manage the many GPUs and the many

buffers. DEFG provides this infrastructure code.

5.1.4.3 Multiple-GPU DEFG Filter Applications

The DEFG Overlapped-Split-Process-Concatenate design pattern and the associated

halo option are used here to permit the filtering to be performed on two separate

GPUs, with each GPU processing half of the image. As noted previously, the compli-

cating factor is the need for any pixel processed to have its neighbors present. This

means that a small section of the image, the parts of any halo, may need to be present

on both GPUs.

The code used to execute the Sobel operator with a single GPU was previously

shown in Figure 3.1. For comparison, the DEFG code used to execute the Median

5×5 filter on two GPUs is shown in Figure 5.5. A review of the two DEFG programs

shows three significant changes beyond the kernel name change. First, the declare

gpu, on line 5, has been changed to use the all option. Next, the halo (2) option

has been added to the buffer declarations on lines 7 and 8. Finally, line 10 has been

55



changed from an execute statement to a multi exec statement. The all option allows

DEFG to use all the GPUs attached to the CPU node; in the case of the UCD Hydra

server, this was two GPUs. The addition of the halo (2) option notifies DEFG that

when running with multiple GPUs, DEFG must manage the overlapped halo area.

The (2) denotes that the overlap is 2 units; as this is a 2-dimensional data structure,

i.e., an image, the 2 denotes two lines. The use of multi exec causes DEFG to execute

kernel code on all the selected GPUs. These changes are sufficient to allow for the

generation of C/C++ code utilizing more than one GPU, even though the partial

image sent to each GPU must be overlapped. The overlap management is handled

entirely by DEFG.

Figure 5.4 shows a schematic representation of a 6 pixel × 6 pixel image that

might be processed by DEFG with two GPUs. In the schematic, the pixels prefixed

01. __kernel void median_filter(__global uint* inputImage,

02. __global uint* outputImage) {

03. uint sort_buf[9];

04. uint h;

05. int i, j;

06. uint x = get_global_id(0);

07. uint y = get_global_id(1);

08. uint width = get_global_size(0);

09. uint height = get_global_size(1);

10. int c = x + y * width;

11. if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1) {

12. sort_buf[0] = inputImage[c - 1 - width];

13. sort_buf[1] = inputImage[c - width];

14. sort_buf[2] = inputImage[c + 1 - width];

15. sort_buf[3] = inputImage[c - 1];

16. sort_buf[4] = inputImage[c];

17. sort_buf[5] = inputImage[c + 1];

18. sort_buf[6] = inputImage[c - 1 + width];

19. sort_buf[7] = inputImage[c + width];

20. sort_buf[8] = inputImage[c + 1 + width];

21. for (i=0; i < 9; i++) {

22. for (j=i; j < 9; j++) {

23. if (sort_buf[i] > sort_buf[j]) {

24. h = sort_buf[i];

25. sort_buf[i] = sort_buf[j];

26. sort_buf[j] = h;

27. }

28. }

29. }

30. outputImage[c] = sort_buf[4];

31. }

32. }

Figure 5.3: Kernel Code for Median Filter with 3× 3 Neighborhood

56



Schematic Image:

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31b A32b A33b A34b A35b A36b

B41a B42a B43a B44a B45a B46a

B51 B52 B53 B54 B55 B56

B61 B62 B63 B64 B65 B66

Figure 5.4: Image Schematic Showing Overlap with 2 GPUs

Table 5.1: Execution Times on Hydra Server, in Milliseconds

Filter Write to Execution Read from Total GPU
Name GPU ms GPU ms GPU ms Run ms

SOBEL 1 1 1 3
SOBELM 2 1 1 6

with “A” are in the sub-image for GPU 1 processing and the pixels prefixed with

“B” are in the sub-image for GPU 2 processing. In this hypothetical example, a

Sobel operator is to be run for the non-edge pixels in the full image. So, the halo (1)

statement option would be used since the Sobel operator uses a 3× 3 mask. The use

of this halo option would have the effect of copying pixels A11 . . . A36b plus B41a

. . . B46a to GPU 1 and A31b . . . A36b plus B41a . . . B66 to GPU 2. By copying the

additional pixels, each GPU would have all of the values needed to correctly execute

the Sobel operator. When the image buffers are later transferred back to the CPU,

the image overlap area is managed by DEFG, so that the correct pixels appear in the

final image.

57



01. declare application median5

02. declare integer Xdim (0)

03. integer Ydim (0)

04. integer BUF_SIZE (0)

05. declare gpu gpugrp ( all )

06. declare kernel median5_filter Median5Filter_Kernels ( [[ 2D,Xdim,Ydim ]] )

07. declare integer buffer image1 ( Xdim Ydim ) halo (2)

08. integer buffer image2 ( Xdim Ydim ) halo (2)

09. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

10. multi_exec run1 median5_filter ( image1(in) image2(out) )

11. call disp_output (image2(in) Xdim (in) Ydim (in) )

12. end

Figure 5.5: DEFG Code to Execute the 5× 5 Median Filter

5.1.5 Experimental Results

5.1.5.1 Multiple-GPU DEFG Filter Performance

Table 5.1 shows the SOBEL and SOBELM applications’ run-time performances, ob-

tained from executing these applications on Hydra.2 SOBEL is the name given to

DEFG single-GPU version of the Sobel operator and SOBELM is the name for the

DEFG multiple-GPU version. Clearly the single-GPU version, which used 3 ms, was

faster than the 2-GPU version, which used 6 ms. Equally clear is that the time needed

to move the image to and from the GPU, 2 ms in the case of SOBEL, was greater

than the time needed for the execution of the kernel, in this case 1 ms. The SOBEL

application, directly based on the Sobel application from the AMD SDK, uses more

time moving the image than processing it.

In an effort to understand the unimpressive performance with our SOBELM 2-

GPU application, we manually inserted additional timers into the DEFG-generated

code and performed additional DEFG logging. These steps gave us basic run-time

profiles for SOBEL and SOBELM. After reviewing these run-time profiles, we postu-

lated several potential explanations for the observed performance: (1) the OpenCL

multi-GPU operations have generally poor performance; (2) the image being used for

filter testing was too small; (3) the Sobel operator was not computationally intense

enough for multi-GPU use; (4) the DEFG approach to multi-GPU kernel execution

2The SOBELM run time is not equal to the sum of the partial totals due to timer limits.

58



Table 5.2: Images Used with Filter Application Testing

Image Description Image Image Source
Name Dimensions Size in bytes

BUFLO Downtown Buffalo 1714× 1162 5,977,382 Mike Boncaldo
FIELD Rice field 512× 512 786,486 freedigitalphotos
IMG1000 Colored box 1000× 1000 3,000,054 generated
IMG5000 Colored box 5000× 5000 75,000,054 generated
IMG7000 Colored box 7000× 7000 147,000,054 generated
IMGHUGE Colored box 22000× 22000 1,452,000,054 generated
ROAD Road to the clouds 170× 153 78,390 freedigitalphotos

on the GPU performed poorly; and, (5) the DEFG approach to multi-GPU buffer

movement to and from the GPU performed poorly.

Our previous experiences with other OpenCL applications, in particular the min-

ing of digital coins [54], showed that the OpenCL support for multiple-GPU operations

was “solid” and showed notable high performance. So we discounted the first expla-

nation. In order to test the view that the filter test image was too small, we obtained

and experimented with a set of larger images. Our full set of images is listed in Table

5.2. The BUFLO 3, FIELD4, and ROAD5 images were obtained from Google Images

and the World Wide Web. This table assigns a unique name for the images, along

with presenting each image’s characteristics.

As part of testing the explanation that the SOBEL operator is not computation-

ally intensive enough, we added the median filter to our set of DEFG applications.

We produced median filter applications in two forms. The first form used a 3 × 3

neighborhood with 9 pixels and the second form used a 5× 5 neighborhood with 25

pixels. The second form, with its 25 pixel neighborhood, was more computationally

intense due to the median filter’s sorting step. Using these additional images and

filters, we performed a series of new experiments on Hydra.

The results of these experiments are shown in Table 5.3. The first column lists

3http://www.mikeboncaldo.com/photos - Used with permission.
4http://www.freedigitalphotos.com - Used as per agreement.
5http://www.freedigitalphotos.com - Used as per agreement.

59



Table 5.3: Run Times for Various Images

Image Filter Average
Name Name Execution

Seconds

FIELD SOBEL 0.003
SOBELM 0.006
MEDIAN 0.003
MEDIANM 0.006
MEDIAN5 0.009
MEDIAN5M 0.008

BUFLO SOBEL 0.018
SOBELM 0.023
MEDIAN5 0.058
MEDIAN5M 0.048

IMG1000 SOBEL 0.010
SOBELM 0.013
MEDIAN5 0.023
MEDIAN5M 0.019

Image Filter Average
Name Name Execution

Seconds

IMG5000 SOBEL 0.215
SOBELM 0.240
MEDIAN5 0.542
MEDIAN5M 0.412

IMG7000 SOBEL 0.420
SOBELM 0.479
MEDIAN5 1.062
MEDIAN5M 0.794

IMGHUGE SOBEL failed -4
SOBELM 4.650
MEDIAN5 failed -4
MEDIAN5M 7.775

the image used, the second provides the name of the filter used, and the last column

shows the average run times for three Hydra executions of the named image with the

given filter. The characteristics of each image are given in Table 5.2.6

We note that the execution times for SOBEL and SOBELM compared to ME-

DIAN and MEDIANM, for the FIELD image, were very similar. Our experience

has been that the Sobel operator and the 3 × 3 Median filter showed similar run

times, no matter which image was used. Therefore, we omitted the MEDIAN and

MEDIANM execution times in the remainder of Table 5.3. Instead, we focused on

the SOBEL/SOBELM and MEDIAN5/MEDIAN5M results.

The FIELD image execution times showed that MEDIAN5 took about 3 times

longer to execute as compared to SOBEL and that MEDIAN5M took less than 2 times

the time of SOBELM. Clearly, the impact of using two GPUs with the MEDIAN5M

median filter application was different from that with the SOBELM Sobel operator

application. Comparing the MEDIAN5 and MEDIAN5M results, using the FIELD

6The FIELD image from Table 5.2 is shown in Figure 5.2, on the left, and the ROAD image from
Table 5.2 is shown in Figure 5.1, also on the left.

60



Figure 5.6: Plot of Filter by Image, Average Run Times

image, showed that the MEDIAN5M application was slightly faster, having used 0.008

seconds versus 0.009 seconds for single-GPU MEDIAN5.

The average run times for the IMAGE1000, IMAGE5000, and IMAGE7000 im-

ages, plotted with applications SOBEL, SOBELM, MEDIAN5, and MEDIAN5M,

are displayed in Figure 5.6. We note that the IMAGEHUGE is not included in this

plot, as it was too large to be processed by the single-GPU applications. This plot

shows that multiple-GPU MEDIAN5M was faster than single-GPU MEDIANM for

IMAGE5000, of size 5000× 5000, and for IMAGE7000, of size 7000× 7000. For the

higher computational intensity median 5× 5 filter, the multiple-GPU processing was

faster when using the larger images.

5.1.5.2 Profiled Multiple-GPU Performance

In an effort to further understand the computational intensity issue, we ran additional

experiments with the DEFG OpenCL logging facility engaged. These logs provided

OpenCL API call-profiling information. In particular, the times needed to write the

61



Table 5.4: Detailed Run Times for BUFLO Image

Filter Write to Execution Read from Total GPU
Name GPU ms GPU ms GPU ms Run ms

SOBEL 6 5 3 19
SOBELM 7 5 7 23
MEDIAN5 6 45 3 59
MEDIAN5M 8 25 8 44

images to the GPU(s), execute the kernel(s), and read the images back from the

GPU(s) were logged. Table 5.4 shows the results of these experiments, using the BU-

FLO image. This data indicates that the median 5 × 5 filter benefited from 2-GPU

execution with an execution time of 25 milliseconds versus a 1-GPU time of 45 mil-

liseconds. It is also clear that the clock time needed to write the images to the GPUs,

and read the images back from the GPUs, had increased with 2-GPU operation. For

example, the MEDIAN5 write-to-GPU time was 6 ms and the MEDIAN5M write-

to-GPU time was 8 ms. We concluded that with this implementation of DEFG, the

Sobel operator is not computationally intense enough to benefit from 2-GPU usage.

The Sobel operator showed increased write and read times while the execution time

did not decrease.

The increase in write and read times was unexpected; our expectation was that

these times would drop with 2-GPU operation. A review of the OpenCL documenta-

tion, combined with our previous experiences with other OpenCL applications, led us

to postulate that the DEFG use of a single operating system thread for all operations

might be contributing to the increased run times for the write and read operations.

We note that the DEFG-generated code used the OpenCL asynchronous calls and

maintained multiple command queues, when executed with more than a single GPU.

In order to better understand this 2-GPU unimpressive performance, we wrote a non-

DEFG OpenCL test program that used Linux pthreads7 to provide multiple operating

system threads. We then compared the run-time speeds of doing the 2-GPU OpenCL

7pthread in the name given to a commonly used Linux multiple-threading library.

62



Table 5.5: Run Times for pthread Experiment

Run Mode Run Time in ms Comments

1 Thread 610 DEFG-Style
2 Threads 387 pthread-based

write and read operations using a single-threaded approach against doing the same

processing with a pthread-based 2-thread approach.

Both test programs moved 128MB to each of 2 GPUs and then moved the same

128MB back. The test programs were executed three times and the average execution

times for the 1-thread and 2-thread write/read operations are shown in Table 5.5. As

we had postulated, the single-operating-system-thread run times were longer. The

average for 1-thread operations was 0.610 seconds in duration, while the 2-thread

operations needed only 0.387 seconds. This simple experiment tends to support our

belief that the single-threaded approach to OpenCL buffer movement operations was

a performance issue.

Before we leave the topic of 1-GPU and 2-GPU image processing, we note that the

IMGHUGE image, which is extremely large at approximately 1.45GB, was processed

by the 2-GPU versions of the filter applications and not by the 1-GPU versions. The

1-GPU versions failed with OpenCL error -4, defined by the OpenCL header as:

CL_MEM_OBJECT_ALLOCATION_FAILURE

Plainly stated, the memory allocation on the single GPU failed due to lack of global

memory.

5.1.5.3 Summary of Results

Let us now return to the five potential causes that we previously noted for the un-

expected multiple-GPU performance. The causes are re-listed here along with our

thoughts and conclusions about the validity of each cause.

63



1. The OpenCL multiple-GPU operations have generally poor performance.

This is not true; OpenCL multiple-GPU applications have been shown to have

good performance. We listed digital coin mining as a valid example of good

OpenCL performance with multiple-GPUs [54].

2. The image being used for filter testing was too small.

This was basically true for the smallish FIELD image. The larger images did

show the performance benefit of using multiple-GPUs with a computationally-

intense filter, such as the median 5× 5 filter.

3. The Sobel operator was not computationally intense enough for multi-GPU use.

With our DEFG implementation of Sobel operator for multiple GPUs, this was

true.

4. The DEFG approach to multi-GPU kernel execution on the GPU performs

poorly.

Our experiments showed that the DEFG approach to multiple-GPU kernel ex-

ecution did not perform poorly. Comparing the MEDIAN5 and MEDIAN5M

kernel execution times showed a drop from 45 ms to 25 ms. This was a speedup

of 1.8.

5. The DEFG approach to multi-GPU buffer movement to and from the GPU per-

forms poorly.

Unfortunately, our experiments did show that the DEFG approach to multiple-

GPU buffer management did not perform as well as it theoretically could have.

We saw increases in run-times for multiple-GPU buffer movements and we at-

tributed this to the DEFG run-time use of a single operating system thread.

The separate experiment we ran with pthreads tended to confirm that a multi-

threaded approach could be faster.

64



Our experiments have shown that the multiple-GPU support can be useful when

used with workloads that are computationally intense enough to offset the added

overhead of the increased multiple-GPU buffer transfer times. It is conceivable that

the next major version of DEFG will support pthread-style processing, when multiple

GPUs are used.

5.2 Application: Breadth-First Search

5.2.1 Problem Definition and Significance

Breadth-first search is a well-studied graph-theoretic problem, with practical appli-

cation in shortest path analysis of social networks, in Internet packet routing, in the

World Wide Web, and in many other areas [16]. Numerous breadth-first search (BFS)

algorithms have been implemented on GPUs, with Harish and Narayanan providing

one of the first published GPU implementations [38]. The breadth-first search appli-

cation discussed in Chapter III is based on this Harish work and it will be used in

this section as a comparison basis for our new BFS application.

More recently, Merrill et al. have described an interesting method for managing

the intermediate data structures needed in BFS by using prefix sum to avoid locking

and serialization of data structure items [59]. Doing GPU-based graph processing with

large very irregular (LVI) graphs can be challenging, because of the high variation

in vertex degree and the sheer volume of the vertex and edge data structures. The

storage consumed by a LVI graph’s data structures may exceed the memory capacity

of a single GPU. The specific problem being addressed here is the implementation of

BFS with multiple-GPU support, specifically designed to process LVI graphs, using

OpenCL and DEFG. The intent is that DEFG and its design patterns will provide

the necessary mechanisms needed to manage the flows of data between the GPUs;

by using this support, the GPU application developer can focus on the application’s

algorithms and processing.

65



5.2.2 Related Work

There are numerous implementations of BFS on GPUs, utilizing a variety of ap-

proaches and algorithms. Since 2007, the performance of these BFS algorithms has

improved, sometimes by a speedup of up to 15 [42] . Harish and Narayanan provide

one of the first published GPU implementations using NVIDIA’s CUDA [38]. This

work provides basic GPU-usable algorithms for implementing breadth-first search,

single source shortest path, and all pairs shortest path; the performance results ob-

tained are often used as a baseline for judging the performance of improved GPU

algorithms. The Harish breadth-first search algorithm processes search nodes in par-

allel, and is level-synchronous. The algorithm consists of two major segments and,

in their implementation, each of these segments becomes a CUDA kernel. Using the

two separate kernels provides an automatic trialization barrier, thereby enforcing the

required level synchronization. Harish references the previous work by Bader and

Madduri as part of the basis for their work.

The Bader and Madduri work covers BFS on the Cray MTA-2 [12]. The Cray

MTA-2 architecture, with its ample global shared memory, is thread-oriented and

has very fast context switch times between threads, making it somewhat similar to

the GPU architectural model. These characteristics allow the MTA-2 to not depend

upon memory caching, but instead, much like GPUs, to switch to a different thread

when memory stalls occur. This architectural similarity makes the algorithm pro-

vided by Bader a reasonable starting point for GPU-based BFS processing. The

level-synchronized BFS algorithm published by Bader uses the zero-overhead syn-

chronization provided by the MTA-2.

Whereas the Bader work and the Harish work are aimed at getting results within

particular environments, Dehne and Yogaratnam provide an overview of the advanced

programming techniques, such as packing multiple variables values into one 32-bit

integer, that can be used with both CUDA and OpenCL to achieve better performance

66



[26]. They start with the basic PRAM models of parallel computation and present

guidelines on how to adapt these models for use on GPUs. Special attention is

given to the difficulties encountered in the GPU processing of highly irregular data

access patterns. These difficulties include coalescing global memory accesses, dealing

with concurrent write memory accesses, SIMT thread execution (instruction path

divergence) and thread synchronization.

In opposition to the Harish approach, Luo, et al. [55] suggest hierarchical queue

management and hierarchical kernel arrangement approaches, which may provide

improved performance. The suggested hierarchical queue management approach fa-

cilitates having many threads adding to the BFS queue by breaking the queue up into

independent segments. Hierarchical kernel management avoids some synchronization

at the top kernel level by using the GPU barriers and fine-grained synchronization

operators at certain levels. This work deals mainly with optimized locking and syn-

chronization issues and does not address the GPU workload imbalances, covered by

Hong, et al. [42].

Hong, et al. cover accelerating the performance of BFS given the specific con-

straints of the GPU environment. This work notes the poor performance of the

earlier PRAM-like GPU implementations was largely due to GPU thread load imbal-

ances. Load imbalance occurs when the work to be done is allocated to the threads in

a warp or work-group8 improperly, and some threads complete their work and remain

idle while other threads continue to work in the same warp or work-group. The solu-

tion proposed by Hong involves dividing the GPU code in SISD-like and SIMD-like

portions and assigning virtual warps to the SISD portions. Virtual warps are artificial

groupings of threads that allow the software to better manage the warps for certain

processing steps. Hong, et al. make it clear that improved GPU performance can be

obtained by introducing non-standard programming technique, like virtual warps, to

8warp is a CUDA term, work-group is a OpenCL term, they both refer to the group of threads
being executed together under a single instruction counter, SIMD/SIMT style.

67



the GPU programming environment.

Dinneen, et al. [27] provide a run-time performance comparison between OpenCL

and CUDA, and talk about using OpenCL. In addition, they compare the performance

of synchronization at the kernel level with fine-grained, atomic synchronization at the

level of individual data items. Their results show that OpenCL and CUDA, over their

tests, have similar run-time performance, to within 2% of each other. The results of

their synchronization comparisons show that different input graphs, depending on

size and density, benefit from each approach. No general preference for OpenCL or

CUDA is identified.

Merrill, et al. demonstrate a breadth-first search parallelization, which uses prefix

sum for buffer management, and achieves an asymptotically optimal O(|N | + |E|)

work complexity [59]. None of these previously described BFS works achieved this

optimum level of work complexity. The Merrill approach performs synchronous, level-

by-level traversal of the graph from the starting vertex. This BFS method uses the

expansion of the vertex frontier by traversing the associated edges and then pruning

the frontier to contain only unmarked vertices. As the marked vertices are pruned,

potential duplicate vertices are also removed. Merrill refers to these two phases as

“neighbor expansion” and “status-lookup and filtering”, respectively. Prefix sum is

used to manage shared, updated buffers in a way that avoids the use of serialization

and locking; Merrill refers to this technique as cooperative allocation. Here, we quote,

“Given a list of allocation requirements for each thread, prefix sum computes the

offsets where each thread should start writing its output elements.”[59] Of particular

interest to our work is the use of prefix sum in the management of shared buffers.

These buffers are shared between GPU threads and between different GPUs. In this

approach, the virtual pointers, denoting the edges in the graph, are passed between

GPUs as the graph is traversed. In the next section, we take a deeper look at buffer

allocation using prefix sum.

68



5.2.2.1 Buffer Allocation Using Prefix Sum

The parallelized allocation of shared buffer space using prefix sum provides a buffer

management technique that does not require the use of serialization and atomic lock-

ing. Figure 5.7 provides an example of allocating buffer space based on prefix sum.

In this example, threads t1, t2, t3, and t4 need to put values into the output results

buffer. The threads need to allocate 3, 2, 0, and 1 items, respectively. The prefix sum

computes the sum of the preceding items for each thread, which is the offset to the

beginning of each thread’s area. The color coding matches the requirement for each

thread with its associated area in the buffer. For example, thread t2, marked in green,

requires space for two in the buffer, and the two items are allocated at offsets 3 and 4.

This approach gets around the bottleneck that often occurs on GPUs with allocating

space in a shared buffer or queue – the bottleneck is avoided since no serialization or

atomic operations are needed. In our work, this approach will be used to create an

OpenCL version of BFS, which supports multiple GPU devices. In particular, it will

be used to manage the edge virtual pointers that need to be passed between GPUs

as the graph is traversed.

Figure 5.7: Prefix Sum based Buffer Allocation

69



5.2.2.2 Identification of Graph Repositories

The testing of graph algorithms with large very irregular graphs requires test data.

One source of such test data is well known repositories of real-world data. These

repositories’ graphs are based on actual data from areas such as social networking,

communications networks, and geographical mapping; these graphs are not artificially

generated test data. Such repositories include:

1. Stanford Network Analysis Package (SNAP) [88]

This package of applications supplies graph datasets from 14 areas including

social networks, communications networks, and citation networks. Hong, et

al. made use of the repository’s soc-LiveJournal1 9 dataset in their 2011 arti-

cle on BFS processing with the Cray MTA-2 [42]. It has 4,847,571 nodes and

68,993,773 edges. Other SNAP datasets/graphs are even larger. The meme-

tracker9 has 96 million nodes and 418 million links(edges). The social network,

directed graph soc-LiveJournal1 is used in the BFS experiments described be-

low.

2. Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)

[20] The repository provided by DIMACS, as part of the 9th DIMACS Imple-

mentation Challenge - Shortest Paths, contains 12 USA road networks. Each

network (a network being a graph with additional values attached to nodes or

edges) is available in two forms: one form gives the distance on each edge and

the other gives the transit time. The networks vary in size from the New York

City network with 246,346 nodes and 733,846 edges to the Full USA network

with 23,947,347 nodes and 58,333,344 edges. Harish and Narayanan [38] use

graphs from this repository in their work on All Points Shortest Path.

9We denote graph names, OpenCL kernel names, source code variable names, and similar objects
in italics.

70



3. University of Florida Sparse Matrix Collection [25, 24]

This collection is maintained at the University of Florida and contains sparse

matrices that arise in real applications. The collection is used by the numerical

linear algebra community for the evaluation of sparse matrix algorithms.

5.2.3 Application Software Design

The DEFG-based breadth-first search application from Chapter III, based on the

breadth-first search benchmark from OpenDwarfs [31], was designed to work with a

single GPU device. We refer to this application as BFS. In order to utilize more than

one GPU device, we modified this existing application’s kernels, introduced additional

kernels, and enhanced the application’s DEFG code. This new application has the

moniker BFSDP2GPU. Our basic design approach was to continue using the original

BFS application’s Harish techniques and enhance them to be utilized over two GPUs.

This two-GPU execution required that shared buffers, containing the edges on BFS

frontier, be moved between the GPUs. These buffers were shared between GPU

threads, as well as, between GPUs. We used the prefix scan approach, as previously

described, to manage these shared buffers.

5.2.3.1 The BFS Single-GPU Application

We first describe the processing done in the basic BFS application. The BFS applica-

tion’s DEFG code and kernel code are listed in the Appendix, Section B.4. Here, we

will show only significant code snippets. Figure 5.8 shows lines 25 through 41 of the

BFS application’s main processing loop. Line 26 executed kernel1 and line 35 exe-

cuted kernel2. The STOP variable was used to control the loop; the loop was exited

when the frontier emptied, wherein the second kernel did not update the STOP value

to 1. This loop utilized the two kernels to move through the tree, which was held

in the graph nodes and graph edges buffers, and to update the breadth-first search

71



25. loop

26. execute part1 kernel1 ( graph_nodes(in)

27. graph_edges(in)

28. graph_mask(in)

29. updating_graph_mask(inout)

30. graph_visited(in)

31. cost(inout)

32. NODE_CNT(in)

33. )

34. set STOP (0)

35. execute part2 kernel2 ( graph_mask(inout)

36. updating_graph_mask(inout)

37. graph_visited(inout)

38. STOP(inout)

39. NODE_CNT(in)

40. )

41. while STOP eq 1

Figure 5.8: BFS Application’s DEFG Loop

frontier, which was held in the graph mask buffer.

Figures 5.9 and 5.10 list the kernels used. They are taken, with only cosmetic

changes, from the OpenDwarfs Benchmark.10 The first kernel was given a node to

process and if the node had a g graph mask non-zero value, meaning the node was

on the current frontier, the node’s edges were processed. If the node pointed to by

an edge had a zero g graph visited value, the node was put on the new frontier and

the updated cost was carried forward. The second kernel served two purposes: it

copied the new frontier, stored in g updating graph mask, to the frontier, stored in

g graph mask, and it set the g over variable, which maps to the STOP variable in the

DEFG code, to 1. Setting this variable to 1 caused the loop to be repeated. These

two kernels, along with the associated DEFG code, performed the breadth-first search

starting with a node preset in the frontier.

5.2.3.2 The BFSDP2GPU Two-GPU Application

Enhancing this approach to use two GPUs entailed several new operations. The graph

was shared between the GPUs, and the GPUs had to actively exchange the lists of

the nodes on the frontier.

10OpenDwarfs Benchmark: Copyright July 29, 2011 by Virginia Polytechnic Institute and State
University All rights reserved.

72



01. __kernel void kernel1(__global const Node* g_graph_nodes,

02. __global int* g_graph_edges,

03. __global int* g_graph_mask,

04. __global int* g_updating_graph_mask,

05. __global int* g_graph_visited,

06. __global int* g_cost,

07. int no_of_nodes)

08. {

09. unsigned int tid = get_global_id(0);

10. if(tid < no_of_nodes && g_graph_mask[tid] != 0)

11. {

12. g_graph_mask[tid] = 0;

13. int max = (g_graph_nodes[tid].no_of_edges + g_graph_nodes[tid].starting);

14. for(int i = g_graph_nodes[tid].starting; i < max; i++)

15. {

16. int id = g_graph_edges[i];

17. if(!g_graph_visited[id])

18. {

19. g_cost[id] = g_cost[tid] + 1;

20. g_updating_graph_mask[id] = 1;

21. }

22. }

23. }

24.}

Figure 5.9: BFS Application’s kernel1

01. __kernel void kernel2(__global int* g_graph_mask,

02. __global int* g_updating_graph_mask,

03. __global int* g_graph_visited,

04. __global int* g_over,

05. int no_of_nodes)

06. {

07. unsigned int tid = get_global_id(0);

08. if(tid < no_of_nodes && g_updating_graph_mask[tid] == 1)

09. {

10. g_graph_mask[tid] = 1;

11. g_graph_visited[tid] = 1;

12. *g_over = 1;

13. g_updating_graph_mask[tid] = 0;

14. }

15. }

Figure 5.10: BFS Application’s kernel2

In order to support 2-GPU graphics operations, we provided callable CPU C++

functions to partition the graph into two data structures, with one structure for each

GPU, and other functions to reassemble the final cost buffer from the partitions.

The graph was first loaded by the init input() function and then the ArrayParti-

tion2GPU2() function was called to partition the graph. ArrayPartition2GPU2()

reformatted the graph nodes buffer and its related buffers; this step involved renum-

bering the nodes and storing buffer location information in the DEFG GLOB C++

73



structure. The DEFG GLOB structure was used internally by DEFG to manage the

presentation of each buffer to the GPUs. For the sake of brevity, we will limit our-

selves to showing only highly significant code segments and omit segments of lesser

importance.

We note that DEFG did not perform dynamic workload balancing; the alloca-

tion of work given to the GPUs, and GPU threads, was determined entirely by the

DEFG application implementation. Our experience has been that server nodes with

multiple GPU cards were often configured with matching pairs of GPU cards. For

this reason, we considered it sufficient to have the application split the workload ap-

proximately into equal parts. Our graph application gave half of the nodes to each

GPU. When this graph partitioning was performed by the ArrayPartition2GPU2()

function, no attempt was made to group the nodes in some manner to minimize the

cross-GPU communications. The additional work to optimize the graph traversal

could have meant unacceptable resource usage within this preprocessing step. This

graph partitioning approach was similar to that used in the Merrill work [59].

The DEFG use of more than a single GPU is engaged by replacing the execute

statements with the multi exec statements and changing the declare gpu statement

to select multiple GPUs. Once these changes were in place, DEFG would automat-

ically assign the work to the selected GPUs. Of course, the DEFG application and

kernels must have been designed to function with multiple GPUs. In the case of

the previously-described image filtering applications, the use of more than a single

GPU required very little code enhancement. However, for this breadth-first search

application, the DEFG code needed to be significantly enhanced to dynamically share

the BFS frontier between GPUs. We note that the added complexity was not in the

management of the additional GPUs within OpenCL or in the marshaling of buffers

to the correct GPU; instead, the additional complexity was rooted in the allocation

and population of the shared buffers. We used the DEFG Prefix-Allocation design

74



pattern to manage this buffer sharing.

Our original BFS application required two kernels: kernel1 and kernel2. The new

BFSDP2GPU application required six kernels. The BFS kernel1 was replaced by

five kernels: bermanPrefixSumP1, bermanPrefixSumP2b, getCellValue, kernel1a2, and

kernel1b. The bermanPrefixSumP1, bermanPrefixSumP2b, and getCellValue kernels

were provided by the DEFG Prefix-Allocation design pattern. The kernel2 kernel was

retained from the original BFS application. The remaining two kernels, kernel1a2,

and kernel1b, were new and unique to this application.

So as to perform the prefix sum processing, the bermanPrefixSumP1 kernel was

executed once and then the bermanPrefixSumP2b was executed log2(buffer size)

times. These kernels were based on the work by Berman and Paul [14] and have

time complexity of O(n log n). The getCellValue kernel was used to quickly obtain

the GPU-specific, run-time length of the shared buffers.11 In an effort to achieve im-

proved performance, we considered using other prefix sum algorithms, besides Berman

and Paul. The prefix sum algorithm described in Harris, et al. [40] achieved time com-

plexity of O(n). However the Harris, and other reviewed algorithms, had a power-of-2

buffer length requirement, which was not acceptable here as the sizes of the buffers

to be managed vary at run time. We considered extending the buffers, at run time,

to a power-of-2 size and using a Harris-like approach. Ultimately, we decided against

this buffer-expansion approach, due to the performance implications; the size of the

managed buffers can be quite large. The size exceeded 9 million items in our test

graphs.

With the allocation of the shared buffers provided by the kernels described above,

the kernel1a2 and kernel1b kernels then provided the functionality of the original

kernel1. Population of the buffers to be moved and shared was done by kernel1a2.

After kernel1a2 completed and the cross-GPU data movements occurred, kernel1b

11This total buffer size information was generated as a side effect of the prefix sum operations.

75



did the basic breadth-first search processing of the original kernel1 kernel. After

these steps were completed, the original kernel2 was executed.

The kernel1a2 kernel source code is shown in Figure 5.11. As stated above, its

primary purpose was to traverse the frontier for each GPU and place the active edges

and costs into their assigned location in the shared g frontier and g payload buffers.

The g payload buffer contained the accumulated BFS tree traversal costs. We note

in passing that Harish-based approach is not a particularly good high-performance

GPU software design, as this kernel may induce GPU hardware thread divergence

when the number of edges per thread is highly varied; each graph node is processed

by one, and only one, GPU thread. A node with a large number of edges can be

processed much more slowly than a node with a small number of edges. Nonetheless,

we felt that the Harish approach was sufficient to test our prefix sum-based DEFG

Prefix-Allocation design pattern.

The original kernel1 was given a node to process and if the node had a g graph mask

non-zero value, then the node’s edges were processed. In the 2-GPU version, this work

was done by kernel1b, which is shown in Figure 5.12. Note that some lines have been

omitted from the figure; these omitted lines are very similar to lines 13 to 26, except

that the shared buffers from the other GPU was processed. This kernel was given

two sets of buffers, one from each GPU, and it scanned these buffers, processing only

the edges for the currently-running GPU.

We will now discuss the BFSDP2GPU application’s DEFG code. Due to the

code length, we will describe it as DEFG pseudo code; we have included only a few

DEFG statements in full, those being the statements with a specialized syntax or

purpose. Most of the DEFG statements are presented in a less verbose, minimized

form. The BFSDP2GPU pseudo code is shown in Figure 5.13. An ellipsis was used to

indicate omitted statements and parameters. The references to minor scalar variables

have been omitted. However, due to their key functions, we showed the important

76



01. __kernel void kernel1a2(__global const Node* g_graph_nodes,

02. __global int* g_graph_edges,

03. __global int* g_graph_mask,

04. __global int* g_graph_offset,

05. __global int* g_cost,

06. __global int* g_frontier,

07. __global int* g_payload,

08. int no_of_nodes)

09. {

10. unsigned int tid = get_global_id(0);

11. if(tid < no_of_nodes && g_graph_mask[tid] != 0) // in range with edges

12. {

13. g_graph_mask[tid] = 0;

14. if (g_graph_nodes[tid].no_of_edges > 0)

15. {

16. int cost = g_cost[tid];

17. int max = (g_graph_nodes[tid].no_of_edges + g_graph_nodes[tid].starting);

18. int index = g_graph_offset[tid];

19. for (int i = g_graph_nodes[tid].starting; i < max; i++)

20. {

21. int id = g_graph_edges[i];

22. g_frontier[index] = id;

23. g_payload[index] = cost;

24. index++;

25. }

26. }

27. }

28. }

Figure 5.11: BFSDP2GPU Application’s kernel1a2

01. __kernel void kernel1b(

02. __global int* g_frontier0,

03. __global int* g_payload0,

04. int list_size0,

05. __global int* g_frontier1,

06. __global int* g_payload1,

07. int list_size1,

08. __global int* g_updating_graph_mask,

09. __global int* g_graph_visited,

10. __global int* g_cost,

11. int gpu_id)

12. {

13. int index = get_global_id(0);

14. if (index < list_size0)

15. {

15. int id = g_frontier0[index];

16. if (MAP_DEVICE(id) == gpu_id)

17. {

19. int nid = MAP_NODE(id);

20. if(!g_graph_visited[nid])

21. {

22. g_cost[nid] = g_payload0[index] + 1;

23. g_updating_graph_mask[nid] = 1;

24. }

25. }

26. }

-- similar if stmt code for list_size1, g_frontier1, etc. ommited

38. }

Figure 5.12: BFSDP2GPU Application’s kernel1b

77



references to the KCNT and STOP variables.

This code shows the C++ functions and OpenCL kernels being utilized. Lines 11

and 12 contain the calls that obtained the input graph and performed its partitioning.

Likewise, calls used to merge the cost array and output the final node-by-node costs

are in lines 27 and 28. Lines 14 and 26 mark the boundaries of the “outer” loop. Line

16 shows the “inner” loop execution of the bermanPrefixSumP2b kernel having been

done KCNT times. The bermanPrefixSumP1 and bermanPrefixSumP2b kernels were

used at the start of each “outer” loop iteration to establish the shared buffer offsets

for each node. At lines 18 through 20, the getCellValue kernel was used to obtain the

size of the shared buffer for each GPU. Note that the amount of shared buffer space

utilized by each GPU was likely different.

The “@” <GPU-ID> notation, shown on lines 19 and 20, is used to indicate which

buffer is presented to a given GPU. The first GPU selected is assigned an ID of 0,

and the ID is incremented for each additional GPU in use. This specialized technique

is used when the default DEFG approach to multiple-CPU buffer management is

not applicable. The default DEFG approach of simply splitting the buffer is not

applicable because the size of the shared areas used on each GPU is variable at run

time and each shared buffer list must be named uniquely. Although this “@” <GPU-

ID> notation is not elegant, we feel it is within the design goals of DEFG, as it is a

declaration of what to do and not coding for how to do it.

The broadcast statements on line 22 caused the listed buffers to be made available

to the other GPU. Due to OpenCL limits, these DEFG broadcast statements merely

cause the named buffers to be copied to the CPU’s memory and made available,

from there, to the other GPU(s). As will be covered in our run-time performance

discussion, this approach to broadcasting data to the other GPU(s), unfortunately,

brings about somewhat unimpressive performance.

Lines 21 and 23 show the execution of the two kernels, which was derived from the

78



01. declare application bfsdp2gpu

02. declare integer NODE_CNT (0) ...

03. declare gpu gpugrp ( all )

04. declare kernel bermanPrefixSumP1 bfsdp_kernelv3 ( [[ 1D,NODE_CNTt2 ]] )

05. kernel bermanPrefixSumP2b bfsdp_kernelv3 ( [[ 1D,NODE_CNTt2 ]] )

06. kernel getCellValue bfsdp_kernelv3 ( [[ 1D,1 ]] )

07. kernel kernel1a2 bfsdp_kernelv3 ( [[ 1D,NODE_CNT ]] )

08. kernel kernel1b bfsdp_kernelv3( [[ 1D,EDGE_CNT ]] )

09. kernel kernel2 bfsdp_kernelv3 ( [[ 1D,NODE_CNT ]] )

10. declare integer buffer graph_edges (EDGE_CNT ) nonpartable ...

11. call init_input (graph_nodes(out) ... )

12. call ArrayPartition2GPU2( graph_nodes (inout) ... )

13. // set misc. control variable calculations, eg. KCNT

14. loop

15. multi_exec run2 bermanPrefixSumP1( offset (out) ... )

16. sequence KCNT times

17. multi_exec run2 bermanPrefixSumP2b (offset2 (inout) ... )

18. multi_exec run3 getCellValue( offset2 (in)

19. NODE_CNT0 @0 (in) NODE_CNT1 @1 (in)

20. listused0 @0 (out) listused1 @1 (out) )

21. multi_exec s2 kernel1a2( graph_nodes(in) ... )

22. broadcast (frontier0 @0) ... broadcast (payload1 @1)

23. multi_exec s3 kernel1b(frontier0(in) ... )

24. set STOP (0)

25. multi_exec s4 kernel2 ( graph_nodes(in) ... STOP ... )

26. while STOP eq 1

27. call MergeCost2GPU2(cost(inout) ... )

28. call disp_output (cost(in) ...)

29. end

Figure 5.13: BFSDP2GPU DEFG Pseudo Code

original BFS kernel1. Lines 14 and 26 utilized the same loop management approach

as used in the original BFS DEFG code. The kernel executed on line 25 was the same

kernel2 as used in BFS.

5.2.4 Approach to Research

The development of our DEFG-based BFSDP2GPU application was done with two

main research aims in mind: to further show the viability of DEFG and to demon-

strate a two-GPU, breadth-first search application that utilizes prefix sum for shared

buffer management. In order to test our new BFS application within these aims,

we compared the results and run-time performance of our original BFS application

against our new two-GPU BFS application. We used selected graphs from the SNAP

repository, and Rodinia/OpenDwarfs Benchmark, in these comparisons [85, 88]. Our

new BFSDP2GPU application produced correct results. We note that we compared

79



Table 5.6: Rodinia Graph Characteristics

Graph Nodes Edges

g65536 65,536 393,216
g1M 1,000,000 6,001,836
g2M 2,000,000 11,999,346
g3M 3,000,000 18,003,170
g4M 4,000,000 23,999,338
g5M 5,000,000 29,995,814

breadth-first search results from the existing BFS application, over a subset of the

Rodinia/OpenDwarfs graphs, with our new application. The results matched ex-

actly.12 Unfortunately, the performance of our new BFSDP2GPU application was

not impressive relative to that of the BFS application.

5.2.5 Experimental Results

We first explore the BFSDP2GPU run-time performance using graphs from the Ro-

dinia Benchmark. We then run this application with two graphs from the SNAP

Package. Seeing similar run-time results from both sets of graphs, we then perform

an analysis to find the explanations for the performance we observed.

5.2.5.1 Run-Time Performance Results from Rodinia Graph Data

These tests were run comparing the BFS and BFSDP2GPU run-time performance,

using a set of the Rodinia BFS Benchmark graphs. The benchmark is provided with

a number of generated test graphs and we used the included tool, graphgenr.cpp, to

generate additional large graphs. The 65,536 node graph, g65536 was included with

the benchmark and the larger graphs were generated with the Rodinia tool. The

graphs are listed Table 5.6; it contains the name we gave each graph, and the number

of nodes and edges. All of these are directed graphs.

Table 5.7 shows the average run times of three BFSDP2GPU runs for each of the

12The BFS application results had been previously compared with the original BFS results from
the OpenDwarfs OpenCL software.

80



Table 5.7: Run Times of BFS Versus BFSDP2GPU, in Seconds

Graph BFS BFSDP2GPU Slowdown
Application Application Factor

g65536 0.008 0.140 17.5
g1M 0.074 0.762 10.3
g2M 0.158 2.345 14.8
g3M 0.276 1.650 6.0
g4M 0.377 2.490 6.6
g5M 0.505 4.089 8.1

Figure 5.14: BFS Versus BFSDP2GPU Run Times with Rodinia Graphs

graphs. As an example, the 0.008 in the first data row and second column means

that the BFS application processed the g65536 graph in an average of 0.008 seconds.

The BFS processing was started with the graph root set to first graph node. These

same run-time results are presented in bar-chart form in Figure 5.14. Given that our

intention was for BFSDP2GPU to be a high-performance application, these results

were disappointing. Our new application’s run times ranged between 6 and 17.5 times

those of the existing DEFG BFS application.

81



Table 5.8: SNAP graph characteristics

Graph Details Nodes Edges Description

soc-Slashdot0811 77,360 905,468 Slashdot social network from
November 2008

soc-LiveJoural1 4,847,571 68,993,773 LiveJournal online social network

Table 5.9: Run Times from SNAP Graphs, BFS Versus BFSDP2GPU, in Seconds.

Graph BFS BFSDP2GPU Slowdown
Application Application Factor

soc-Slashdot0811 0.011 0.075 7.1
soc-LiveJoural1 0.292 3.571 12.2

5.2.5.2 Run-Time Results from Two SNAP Graphs

We performed a second set of performance tests, using the SNAP soc-LiveJournal1

and soc-Slashdot0811 graphs, to help determine if the application’s slower then ex-

pected performance with the Rodinia data was perhaps due to some trait of the data.

Two SNAP graphs were chosen because of their vastly different sizes and sources.

Table 5.8 provides a detailed description of these directed graphs. We considered the

second graph, soc-LiveJoural, to be a good example of a VLI graph.

In Table 5.9, we observe similar poor performance as was observed with the Ro-

dinia graphs. Rather than further note the performance of our new application with

additional run-time testing results, we turn our attention to the reasons for the ob-

served performance outcomes.

5.2.5.3 Run-Time Performance Analysis

The aforementioned Merrill article demonstrated good breadth-first search perfor-

mance with multiple GPUs, using NVIDIA’s CUDA [59]. Our decision to include

the prefix sum-based buffer management in DEFG, as a design pattern, was largely

based on the good performance shown by Merrill. Given the performance we saw

with BFSDP2GPU, our task became finding explanations for the large performance

gap between Merrill’s results and ours.

82



After executing numerous additional performance tests and reviewing the designs

of DEFG and the BFSDP2GPU application, we outline four potential causes for the

unimpressive run-time results of our application: (1) OpenCL’s lack of direct GPU-

to-GPU communications; (2) DEFG’s lack of support for variable-length buffers; (3)

the mixture of sparse-array and list-based data structures in the application; and, (4)

the application’s GPU work allocation method. We now explore each of these.

5.2.5.4 OpenCL-Provided GPU-to-GPU Communications Limitations

The DEFG broadcast statement is used to provide the GPU-to-GPU communications

capability. Since OpenCL does not provide for actual GPU-to-GPU communications,

the DEFG broadcast causes two major OpenCL API calls to be generated for each

transfer. The first API call, clEnqueueWriteBuffer(), moves the buffer to the CPU

and the second, clEnqueueReadBuffer(), brings the buffer to the requesting GPU.

The GPU-to-GPU communications capability provided by NVIDIA’s CUDA uses

the PCIe hardware bus for direct GPU-to-GPU communications and is presented as

having attractive transfer rates [68]. CUDA tests run on the Hydra server showed

CUDA inter-card transfer rates of 6.05GB/second. With 6GB as an actual baseline

figure, we produced a DEFG-based OpenCL application, called DiagBR, to time the

movement of buffers between the two Hydra GPUs, without any kernel processing

involved. Our aim was to compare the CUDA and DEFG/OpenCL inter-card data

transfer speeds on Hydra. DiagBR produced a transfer rate of around 286MB/second.

The CUDA rate was approximately 21 times the OpenCL rate.

With this fact established, we turned on the BFSDP2GPU application’s DEFG

logging so as to profile the run time consumed by the two broadcast statement’s

OpenCL API calls. When the application was rerun with the g1M SNAP graph, we

found that a total of 0.590 seconds was used by the broadcasting. This is 76.6% of

the total run time of 0.771 seconds. We note that this total run-time value, obtained

83



with logging enabled, is slightly different than the 0.762 value shown in Table 5.7;

we attribute this difference to the run-time overhead added by the DEFG logging. It

is clear that the lack of an OpenCL-provided GPU-to-GPU direct communications

facility drastically impacts the application’s run-time performance. The lack of this

capability in OpenCL has a substantial performance impact on DEFG. This loss of

performance is not due to an error in DEFG; instead, it is due to the OpenCL lack

of direct GPU-to-GPU communications support.

5.2.5.5 DEFG Variable-Length Buffers

The performance numbers we have shown so far for BFSDP2GPU included a manual

step of tuning the size of the application’s broadcast-list buffers for each differently

sized input graph. With the g1M graph, this broadcast-list buffer size was manually

set to 2M elements; with the g6M graph it was set to 9M elements.

When a trial test run was done with a 9M size and the g1M graph, the average

run-time increased from 0.762 seconds to 2.634 seconds. This is a very noticeable

change and it indicates how sensitive this application is to the broadcast-list buffer

size. This DEFG performance issue can be handled, in the future, by enhancing DEFG

to be able to declare that a given scalar variable holds the current buffer transfer size

and using this variable’s value in the call to the OpenCL buffer movement functions.

We note that in our run-time tests, even these manually tuned transfer buffer sizes

overstate the buffer size, as they are sized for the largest lists used. Enhancing DEFG

to utilize the transfer size of the actual list would prevent the slowdowns associated

with this undesirable overstating of the volume of data to be transferred.

5.2.5.6 Data Structures and Threading Model

The data structure design and threading model used in this application have an im-

pact on its run-time performance. If we assume that the DEFG broadcast processing

84



took no time at all, then an optimistic estimate of the BFSDP2GPU processing time

for the g1M graph could be 24% of 0.762, or 0.183 seconds. The time for the BFS

application processing the same graph was 0.074 seconds. Clearly, the slow broadcast

performance does not, by itself, explain the entire performance issue.

In additional profiled executions, we measured that about 5% of the BFSDP2GPU

run time was spent doing the ArrayPartition2GPU2 () and MergeCost2GPU2 () pre-

processing and post-processing operations and another 3.5% was spent in the prefix

sum operation. If we subtract the pre-processing and post-processing 5%, and the

prefix sum processing of 3.5% from the 0.183 seconds (0.183 − (0.085 ∗ 0.762)), we

are then left with an execution time of about 0.118 seconds. This 0.118 second figure

is a crude estimate of the time needed to move the graph buffers to the GPUs, to

populate the frontier data and to perform the actual BFS processing. This crude

estimate exceeds the equivalent BFS run time of 0.074, by 0.044 seconds, nearly 60%.

Some aspect of the performance difference is not yet exposed.

Unfortunately, the Linux timers we could use on Hydra are accurate only to

milliseconds and many of the DEFG-logged times with this g1M graph dropped to the

1ms level, and below. This limitation severely affected our ability to further analyze

the performance differences. Nevertheless, in our opinion, the BFSDP2GPU use of

two different data structure types and the one-node-per-thread work management

model were not providing sufficiently good performance. The performance lost to

the lack of OpenCL GPU-to-GPU direct communications significantly overshadowed

other performance issues. However, the mixing of the dense-style array structure, for

the BFS frontier and cost array, with the list-style structure, for the shared lists, also

caused extra work to be done and, we suspect, a loss of performance. The use of the

classic Harish GPU threading model may also be suspect, in terms of performance,

because of the potential thread divergence issues, previously mentioned, and the

unfortunate characteristic that threads assigned to nodes not on the frontier have

85



very little valid work to perform.

5.2.6 BFSDP2GPU Goals and Run-Time Performance

These explanations, and views, bring us back to the Merrill article and our previously

established aims for this application and DEFG. The two main goals for BFSDP2GPU

were: (1) implement this reasonably complex application in DEFG, and (2) utilize the

DEFG Prefix-Allocation design pattern. We achieved both of these. In order to have

Prefix-Allocation be a general design pattern in DEFG, it must be able to be used in

an independent manner and not be highly integrated with a specific application or

a certain GPU threading model. The Merrill work used a very sophisticated GPU-

mapping approach, not the Harish GPU threading model. In hindsight, it appears

the high level of performance observed with the Merrill work, compared to the Harish

BFS approach, can only occur if the added prefix sum and marshaling overhead can be

offset by a decrease in the run time needed to do the actual BFS processing. This was

not the case with BFSDP2GPU. The performance of our BFSDP2GPU application

did not meet expectations; however, it helped show the range of applications DEFG

can handle and it helped us further understand the limits of OpenCL-based processing

with multiple GPUs.

5.3 Application: Sorting Roughly Sorted Data

5.3.1 Problem Definition and Significance

General comparison sorting has an O(n log n) optimal performance bound. This per-

formance level can be improved upon in specific cases; for example, when the sequence

to be sorted is already partially sorted. We refer to this sorting of partially sorted

data as roughly sorting. Formally, roughly sorting pertains to sorting nearly sorted

sequences. In this context, a roughly sorted sequence is k-sorted if no sequence el-

ement is more than k steps out of sequence. With the sequence k-sorted, Altman,

86



et al. show that this sequence can be sorted with an O(n log k) performance bound

[9, 10].

The sorting of sequences is a primitive operation in many algorithms and data ma-

nipulation operations including binary searching, closest pair determination, unique-

ness determination, identifying outliers, database acceleration, and data mining [22,

51, 41, 35]. Roughly sorted sequences can occur when a previously sorted sequence

is perturbed with relatively minor changes [10]. An example of a roughly sorted

sequence would be a list of all the cities in a region, sorted constantly by city popu-

lation, where population updates are performed very frequently. The population of

each city may change constantly, but it is unlikely that a city’s position in the sorted

list would significantly change in a very short interval of time.

We have developed GPU-based parallel roughly sorting in DEFG. The implemen-

tation uses the high-level algorithm outlined by Altman; it involves three distinct

phases. The first phase is the determination of the degree of disorder in the sequence,

that is determining the k value. The second phase is the partitioning of the input

sequence into fixed-length blocks, using the k value to size the blocks. In the third

phase, these blocks are individually sorted, in parallel. When all of these blocks are

sorted, the entire k-sorted sequence is sorted. The emphasis of this work is on phases

one and two. We use the comb sort [76] to satisfy phase three. With k values less

than 20013, our GPU-based rough sort showed impressive run-time results compared

to those of the standard CPU Quick Sort. Our rough sort shows increased perfor-

mance, when k is small relative to n because O(n log k) is substantially less than

O(n log n).

13The 200 value is an estimate. With some of the datasets we used this value was as high as 2000.

87



5.3.2 Related Work and GPU-based Sorts

Roughly sorting is an instance of an adaptive sorting algorithm. Estivill-Castro and

Wood provide a dated survey of Adaptive Sorting Algorithms [29]. Their work iden-

tifies a number of different measures of disorder. In a later work, Estivill-Castro

identify Dis and Max as the two most common measures of disorder used with adap-

tive sorting [19]. Dis is equivalent to the measure of k used here for roughly sorting.

The third phase of roughly sorting requires that sorting be performed on the indi-

vidual blocks of roughly sequenced data. This means a GPU-based sort is required.

Satish, et al. describe their CUDA-based radix and merge sorts where they claim a

2-4 times speedup over previous GPU-based sorts. They also claim it to be 23% faster

than even a highly optimized CPU sorting routine [79]. Harris, et al. [40] describe

the use of CUDA GPU-based prefix scan in radix-based parallel sorting and based

on the prefix scan work by Blelloch [15]. Merrill and Grimshaw provide an in-depth

summary of sorting on GPU architectures in his technical report [60].

As our work is OpenCL-based, and not CUDA-based, we could not directly use

the Satish-produced sorts. We decided not to use a radix-based sort due to the limits

associated with the format of the sort-key values and other issues [22]. The ubiquitous

Quick Sort is not usable here, as OpenCL 1.1 does not support recursive calls in kernel

code [22]. Therefore, for our work, we needed a different sort. We searched for a sort

that was an in-place sort and was not recursive, and chose the comb sort [62, 76, 97].

The comb sort was first designed by Dobosiewicz [18] in 1980 and was later redis-

covered by Lacey and Box in 1991 [76]. The Lacey article provides a good overview of

the comb sort. The comb sort is a variant of the bubble sort, but with much-improved

performance. The comb sort has outer and inner loops like the bubble sort; however,

instead of comparing adjacent values, the comparisons are between elements some

gap apart. The starting gap is set to the number of items to sort and at the start of

each sorting iteration gap is set to: gap/shrink. The shrink value is normally set to

88



1.3. Lacey discusses how the value of 1.3 is obtained [76]. The gap value, therefore,

drops with each iteration. The iterations stop when the gap value is 1 and the just-

completed iteration resulted in no comparison swaps. The comb sort is also used in

the GPU work by Nagao and Mori [62]. They use the comb sort in their language

analysis work for the same reasons we do: this sort has a sort-in-place design, avoids

the use of recursion, and provides good performance.

5.3.3 Application Software Design

In this section, we describe our roughly sorting applications. We produced two DEFG

implementations of roughly sorting; we call our single-GPU roughly sorting version

RSORT and the other version is RSORTM, our multiple-GPU implementation.

The Altman roughly sorting approach specifies the LR, RL, and DM steps [10].

The pseudo code for steps LR, RL, and DM is given in Figure 5.15. After these steps

are completed, a parallel sort is performed. We use the comb sort for this parallel

sorting step. Our implementation of the RSORT application requires the DEFG-

created code for the CPU-side, the GPU-based comb sort kernel and the kernels for

the LR, RL, and DM steps. In addition, a simple kernel is required to find the upper

limit on the DM -supplied distance measures. We call this additional step UB. In

total, five kernels are used by RSORT. The result of the DM step is an array of

distances; this array’s maximum value is the desired k value for the partially-sorted

data.

The kernels for the LR, left-to-right maximum, and RL, right-to-left minimum,

steps require parallel implementations. In a parallel-processing environment, these

cannot be written as common serial for loops. We have implemented them as OpenCL

kernels using parallel prefix scan. These two kernels are based on the Berman [14]

prefix scan approach, which was also used in the DEFG Prefix-Allocation design

pattern.

89



While describing this RSORT application, and unlike the previous DEFG appli-

cation descriptions, we show the complete source code. No code is omitted. This

tends to make the code figures larger, but it makes it possible to see how much can

be accomplished with less than a hundred lines of DEFG code and the associated ker-

nels. In addition, inclusion of the full source code provides solid examples of DEFG

code-insertion morsels.

Figure 5.16 shows the LRmax and RLmin kernels. The LRmax kernel computed

the running maximum, moving left to right and the second kernel computed the

running minimum, moving right to left. Both kernels functioned in a similar manner

and we will summarize only the inner workings of LRmax. Lines 29 through 38 of

procedure LR(α,B[1 . . . n]);
begin
B[1] := a1;
for i := 2 to n

if B[i− 1] < ai then B[i] := ai
else B[i] := B[i− 1]

end.

procedure RL(α,C[1 . . . n]);
begin
C[n] := an;
for i := n− 1 downto 1

if C[i+ 1] < ai then C[i] := ai
else C[i] := C[i− 1]

end.

procedure DM(B[1 . . . n], C[1 . . . n], D[1 . . . n]);
begin
i := n;
for j := n downto 1 do

while (j ≤ i) and (i > 0) and (C[i] ≤ B[j])
and ((j = 1) or (C[i] ≤ B[j − 1]) do

begin
D[i] := i− j;
i := i− 1;

end
end.

Figure 5.15: LR, RL, and DM Pseudo Code

90



01. __kernel void LRmax(__global int src[], __global int dst[], uint stride)

02. {

03. uint block = get_global_id(0);

04. uint size = get_global_size(0);

05. uint arnold = size - stride;

06. if (block >= arnold) return;

07. uint js = block + stride;

08. if (js >= size) return;

09. int src_j_item = src[block];

10. int src_js_item = src[js];

11. if (block < stride) { // copy already processed

12. dst[block] = src_j_item;

13. }

14. if (src_js_item < src_j_item) {

15. dst[js] = src_j_item;

16. } else {

17. dst[js] = src_js_item;

18. }

19. }

01. __kernel void RLmin(__global int src[], __global int dst[], uint stride)

02. {

03. uint block = get_global_id(0);

04. uint size = get_global_size(0);

05. if (block < stride) return;

06. int js = block - stride;

07. if (js < 0) return;

08. if (block >= (size - stride)) { // copy already processed

09. dst[block] = src[block];

10. }

11. if (src[js] > src[block]) {

12. dst[js] = src[block];

13. } else {

14. dst[js] = src[js];

15. }

16. }

Figure 5.16: LRmax and RLmin Kernels

the CPU-side DEFG code, in Figure 5.19, utilized this kernel. This DEFG CPU-side

code provided the src, dst, and stride parameter values to the kernels; the value of

stride began with one and was doubled on each successive iteration.

In Figure 5.16’s LRmax kernel, lines 3 through 10 setup the index values used to

access the src and dst arrays, obtained the values to be processed, and performed

boundary checking. The following lines, 11 through 18, copied the already-processed

values from the src to dst array and processed the current values. The RLmin kernel

worked in a similar manner, putting items in a decreasing sequence while it moved

right to left.

The DM and UB kernels are shown in Figure 5.17. The DM kernel used the

maximum and minimum arrays, produced by the previous two kernels, to establish

91



the distance that each value, to be sorted, was out of sequence. The for loop used in

the DM algorithm, shown in Figure 5.15, was replaced by the GPU execution of this

function at line 49 of Figure 5.19. The while loop in the DM algorithm was replaced

by the kernel’s for and if statements on lines 04 and 05.14 The second kernel in Figure

5.17 was straight-forward; its function was to determine if any value in the D array

was larger than the scalar value d. If any element was larger, the again value was set

to 1. The value of d, the radius in the DEFG code, was started at one and doubled

with each additional invocation. The purpose of kernel UB was to quickly establish

an upper bound on the maximum value in the D array.

Next, we discuss the DEFG program that was used to drive these kernels. Altman

describes the overall roughly sorting process in three phases and we will describe our

DEFG code in terms of these three phases. Our DEFG code is listed in two Figures

5.18 and 5.19. The DEFG declarations used by our implementation are shown in

Figure 5.18. We note that five kernels were declared in lines 14 through 18 and

that six equal-sized buffers were declared in lines 19 through 24. We also note that

14Algorithm DM is deceptively complex and converting it to an OpenCL kernel was interesting
and challenging.

01. __kernel void DM(__global int B[], __global int C[], __global int D[])

02. {

03. int i = get_global_id(0);

04. for (int j = i; j >= 0; j--) {

05. if ((j <=i) && (i>=0) && C[i]<=B[j] && ((j==0) || (C[i]>=B[j-1]))) {

06. D[i] = i-j;

07. break;

08. }

09. }

10. }

01. __kernel void UB( __global int D[], uint size, int d, __global uint *again)

02. {

03. if (*again == 1) return;

04. int i = get_global_id(0);

05. if ((D[i]) <= d) {

06. // good

07. } else {

08. *again = 1;

09. }

10. }

Figure 5.17: DM and UB Kernels

92



01. declare application RSort

02. declare integer stride (1)

03. integer size (64)

04. integer sizeDB (0)

05. integer genK (0)

06. integer bufSize (0)

07. integer radius (1)

08. integer groups (0)

09. integer again (0)

10. integer offset (0)

11. integer offset2 (0)

12. integer logSize (0)

13. declare gpu gpuone ( * )

14. declare kernel LRmax RSort_Kernels ( [[ 1D,size ]] )

15. kernel RLmin RSort_Kernels ( [[ 1D,size ]] )

16. kernel DM RSort_Kernels ( [[ 1D,size ]] )

17. kernel UB RSort_Kernels ( [[ 1D,size ]] )

18. kernel comb_sort RSort_Kernels ( [[ 1D,groups ]] )

19. declare integer buffer arrayS (bufSize)

20. integer buffer LR (bufSize)

21. integer buffer LRout (bufSize)

22. integer buffer RL (bufSize)

23. integer buffer RLout (bufSize)

24. integer buffer DMbuf (bufSize)

Figure 5.18: RSORT DEFG Declare Statements

the comb sort kernel was declared somewhat differently concerning the work-group

size. The work-group dimension, or width, is the number following the “1D,” within

the double brackets. The first four kernels had a work-group width of size and the

comb sort kernel had a work-group width of groups. The size variable contained the

number of items to be sorted and the groups variable contained the number of parallel

sorts to be done by the comb sort. Given a fixed number of items to sort, the larger

the value of groups, compared to size, the better this application performs, because a

larger number of parallel smaller sort processes complete in less time than a smaller

number of larger parallel sort processes. There was one GPU thread allocated to each

sort group and, hence, each comb sort instance.

We continue by describing the first-phase processing. The LRmax kernel was

driven by lines 29 through 38 of the DEFG code, shown in Figure 5.19. The kernel

was called once from line 30 to start the prefix-maximum processing and to move the

results to the LR array. The loop shown in lines 33 through 38 continued iterating

the kernel, with the stride being increased on each iteration. Looping was terminated

93



when the again value exceeded log 2 of the items to be sorted.

The purpose of line 36, containing the DEFG interchange statement, requires some

explanation. The LRmax kernel does not use atomic locking or synchronization. It

strictly read data from the LR array and wrote to the LRout array. The purpose of

the interchange statement was to perform a high-performance swap of the two arrays.

Lines 39 through 48 functioned similarly to lines 29 through 38, except the RLmin

kernel was used. The DM kernel was executed from line 49. The resulting DMbuf

array was processed by lines 50 to 54 to obtain an upper-bound radius value.

The second phase consisted of using the new radius value to determine the size

of the sorting blocks and to test various special conditions. These operations, imple-

mented with DEFG morsels, are shown in lines 55 through 57. With the groups value

having been set in line 57, the third processing phase could begin.

Phase three consisted of two calls to the comb sort kernel. This kernel was first

called on line 58 and then again on line 61. The code on lines 59 and 60 did offset the

array to be sorted by a radius value and lowered the groups value by one. This action

overlapped the previously-sorted data with new sort blocks and was done to re-sort

the previously sorted groups. This subtle step made it possible for out-of-sequence

items to be moved between the original sort groups.

Line 63 called the putMergeArray() function to write the sorted data to disk. The

call to the sync() function15 informed the DEFG optimizer to transfer the updated

arrayS array contents to the CPU and the DEFG code morsel on line 63 performed

the call to output the results to the sorted.txt file. This function was called from a

morsel, and not a DEFG call statement, because DEFG does not directly support

string literals. Strings are outside the proper domain of DEFG.

15The sync() function is made available in the defg loader.h header file.

94



25. code [[ char* arg = "16"; if (argc > 1) {arg = argv[1];} ]]

26. code [[ if (argc > 2) { size = (int) pow(2.0, (double) atoi(argv[2])); } ]]

27. code [[ getArray(arg, arrayS, size); bufSize = size; ]]

28. code [[ logSize = int(log(double(size))/log(2.0)); ]]

29. set stride (1) // start LR processing

30. execute LR1 LRmax (arrayS(in) LR(out) stride(in))

31. call times2(stride(*))

32. set again (1)

33. loop

34. execute LR2 LRmax (LR(inout) LRout(out) stride(in))

35. call times2(stride(*))

36. interchange(LR LRout)

37. code [[ again++; ]]

38. while again lt logSize

39. set stride (1) // start RL processing

40. execute RL1 RLmin (arrayS(in) RL(out) stride(in))

41. call times2(stride(*))

42. set again (1)

43. loop

44. execute RL2 RLmin (RL(in) RLout(out) stride(in))

45. call times2(stride(*))

46. interchange(RL RLout)

47. code [[ again++; ]]

48. while again lt logSize

49. execute DM1 DM (LR(in) RL(in) DMbuf(out)) // DM processing

50. loop // start UB processing

51. set again (0)

52. call times2(radius(*))

53. execute UB1 UB (DMbuf(in) size(in) radius(in) again(inout))

54. while again ne 0

55. code [[ radius *= 2; ]] // determine block sizes

56. code [[ if (radius > size) { radius = size; } ]]

57. code [[ groups = (int) ceil( ((double) size / (double) radius)); ]]

58. execute SORT1 comb_sort(arrayS(inout) radius(in) offset(in) groups(in))

59. code [[ offset2 = radius / 2; ]]

60. call dec(groups(*))

61. execute SORT2 comb_sort(arrayS(inout) radius(in) offset2(in) groups(in))

62. call sync (arrayS(in))

63. code [[ putMergeArray("sorted.txt", arrayS, size); ]]

64. end

Figure 5.19: RSORT DEFG Executable Statements

5.3.4 Experimental Results

5.3.4.1 Approach to Experimentation

In this section, we compare the RSORT and RSORTM run-time performance relative

to the performance of the ubiquitous CPU-based Linux Quick Sort. We used Quick

Sort as our sort run-time performance baseline. We considered several other options

for the baseline sort. The AMD Application SDK [1] includes a GPU sorting example,

but this is based on a radix-style sorting algorithm. This sort was rejected, because

we did not want to work around limits of radix sorting [22]. As noted in Section

95



5.3.2 on related work, most available GPU-based sorts are written to use CUDA and

not OpenCL. Therefore, we settled on using the ubiquitous Linux CPU-based Quick

Sort16 as our baseline sort. Quick Sort is a commonly used general-purpose sort and

we view it is a valid measurement “yardstick.”

We found it difficult to locate usable, real-world, roughly sorted data for our

performance testing. Our solution to this problem was to write a tool to artificially

create the needed sorting test cases. The tool was given the desired radius value

and the number of items to be generated; it then generated the requested data. The

numbers in the generated data were integers between one and number of desired items;

these numbers having been perturbed to achieve the requested radius. The resultant

data could either have one perturbation or have each segment of size radius+1 items

perturbed, depending on what was requested. A highly perturbed data set of 16 items

with a radius of 4 would contain:

5 4 3 2 1 10 9 8 7 6 15 14 13 12 11 16

We most often used test data that was highly perturbed, and noted when the

run-time performance test being discussed was based on minimally perturbed data.

The datasets, of test data, were named with the radius, which we called a “k value,”

and the size. For our tests with large numbers of items, the size was given as a power

of 2. We performed a number of different run-time tests. The datasets used had

either 223, 226, or 227 elements.

5.3.4.2 Single-GPU Performance

Single-GPU Experiment One

Table 5.10 shows the run-time comparison results from executing our RSORT appli-

cation against Quick Sort (QSORT). These were executed on Hydra and the numbers

16By this, we mean using the qsort() function from the Linux C/C++ run-time library.

96



Figure 5.20: Plot of Sort Run Times for 223 (8,388,608) Items

shown are the average seconds computed from three runs, performed for each combi-

nation of k value, perturbation, and sort type. For example, the literal “K:10” means

the performance tests for the corresponding table line were done with data generated

using the radius k value set to 10. In the column headings, “MaxP” denotes highly

perturbed test data and “OneP” denotes data with a single perturbation. “Qsort”

corresponds to Quick Sort and “Rsort” to our RSORT application. The data used

to generate these results was of size 223 or 8,388,608 items. A plot of these results is

shown in Figure 5.20.

97



Table 5.10: Run Times, in Seconds, for Sorting 223 (8,388,608) Items

Gen. K Qsort Rsort Qsort Rsort
Value MaxP MaxP OneP OneP

K:10 0.948 0.329 0.822 0.285
K:100 0.919 0.734 0.823 0.619
K:200 0.912 0.998 0.823 0.840
K:300 0.910 0.842 0.822 0.678
K:400 0.904 0.886 0.821 0.678
K:500 0.904 0.919 0.821 0.678
K:600 0.904 1.443 0.820 1.195
K:700 0.903 1.470 0.821 1.202
K:800 0.900 1.496 0.822 1.205
K:900 0.900 1.528 0.821 1.200
K:1000 0.901 1.558 0.822 1.196

The blue and green lines show the run times for QSORT; blue for the highly

perturbed data and green for minimally perturbed data. The results for these two

are similar.

The red and purple lines show the run times for RSORT. The red line is for the

highly perturbed data and purple is for the minimally perturbed data. The RSORT

run-time performance was better up to K:200 and again at K:300, K:400 and one-

perturbation K:500. We note the bump in the red and purple lines at K:200. Our

suspicion is that this “bump” was due to the non-linear sorting performance of the

comb sort. A simple, serial comb sort test was separately executed, entirely on a

CPU. We performed the comb sort over differently-sized, highly-perturbed number

sequences; this showed that the ratio of sorting-comparisons-count over items-sorted

was not monotonic. Although the comb sort showed good performance, the comb

sort’s run-time performance was not linearly related to the number of items sorted.

After the K:300 to K:500 range, the QSORT performance remained superior.

We note that the RSORT maximally perturbed results, the red line, climbed

slightly from K:600 onwards and the RSORT minimally perturbed data, the purple

line, stays rather flat. This behavior was not a surprise. The RSORT maximally

perturbed data was much more out of sequence than the minimally perpetuated

98



data; the parallel comb sorts had significantly more work to perform.

Perhaps a more interesting observation is that the purple line stays flat from K:300

to K:500 and then flat again from K:600 onwards. This behavior was associated with

the UB kernel’s upper-bounds processing and its search for an upper bound that was

a power of 2. The RSORT executions performed for K:300, K:400, and K:500 were

done with a radius of 512; the K:600 to K:1000 range was performed with 1,024. With

these datasets of 223 items, this testing showed that roughly sorting is faster, for the

k values tested, up to 200.

Single-GPU Experiment Two

We ran an additional set of tests using just the highly perturbed data, over a larger

range of k values, and on two servers: Hydra and Rabbit. The hardware and software

specifications for Hydra and Rabbit are described in the Appendix, Section B.1. The

results of this performance testing are listed in Table 5.11 and shown graphically in

Figure 5.21; the blue and green lines correspond to the Qsort processing; the red and

purple lines correspond to Rsort. Both sort applications were run three times on each

server and averages computed. Our earliest performance tests with these higher k

values were executed only on Hydra. However, we could find absolutely no reasonable

explanation for the substantial jumps in Hydra’s run times at K:1100 and K:2100.

After looking at low-level logs and profiling data, our next step was to add the Rabbit

server to the testing environment; we wanted to observe these same substantial jumps

on a second server. On Rabbit, they did not occur.

We note that the jumps tend to occur at the powers of 2: 512, 1,024 and 2,048;

we also know that these were the radii values produced by the UB kernel and that

they were used in allocation and sizing of the application’s sorting blocks. Therefore,

these radii values directly impacted the size of the OpenCL work-groups. In order

to help further understand this, we again engaged the DEFG logging of the major

OpenCL API calls and executed additional tests. We processed this log data into

99



Figure 5.21: Two Server Plot of Sort Run Times with 223 Items

summarized profile data. The kernel execution steps are shown in Table 5.12 and

graphed in Figure 5.22. The run times of the sorting step, the comb sort execution,

for Hydra at the k value of 2100 had clearly increased. Whereas the Rabbit run-time

increase from K:2000 to K:2100 was times 1.82, the Hydra increase was 3.44. At a k

of 2100, the two servers were clearly behaving very differently, in terms of run-times.

Our basic explanation for this difference is that the two servers are using differ-

ent GPU technologies. The Hydra server used older NVIDIA GPUs and an older

OpenCL driver. The Rabbit server used smaller, but newer, AMD GPU cards with

current OpenCL drivers. We suspect that the older NVIDIA OpenCL driver, present

on Hydra, was not organizing it’s local GPU work-groups as well as the newer,

AMD OpenCL driver, used on Rabbit. With the multiple-GPU testing, where larger

100



datasets were used, we observed that this Hydra anomaly was not present. We suspect

that we encountered a “bug” in the NVIDIA OpenCL driver.

Before discussing the multiple-GPU performance, we note that we analyzed the

green-line-upward bumps for the Rabbit server at K:1400, K:1900, and K:2100. We

attributed them to a lack of CPU memory resources. The Rabbit server had a rather

small CPU, with limited RAM, and two mid-range GPU cards. Our suspicion was

that “garbage collection” of CPU memory was occurring at these “bump” times.

Table 5.11: Two Server Run Times with 223 Items, in Seconds

Gen. K Hydra Hydra Rabbit Rabbit
Value Qsort Rsort Qsort Rsort

K:10 0.948 0.329 1.229 0.177
K:100 0.919 0.734 1.232 0.557
K:200 0.912 0.998 1.231 0.823
K:300 0.910 0.842 1.220 0.661
K:400 0.904 0.886 1.222 0.707
K:500 0.904 0.919 1.233 0.715
K:600 0.904 1.443 1.222 0.689
K:700 0.903 1.470 1.223 0.690
K:800 0.900 1.496 1.215 0.719
K:1900 0.900 1.528 1.213 0.724
K:1000 0.901 1.558 1.208 0.747
K:1100 0.900 2.221 1.209 0.995
K:1200 0.899 2.249 1.213 1.061
K:1300 0.898 2.280 1.226 1.012
K:1400 0.898 2.317 1.404 1.059
K:1500 0.898 2.335 1.212 1.059
K:1600 0.898 2.363 1.207 1.107
K:1700 0.898 2.393 1.228 1.076
K:1800 0.895 2.421 1.203 1.128
K:1900 0.895 2.442 1.408 1.100
K:2000 0.897 2.475 1.202 1.133
K:2100 0.895 6.845 1.506 1.965
K:2200 0.897 6.868 1.202 2.040

5.3.4.3 Multiple-GPU Performance

As we have previously mentioned, our view is that the DEFG provision of multiple-

GPU support is valuable. We, therefore, added this capability to RSORT, forming

101



Figure 5.22: Plot of Run-Time Breakout with 223 Items

Table 5.12: Run-Time Breakout with 223 Items, in Seconds

Server Data LR RL DM UB Sort

Hydra K:2000 0.029 0.028 0.582 0.110 1.782
Hydra K:2100 0.280 0.280 0.607 0.100 6.127
Rabbit K:2000 0.025 0.025 0.223 0.010 0.746
Rabbit K:2100 0.018 0.028 0.256 0.004 1.355

RSORTM. The use of two GPUs with roughly sorting allowed us to obtain sorted re-

sults faster and to sort larger data sets. The multiple GPU support was implemented

using the Divide-Process-Merge design pattern.

Figure 5.23 shows a very abbreviated listing of DEFG code used in RSORTM.

RSORTM is built upon RSORT; most of the lines of code shown in this figure are

additions to the code shown in Figures 5.18 and 5.19. Line 22 selected multiple

GPUs, lines 27 and 28 declared the additional kernels used in the UB loop, and line

36 declared the extra buffer also used in the UB loop processing. Lines 46 through

69 were a repeat of the original left-to-right maximum code with the DEFG execute

statements replaced by multi exec statements.

Continuing with lines 71 to 77, we observe that the UB processing in RSORTM

102



differs from the approach used in RSORT. Here, we encounter a small DEFG design

restriction. The DEFG approach used to split buffers into equal portions, with a

portion given to each GPU, does not work with scalar variables. We cannot reasonably

split a scalar variable in half. The upshot of this shortcoming was that the again

variable used to manage this loop had to be set with the values returned from the

againPart buffer. The morsel code at line 76 combined the two values from the

buffer. The UB kernel, used in RSORT, was replaced by the new UBreset and

UBsplit kernels. Kernel UBreset did reset the buffer data and UBsplit compared the

radius upper bound with the DMbuf contents. The OpenCL code for these simple

kernels is shown in the Appendix, Section B.4.

The putMergeArray() function, not shown in this abbreviated listing, was called

to copy the two sorted data segments to disk. They were merged into one sorted

segment as they were copied. This was the merge step inherent in the DEFG Divide-

Process-Merge design pattern.

Next, we compare the performance of RSORTM against both RSORT and QSORT.

The testing was performed on Hydra using test data files of 226 and 227 sort items.17

Tables 5.13 and 5.14 show the testing results and these are shown graphically in Fig-

ures 5.24 and 5.25. We note that the unexpected drop in Hydra performance seen in

the previous testing was not present with these larger test datasets.

Looking at Figure 5.24, we note the RSORTM green line is always below the

RSORT red line. With this test data, RSORTM was consistently faster than RSORT.

We also note that the RSORTM performance was faster than QSORT up to a k value

of 2000. The addition of the second GPU made roughly sorting the faster solution for

a wider range of k values. Looking back at the image filtering applications discussed

previously, and comparing the applications, RSORTM clearly has enough work to

utilize both of the GPUs.

17The Rabbit server was not able to handle data files of this large size, due to disk and memory
size limits.

103



...

04. declare application RSortm

...

22. declare gpu gpugrp ( all )

...

27. kernel UBsplit RSort_Kernels ( [[ 1D,size ]] )

28. kernel UBreset RSort_Kernels ( [[ 1D,size ]] )

...

36. integer buffer againPart (againSize)

...

46. multi_exec LR1 LRmax (arrayS(in) LR(out) stride(in))

...

50. loop

51. multi_exec LR2 LRmax (LR(inout) LRout(out) stride(in))

...

55. while again lt logSize

...

69. multi_exec DM1 DM (LR(in) RL(in) DMbuf(out))

...

71. loop

72. multi_exec UB1 UBreset (againPart(inout))

73. call times2(radius(inout))

74. multi_exec UB2 UBsplit (DMbuf(in)

againPart(inout) size(in) radius(in))

75. call sync (againPart(in))

76. code [[again = againPart[0] + againPart[2]; ]]

77. while again ne 0

...

80. code [[ if (groups<2) {printf("sort end, too few sort groups, ... ]]

...

82. code [[ groupsMulti = groups / DEFG_GPU_COUNT; ]]

83. multi_exec SORT1 comb_sort(arrayS(inout) ... groupsMulti(in))

...

88. multi_exec SORT2 comb_sort(arrayS(inout) ... groupsMulti(in))

...

91. end

Figure 5.23: Abbreviated RSORT DEFG Executable Statements

Due to lack of memory on a single Hydra GPU card, RSORT cannot be executed

with the 227-sized dataset. RSORTM, with access to twice as much GPU memory,

was able to process this large dataset. The performance results are presented in

Figure 5.25. We observe that the cross-over point with this dataset was similar to

the 226 dataset, the performance crossover was at the k value of 2000.

5.3.4.4 RSORT Run-Time Performance

As expected, using our artificially generated, partially sorted datasets, RSORT was

shown to produce good performance results, relative to CPU-based QSORT, when

the k-value was approximately 100, or less. This high-level of performance occurred

104



with both the single-GPU and multiple-GPU RSORT usage modes; when more than

a single GPU was used by RSORT, sorted results were produced even more quickly.

The use of multiple-GPUs also permitted the sorting of larger datasets. For the vast

majority of our run-time tests, highly perturbed datasets were used. For this reason,

our view is that most other datasets, with equal k values, would be likely to experience

faster performance, compared to our generated datasets. For k values over about 100,

we suggest that the size and distribution of the data must be taken into consideration

when looking at the general use of roughly sorting.

Figure 5.24: Plot of Sort Run Times with 226 Items

Table 5.13: Sort Run Times on Hydra with 226 Items, in Seconds

Program Gen K: Gen K: Gen K: Gen K: Gen K:
Name 10 1000 2000 4000 8000

Qsort 8.394 8.008 7.972 7.922 7.890
Rsort 2.527 11.216 15.360 17.120 29.556
RsortM 1.459 6.487 7.400 11.189 24.682

Table 5.14: Sort Run Times on Hydra with 227 Items, in Seconds

Program Gen K: Gen K: Gen K: Gen K: Gen K:
Name 10 1000 2000 4000 8000

Qsort 17.317 16.539 16.460 16.389 16.318
RsortM 2.912 11.896 16.447 19.613 31.243

105



Figure 5.25: Plot of Sort Run Times with 227 Items

5.4 Application: Altman Method of Matrix Inversion

5.4.1 Problem Definition and Significance

Matrix inversion is a well-studied problem with application to many endeavors, includ-

ing the solution of simultaneous equations in Engineering, Economics, and Chemistry

[72, 13, 5, 74]. Further, simultaneous equations need to be solved in real-time robotics

and these solutions are required in a limited time interval [46]. The use of the itera-

tive matrix inversion, in the context of anytime algorithms [77], has the potential to

supply the solutions for simultaneous equation in real-time environments. The use of

simultaneous equations in robotics is demonstrated in numerous works [28, 44, 63].

There are many methods for inverting matrices. One such method is M. Altman’s

iterative method; it has the potential for inverting matrices with high degrees of

adaptability, scalability and robustness, due to the iterative nature of its design [7,

8]. Iterative inversion consists of making an initial estimated inversion and then

performing additional algebraic operations to improve the quality of the inversion.

In this work, we use the notion of anytime algorithms to manage our GPU-based

Altman inversion processing. Anytime algorithms use a well-defined quality measure

106



to monitor the solution progress and then allocate resources effectively [101]. This

anytime algorithm approach makes it possible to offer a tradeoff between solution

quality and computational time [36].

Assume we have a matrix A and we wish to find its inverse, R. The Altman

method requires we have an R0 such that ||I − AR0|| < 1 and then we iteratively

apply Rn+1 = Rn(3I − 3ARn + (ARn)2). We implemented a GPU-based anytime

algorithm version of Altman’s iterative method using DEFG and OpenCL, and then

performed an analysis of the inversion results.

Our efforts had a focus on DEFG and the demonstration of DEFG’s capabilities.

As such, we provided a DEFG-based, GPU implementation of the iterative Altman

numerical method, with added anytime processing. This was done to help show

the range of problems and applications handled by DEFG. We did not explore the

numerical intricacies of the actual Altman method. Matrix multiplication was used as

a building block, and an existing OpenCL matrix multiplication facility, clMath [2],

was used to satisfy our requirement for a high-speed matrix multiplication capability.

This Altman inversion method has some interesting adaptive characteristics [7, 8].

It is tolerant of errors in computation and initial settings. The inversion results

are dependent on the initial R0 and on the number of iterations performed. More

iterations tend to compensate for a poorly set R0 or poorly computed Rn. If R0 is not

otherwise available, it can be formed with R0 = αI, where one possible value of α is

1/||A||, with ||A|| being the Euclidean norm ofA. Different values of α lead to different

convergence characteristics. We use the Euclidean norm of I−ARn+1 as our inversion

quality measure. This scalar value decreases as the quality of the inversion increases.

These characteristics provide the ability to use an anytime algorithm to limit the

number of iterations, enabling the desirable option to choose between solution quality

and computational time.

107



5.4.2 Related Work

5.4.2.1 Anytime Algorithms

Boddy and Dean coined the term “anytime algorithm” in their work on time-dependent

planning [17]. They describe anytime algorithms as, “algorithms that can be inter-

rupted at any point to supply an answer whose quality increases with increasing

computational time.” The work of Zilberstein brings the characteristics of anytime

algorithms into clearer focus with his list of desirable anytime traits: measurable

quality, recognizable quality, monotonicity, consistency, diminishing returns, inter-

ruptibility, and preemptibility. Zilberstein makes an additional point, perhaps best

given as a direct quote, “Anytime computation extends the traditional notion of com-

putational procedure by allowing it to return many possible approximate answers to

any given input” [101].

Anytime algorithms have previously been implemented on GPUs by Sab and Man-

haram [77]. They demonstrate the use of their PAP* parallel search algorithm in

which they compose a pool of CUDA kernels in advance and then at run time, de-

pending on the load and quality-level goals, select an appropriate set of kernels to

launch.

5.4.2.2 Iterative Approach

This iterative approach distinguishes itself from direct, decomposition inversion ap-

proaches such as Cholesky Decomposition and Gauss-Jordan by producing useful

intermediate inversion results [52, 90]. The iterative approach used here was outlined

by M. Altman in his work: An optimum cubically convergent iterative method of in-

verting a linear bounded operator in Hilbert space [7]. A few years later, Petryshyn

improved the error estimates for the M. Altman method [73]. More recent works

in this area include the Stanimirovic article: Self–correcting iterative methods for

108



computing {2}–inverses [89]. Stanimirovic pointed out that this class of iterative

inversion algorithms will self-correct only if the matrix is in fact invertible.18

5.4.2.3 GPU-based High-Performance Matrix Libraries

The Altman algorithm requires numerous matrix operations, including matrix addi-

tion, subtraction, and multiplication. We used an existing GPU high-performance

library: clMath, formerly called APPML [4]. clMath is the Accelerated Parallel Pro-

cessing Math Libraries which contains the Basic Linear Algebra Subprograms (BLAS)

and the Fast Fourier Transform (FFT) functions. It is written for OpenCL and de-

signed to run on AMD GPUs [2] and can be used with OpenCL GPUs from other

vendors. In 2013, AMD re-branded APPML as “clMath” and converted it to an

Open Source product. NVIDIA supplies cuBLAS. cuBLAS is the NVIDIA Basic Lin-

ear Algebra Subroutines library for use with their hardware. Unfortunately, cuBLAS

is not compatible with OpenCL. This is unfortunate since cuBLAS has been available

longer than clMath, is vendor supported, and is likely a more stable and mature linear

algebra library.

5.4.3 Application Software Design

5.4.3.1 The Implementation of Altman’s Method in DEFG

Our DEFG implementation of Altman’s iterative method of matrix inversion has

gone through a number of versions. Each version was verified to be sure that correct

inversion results were produced.19 In our earlier versions, we used the clMath capa-

bilities for all matrix operations. Testing, and periodic reviews of our IMI versions,

revealed that our early DEFG IMI source code was not easily read and visualized by

18A fact that we can attest to after accidentally passing a singular matrix to our first GPU version
of the Altman method!

19The results were verified by comparing the matrix inversion results from our IMI applications
with corresponding MATLAB inversion results.

109



the developer, and the general application performance was somewhat slower than

we had expected. Because of these issues, we changed our IMI application design and

implementation. Our final IMI version, called IMIFLX, used the clMath library only

when absolutely needed. For the simpler operations, such as establishing the identity

matrix or multiplying a matrix by a constant, we used a different approach. The new

approach used specialized GPU kernels to multiply a matrix by a scalar and used

CPU-side DEFG morsels to initialize matrices.

The final version, IMIFLX, has the “FLX” name suffix because of the flexible

manner in which it obtained the square matrix to be inverted. The matrix was

loaded from an input file or was internally generated. The test matrices generated by

IMIFLX were Hilbert matrices [99], identity matrices, or “invertible” matrices. The

invertible matrices had their non-principle diagonal values set to 1 and their principal

diagonal values set to the integer values 1, 2, . . . , N ; N being the width of the matrix

[75].

For the sake of brevity, we will limit our presentation of the IMIFLX application’s

code to an abbreviated listing, which shows most of the application’s non-declarative

code. The code is shown in Figure 5.26. The figure’s comment lines tend to describe

the linear algebra step performed next; the following statements beginning with blas

or execute perform the corresponding DEFG operations. The code statements, which

are DEFG morsels, inserted the associated C++ code into the application. As an

example, the code statements at lines 2 and 3 established an identity matrix multiplied

by the previously established α value. There was one blas statement before the loop,

and each loop iteration required the execution of three blas statements. The small

kernels executed at lines 11, 13, and 21 performed matrix multiplication by a constant.

The kernel executed at line 19 performs a matrix (buffer) copy. The code for these

simple kernels is shown in the Appendix, Section B.4. The earlier IMI versions used

blas statements instead of these kernels. The performance implications of this change

110



are discussed in the next section.

The loop escape statement, at line 29, demonstrates an example of DEFG any-

time processing. DEFG maintained an internal timer that tracked the run time of

the loop and the loop escape statement was used to exit the loop when a run time

threshold had been exceeded. Since the Altman algorithm provided an inversion re-

sult that improved monotonically with each iteration, this algorithm was appropriate

for anytime algorithm usage.

The three kernel executions listed together, at line 23 through 25, warrant some

explanation. The calculation of the required Euclidean norm, used here to evaluate

the quality of the inversion, required that the squares of all matrix values be summed.

Parallel prefix scan provided a high performance approach to obtaining this sum [40].

However, many of the available high-performance prefix scan algorithms require an

01. // mA holds the matrix to be inverted; mRn = Identity Matrix * alpha

02. code [[ for (int i=0; i < mSIZEt2; i++) { mRn[i] = 0.0; } ]]

03. code [[ for (int i=0; i < mSIZE; i++) { mRn[i*mSIZE +i] = alpha; } ]]

04. // mP = mA * MRn

05. blas (dOne * mA * mRn + dZero * mP -> mP)

06. loop

07. // desired result: mRnp1 = mRn * (mI*3 - mP*3 + mP2) mP2 is mP*mP

08. // mW = mP * mP

09. blas (dOne * mP * mP + dZero * mW -> mW)

10. // mW += mI * 3

11. execute k8 PlusIdentityThree(mW(inout) mSIZE(in))

12. // mW -= mP * 3

13. execute k9 MinusMatThree(mW(inout) mP(in) mSIZEt2(in))

14. // mRnp1 = mRn * mW

15. blas (dOne * mRn * mW + dZero * mRnp1 -> mRnp1)

16. // mP = mA * MRnp1

17. blas (dOne * mA * mRnp1 + dZero * mP -> mP)

18. // copy mP to mW;

19. execute k10 CopyArray(mW(out) mP(in) mSIZEt2(in))

20. // mW -= mI

21. execute k11 MinusIdentity(mW(inout) mSIZE(in))

22. // result = norm(mW)

23. execute k12 SweepSquares(mW(in) mSIZEt2(in) mBasket(inout) basketSize(in))

24. execute k13 prefixSum(mS (out) mBasket(in) mLocal(*) basketSize(in))

25. execute k14 ReadLastSqrt(mS(in) basketSize(in) result(out))

26. release (result) // gets value onto CPU

27. // cpu: compare epsilon and result

28. code [[ if (result <= epsilon) LCNT = cycles; ]]

29. loop_escape at 6 secs // "anytime" processing

30. // mRn <==> mRnp1

31. interchange(mRn mRnp1)

32. call inc(LCNT(inout))

33. while LCNT lt cycles

Figure 5.26: IMIFLX Application Processing Loop

111



input data array size that is a power of 2. This prefix scan and power-of-2 topic was

mentioned in Section 5.3, when discussing BFSDP2GPU. With our IMI application,

we did not want to limit our processing to matrices that have a power-of-2 number of

elements and we wanted to have improved performance over the Berman Prefix Scan

algorithm’s work upper bound of O(n log n). We, therefore, split the norm processing

into three kernels and we introduced a power-of-two-sized intermediate buffer to hold

partial sums. Our improved approach was possible because the IMI norm processing

only needed the final sum of squares and did not need any of the preceding partial

sums.

Our approach stored the partial sums in the mBasket buffer, which contained

basketSize elements. The basketSize value was set with a power-of-2 value that was

somewhat larger than the maximum number of threads the GPU provides; for Hydra

we used a value of 1,024. Each GPU thread produced a small number of sums and

these sums were stored in mBasket. This work was performed by the SweepSquares

kernel; it summed the squares of the values in the matrix. The code for this kernel,

SweepSquares, is shown in Figure 5.27. The for loop, in the kernel, incremented the

k index value by a stride of basket length, to minimize the GPU hardware’s global

memory accesses.

The prefixSum kernel was taken from the AMD OpenCL SDK. It was modeled

after the approach taken by Harris, et al. [39] and Blelloch [15]. Here we used it to

sum the partial sums harbored in the basketM array. The simple ReadLastSqrt kernel

returned the square root of the last sum produced by the prefixSum kernel. The upper

bound on work for this approach is O(n+ log(basketSize)) and since basketSize is a

constant, the upper bound with a large matrix is actually O(n). The source code for

the prefixSum kernel is available from the AMD OpenCL SDK and the ReadLastSqrt

kernel code is available in the Appendix, Section B.4.

112



01. __kernel void SweepSquares(

02. __global double* input, // buffer of data values

03. const int length, // full length of buffer 03.

04. __global double* basket, // basket of partial sums

05. const int basket_length) // full length of basket

06. {

07. double d;

08. double sum = 0.0;

09. if (length < 1) return;

10. unsigned int tid = get_global_id(0);

11. if (tid >=length) return;

12. // make strides of basket_length width

13. for (int k=tid; k < length; k += basket_length) {

14. d = input[k] * input[k];

15. sum += d;

16. }

17. basket[tid] = sum;

18. return;

19. }

Figure 5.27: SweepSquares Kernel Source Code

Table 5.15: Comparison of M1000 Run Times

Actual R.T.
IMI BLAS NDR Summed Average
Version Seconds Count Seconds Count Seconds Seconds

IMIFLX 0.047 43 0.0005 101 2.02 2.113
IMIB 0.047 99 0.0009 45 4.65 4.711

5.4.4 Experimental Results

5.4.4.1 Run-Time Performance of IMI Versions

In order to obtain a sense for the cost of each BLAS API call and the relative perfor-

mance of our final IMIFLX version, we performed run-time comparisons between an

earlier version of our application and the final version. These tests were run on Hy-

dra with the DEFG logging engaged, using an invertible matrix of width 1000, called

M1000. We used this logging information to compute the average time consumed

in BLAS API calls and in OpenCL clEnqueueNDRangeKernel() calls. The results,

which are the averages of three runs for each case, are shown in Table 5.15.

The earlier version of IMIFLX, called IMIB, used DEFG blas statements for all

matrix operations, except initializing the matrices. The IMIFLX version avoided

blas statements whenever possible; instead it used the PlusIdentityThree, Minus-

113



MatThree, CopyArray, and MinusIdentity kernels. With the M1000 matrix, the

measured run times dropped from 4.711 seconds to 2.113, a speedup of 2.22. In Ta-

ble 5.15, the Summed Seconds column contains the sum of the BLAS and the clEn-

queueNDRangeKernel API execution run times. The 2.02 seconds IMIFLX value was

calculated using (0.047 ∗ 43 + 0.0005 ∗ 101). We note that the BLAS and NDRange

processing account for the lion’s share of the actual run time. Looking at the BLAS

Count and NDR Count columns, we can see that each application version generated

144 requests. In the case of IMIFLX, 43 were BLAS requests; IMIB had 99. Our

IMIFLX application version was faster than IMIB because it made many fewer BLAS

requests. The kernel requests, which replaced the omitted BLAS requests, were much

faster, with run times less than 0.001 seconds, versus the 0.047 seconds for each BLAS

request. Not surprisingly, the blas statements were the dominant factor in the run

times.

5.4.4.2 Inversion Results and Anytime Processing

As the IMIFLX application used the Altman iterative approach, it converged to a

solution. It stopped when: the computed Euclidian Norm was less than the specified

epsilon value; a numeric overflow had occurred; the maximum number of iterations

count had been matched, or the anytime processing had intervened. The table in

Figure 5.28 shows the Euclidean Norm values for processing an M500 matrix, with

an epsilon setting of 0.00001. The plot in Figure 5.28 presents this data; the Iteration

count is on the X axis and the Norm value is on the Y axis. We can see that the

application’s Norm values monotonically decreased from 20 towards zero. On the

13th iteration, the Norm was less than 0.00001 and the processing stopped.

Table 5.16 shows the results from 20 sample executions of IMIFLX, with different

matrices. For each execution, the table provides name, type, and size for the matrix

and the epsilon value, number of iterations, and total run time from the actual ex-

114



M500 Norm
Iteration Value

1 19.905700
2 16.298600
3 10.775400
4 6.320110
5 3.687980
6 2.186990
7 1.362090
8 0.943485
9 0.684855

10 0.320215
11 0.032834
12 0.000035
13 0.000000

Figure 5.28: Table and Plot of M500 Matrix Norm Values

ecution. Line 13 shows the results of the described M500 execution; it required 13

iterations and consumed 0.259 seconds. The next line, 13a, is a second execution of

the same matrix but with the anytime limit set at 0.2 seconds. Here we see that the

processing consumed 0.206 seconds and used 10 iterations. If we look back at the

table shown in Figure 5.28, we see that the Norm was 0.320215 at this point. When

the execution was terminated by the anytime processing, the application had brought

the norm to within 2% of its full-run final value.

5.4.4.3 Range of IMI Inversions

Lines 1 through 12, of Table 5.16, present the results of inverting a set of the noto-

riously difficult-to-invert Hilbert Matrices [99]. The matrix sizes ranged from 2 × 2

to 13 × 13. Our inversion application was able to invert these matrices up to size

12 × 12. At 13 × 13, an #INF (“Infinity”) C/C++ run-time result occurred. This

error was returned when the result of an operation was too large to be accurately

stored. Starting at size 10 × 10, the epsilon value was raised; these larger epsilon

115



values were the approximate lower bound that the norm value could achieve.20 Using

lower values of epsilon, with these cases, tended to iterate until the max-iteration

count was encountered.

In order to determine an approximate upper bound on matrix size that our appli-

cation could handle on the Hydra server, we inverted matrices of increasing size. Line

16 shows an 8000×8000 matrix being handled successfully; however, the 8500×8500

instance at line 17 fails with an OpenCL error of -4. This OpenCL error was discussed

previously in Section 5.1; it occurs when the GPU cannot allocate the requested global

memory. The IMI inversion of this matrix exceeded the memory capability of the

NVIDIA Tesla T20 on Hydra, which has 2,687M of RAM. Our application required

five matrix-sized buffers. With the 8000 × 8000 matrix, each buffer required 512M

bytes, five of these needed 2,560MB. For 8500 × 8500, each buffer required 578MB

of RAM, five of these needed 2,890MB. The larger 8500× 8500 matrix exceeded the

memory capacity of the Hydra T20 GPU.

The last three matrices listed were obtained from the University of Florida Sparse

Matrix Collection [24, 25]. Matrix 685 bus is from a power network problem with

3,249 non-zero values and matrix 1138 bus is a similar problem with 4,054 non-zero

values. The much larger Kuu Matrix is from a structural problem and has 340,200

non-zero values. Our iterative inversion application encountered no issues with these

real-world matrices.

In this section, we demonstrated DEFG handling our OpenCL numerical appli-

cation, which used the clMath BLAS library. We obtained improved performance by

using kernels for the non-multiplication matrix operations, using the BLAS functions

only when absolutely needed. We showed that the M. Altman approach to matrix

inversion works well on GPUs, and showed the useful DEFG anytime processing

performing an early exit of an iterative process, when triggered by an external event.

20We note that double-precision data types were used here and that running this OpenCL appli-
cation on a CPU produced very similar results.

116



Table 5.16: IMIFLX Inversion Results for Various Matrices

Cnt Matrix Type Size Epsilon Iterations Run Time
Name Seconds

1 H2 Hilbert 2x2 0.00001 4 0.018
2 H3 Hilbert 3x3 0.00001 8 0.022
3 H4 Hilbert 4x4 0.00001 12 0.023
4 H5 Hilbert 5x5 0.00001 15 0.030
5 H6 Hilbert 6x6 0.00001 18 0.034
6 H7 Hilbert 7x7 0.00001 21 0.036
7 H8 Hilbert 8x8 0.00001 24 0.037
8 H9 Hilbert 9x9 0.00001 27 0.042
9 H10 Hilbert 10x10 0.001 30 0.035
10 H11 Hilbert 11x11 0.005 40 0.057
11 H12 Hilbert 12x12 0.15 70 0.089
12 H13 Hilbert 13x13 n.a. n.a #INF error
13 M500 Invertible 500x500 0.00001 13 0.259
13a M500 Invt-AnyTime 500x500 0.00001 10 0.206
14 M1000 Invertible 1000x1000 0.00001 14 2.112
15 M5000 Invertible 5000x5000 0.00001 16 329.619
16 M8000 Invertible 8000x8000 0.00001 17 1380.320
17 M8500 Invertible 8500x8500 n.a. n.a. error -4
18 685 bus Repository 685x685 0.00001 12 0.665
19 1138 bus Repository 1138x1138 0.00001 14 3.262
20 Kuu Repository 7102x7102 0.00001 9 605.310

117



CHAPTER VI

ACCOMPLISHMENTS, OBSERVATIONS, AND FUTURE

RESEARCH

While envisioning, designing, implementing, testing, and debugging DEFG and de-

veloping new DEFG-based applications, we became very familiar with the process of

developing GPU applications. Based on this familiarity and our associated expertise,

we offer this chapter. It summarizes our DEFG accomplishments, lists our noteworthy

observations, and suggests interesting future research.

6.1 DEFG Accomplishments

In this dissertation, we produced the DEFG parser, optimizer, and code generator.

These three, along with several DEFG design patterns, give DEFG its unique abil-

ity to generate the CPU-side of OpenCL applications, as seen in the aforementioned

SOBEL, MEDIAN, BFSDP2GPU, RSORT, and IMIFLX applications. Each of these

DEFG applications explored a different aspect of GPUs and OpenCL. The SOBEL

and MEDIAN image filter applications used DEFG with image filtering, with a fo-

cus on multiple-GPU processing. Our 5 × 5 median image filter showed a speed up

with multiple GPUs. Our graph-processing application, BFSDP2GPU, showed the

DEFG ability to process large very irregular data structures with multiple GPUs. The

GPU sorting RSORT application implemented the novel roughly sorting algorithm

for partially sorted data. It demonstrated good performance in both single-GPU and

118



multiple-GPU versions. The last application, our iterative matrix inversion imple-

mentation IMIFLX, exhibited DEFG’s ability to implement iterative, GPU-based,

numerical processing.

DEFG is designed to make the development of the CPU-side of OpenCL appli-

cations less work for the set of applications that follow one, or more, of the DEFG

design patterns. In Chapter III, we showed that DEFG-produced applications can

match the speed of equivalent hand-written applications.

The value of DEFG is clear: it enables the implementation of OpenCL applica-

tions using the declarative approach. This approach to application development is

advantageous; it is likely to consume far less developer time, compared to writing

hand-written C/C++, because the developer has to write many fewer lines of source

code, and the DEFG code that is written is simpler, relative to the same hand-written

C/C++.

6.2 Some Noteworthy Observations

6.2.1 Usefulness of a DSL for GPU Software Development

What is it about the style of software development used with GPUs that makes the

use of a DSL attractive? Our answer to this question is based on Farber’s suggested

rules for GPGPU programming [30], paraphrased here: (1) get the data on the GPU

and leave it there, (2) give the GPU ample work to do, and (3) focus on data reuse

within the GPU to avoid global memory limitations.

This high-performance GPU methodology comes down to putting the computa-

tional work on the GPU and utilizing the CPU mainly to manage the GPU’s opera-

tions. GPU developers strive to minimize the transfer of data to and from the GPUs,

due to the transfer’s significant consumption of time. The application work is done

in the kernels; kernels need to be efficient, and often, highly optimized. The CPU

application code facilitates the GPU’s execution; it manages the movement of data

119



to and from the GPU, and it handles scheduling of the GPU kernels.

Our view is that these CPU-based data movement and GPU scheduling opera-

tions can be quite often expressed with a set of predefined design patterns. Our DSL,

DEFG, supplies these design patterns. DEFG makes it possible to declare the char-

acteristics of the GPU-required data and, using design patterns, manage the needed

GPU operations. With the declarations made and design patterns chosen, DEFG

then produces the corresponding CPU-side C/C++ program. Our experience has

been that most application variability and complexity tend to be concentrated in the

GPU kernels.

6.2.2 Declarative-Approach for Kernel Code Generation

Having observed that DEFG’s declarative approach can work well for generating the

CPU-side of OpenCL applications, we explored using a similar declarative approach

for GPU kernel generation. We are not as optimistic that the declarative approach

will work well for the GPU kernels due to the wide variations we observed in kernel

processing.

In our view, one reason that DEFG works well is because of the supplied design

patterns. As stated above, many GPU applications require their CPU-side code to

perform similar actions; these similar actions often map well into patterns.

Our point here is that with GPU kernels, we did not find the same similarity

of actions. We reviewed the kernels used in our port of existing applications and

our newly developed applications, and we observed very few common kernel usage

patterns that are significant and substantial. The few similar patterns seen on the

GPU-side were trivial actions, such as locating the index to a required buffer element

or making certain a given index offset value was within the buffer size. Different

applications tended to use substantially different kernel processing.

120



6.3 Conflicting DEFG Aims and Static Optimization

At the outset of this project, two of our principle objectives for DEFG were: (1) to

simplify the GPU software development process, and (2) to generate human-readable

code. It became obvious that these objectives were somewhat in opposition to each

other. Generating human-readable code implies producing modules that are reflective

of the programming logic being used.

In other words: to be readable, the modules need to be coded in a straight-

forward manner and uncluttered. However, as we introduced significant performance

optimizations, we saw that the static optimization step required inserting additional

code for many special cases. For example, when optimizing the buffer transfers inside

a looping structure containing multiple loop exit points, the optimizer should consider

the buffer transfer requirements for each exit point, and generate the appropriate code.

With static optimization, these special cases may force the generation of significant

amounts of specialized logic, at many locations within the code. The insertion of this

specialized code can make the generated code hard to understand and seem cluttered.

One reason we decided to construct an external DSL was to generate human-readable

code. To our surprise, we found that it is not always possible to generate uncluttered,

readable code, when high-levels of performance is also a major concern.

6.4 Future Research

6.4.1 Additional DEFG Design Patterns

DEFG has demonstrated the ability to generate standalone applications and callable

C/C++ functions. DEFG has the potential to be even more useful if two additional

design patterns are implemented: multiple-GPU load balancing and resource sharing.

Our current DEFG implementation supports multiple GPUs but does not, in and

of itself, make any attempt to balance the workload between the selected GPUs. The

121



workload assignment is a function of how the application is written. This approach

works well on a system with matched GPU devices. However, if the selected GPUs

are not matched, or the application does not assign the workload to the devices

appropriately, DEFG-supplied load balancing could be of great value. A DEFG design

pattern that dynamically allocates work to the selected GPUs could compensate for

mismatched GPUs and hard-to-predict workloads.

Similar to load balancing, resource sharing could become an issue. This issue

may arise when a DEFG-generated program is utilized as a C/C++ function and

the function is used from within a loop. The current DEFG obtains and releases

its resources on every invocation. This behavior could be problematic if the DEFG-

generated function is constantly re-invoked, after performing only a small amount of

work. A design pattern that allowed for the holding, and sharing, of resources could

be useful in preventing this loss of performance associated with repeated allocation

and release of resources.

6.4.2 DEFG Support for CUDA

We suggest designing and implementing a version of DEFG for NVIDIA’s CUDA.

CUDA is a widely used platform for generating NVIDIA-specific GPU applications.

As noted earlier in this work, CUDA has much better support for direct GPU-to-GPU

communications than OpenCL provides. While this is a worthwhile goal, we see two

major obstacles to implementing CUDA support in DEFG; the first is rather obvious

and the second is more subtle.

First, the CUDA environment is similar to the OpenCL environment but defi-

nitely not equal. For example, the CUDA terminology greatly differs from that of

OpenCL; the GPU kernels have a different syntax; and, the actual CPU-side call-level

APIs have a different granularity compared to OpenCL [65, 70]. In our experience,

for equals problems, CUDA-based application solutions require fewer API calls. As

122



a result of these types of differences, the DEFG code generator would require signif-

icant refactoring to elegantly support CUDA. The parser and optimizer would not

require such refactoring. The BFSDP2GPU application has the potential to perform

much better with CUDA, due to the CUDA’s superior GPU-to-GPU communication

capabilities.

Additionally, the OpenCL environment does not require that the local work-group

value be supplied on OpenCL clEnqueueNDRangeKernel() API calls; setting this

parameter is optional. DEFG makes significant use of this OpenCL feature. With

CUDA, the equivalent to this parameter, threads per block, is required and it is lim-

ited to certain values depending on the CUDA block-size value provided. A version

of DEFG for CUDA would have to find an appropriate automated way to set this

parameter or force the DEFG application software developer to provide a reasonable

value.

While challenging, implementing a CUDA version of DEFG would be worthwhile

because of CUDA’s wide-scale use and the added performance it could give to appli-

cations, such as BFSDP2GPU.

6.4.3 DEFG Re-factored as an Internal DSL

DEFG is currently designed in the style of an external DSL; it consists of a parser,

optimizer, and code generator. The generated program is compiled by a standard

C/C++ compiler. After making significant use of the current DEFG, we suggest that

producing an internal DSL, using many of the DEFG components, would produce a

very useful GPU development tool.

Martin Fowler suggests that DSLs can be categorized in two ways: internal DSLs

and external DSLs [32]. An internal DSL is constructed inside a standard program-

ming language through the use of objects, macros, and other programming language

extensions. This new DSL could be implemented as a set of specialized objects in

123



an object-oriented language such as C++, C# or Java.1 The items declared in the

current DEFG design could become programming objects, and the high-value DEFG

buffer transfer optimizations could be implemented as programming objects centered

upon the basic OpenCL API functions. Great care in designing this new internal DSL

would need to be taken, so as to ensure that the data structures used are consistent

with the constraints of the OpenCL API functions. In order to maintain a high level

of performance, this new implementation cannot simply copy data buffers between

template-style, object-oriented arrays and the simple, continuous, “flat” buffers of

memory required by the OpenCL APIs. If this were done, the run-time cost of this

additional copying would likely to be prohibitive, when the buffers being used are

large.

In this approach, many DEFG design patterns would become higher level objects,

making use of the just-described programming objects. With this new DSL in place,

the current DEFG could be re-implemented and greatly simplified. The DEFG parser

would remain largely as is.

6.5 DEFG Technical Improvements

As a result of our work, we discovered a number of technical improvements and en-

hancements that could be added to DEFG. They are paraphrased here, in summarized

form, and fully described in Section B.2 of the Appendix.

1. Add a DEFG optimizer step to verify the in/out/inout option settings.

2. Enhance the DEFG code statement to include a list of variables and buffers

used.

3. Optimize DEFG to release over-allocated CPU memory.

4. Add DEFG interchange statement functionality to the execute statement.

1Providing Java support has the potential to enable DEFG use with the mobile Android Platform.

124



5. Improve DEFG’s ability to collect run-time statistics.

6. Consider use of dynamic, instead of static, optimization in DEFG buffer transfer

operations.

Even without these improvements, DEFG has shown itself to be a capable and

efficient tool for creating OpenCL-based GPU applications.

125



BIBLIOGRAPHY

[1] Advanced Micro Devices, Inc. Accelerated Paral-
lel Processing (APP) SDK. Website, 2013. http:

//developer.amd.com/tools/heterogeneous-computing/

amd-accelerated-parallel-processing-app-sdk/.

[2] Advanced Micro Devices, Inc. Accelerated Parallel Pro-
cessing Math Libraries (APPML). Website, 2013. http:

//developer.amd.com/tools/heterogeneous-computing/

amd-accelerated-parallel-processing-math-libraries/.

[3] Advanced Micro Devices, Inc. AMD Radeon HD 7990 Graphics. Website,
2013. http://www.amd.com/us/products/desktop/graphics/7000/7990/

Pages/radeon-7990.aspx.

[4] Advanced Micro Devices, Inc. clMath (formerly APPML). Web-
site, 2014. http://developer.amd.com/tools-and-sdks/opencl-zone/

amd-accelerated-parallel-processing-math-libraries/.

[5] R. Aggarwal and K. Jacques. The impact of fdicia and prompt corrective action
on bank capital and risk: Estimates using a simultaneous equations model.
Journal of Banking & Finance, 25(6):1139–1160, 2001.

[6] Altera, Inc. Altera webpage on OpenCL. Website, 2013. http://www.altera.
com/products/software/opencl/opencl-index.html.

[7] M. Altman. An optimum cubically convergent iterative method of inverting
a linear bounded operator in hilbert space. Pacific Journal of Mathematics,
10(4):1107–1113, 1960.

[8] T. Altman. A method of inexact steepest descent for systems of linear equations.
Computers and Mathematics with Applications, 19(12):65 – 69, 1990.

[9] T. Altman and B. Chlebus. Sorting roughly sorted sequences in parallel. Infor-
mation processing letters, 33(6):297–300, 1990.

[10] T. Altman and Y. Igarashi. Roughly sorting: Sequential and parallel approach.
Journal of Information Processing, 12(2):154–158, 1989.

[11] ANTLR3. Antlr3. Website, 2013. http://www.antlr3.org/.

126



[12] D. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first
search and st-connectivity on the cray mta-2. In Proceedings of the 2006 Inter-
national Conference on Parallel Processing, ICPP ’06, pages 523–530, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[13] R. Barr, T. Pilkington, J. Boineau, and M. Spach. Determining surface poten-
tials from current dipoles, with application to electrocardiography. Biomedical
Engineering, IEEE Transactions on, (2):88–92, 1966.

[14] K. Berman and J. Paul. Fundamentals of Sequential and Parallel Algorithms.
PWS Publishing Co., Boston, MA, USA, 1st edition, 1996.

[15] G. Blelloch. Prefix sums and their applications. A Carnegie Mellon University
Research Showcase Report, 1990.

[16] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex
networks: Structure and dynamics. Physics reports, 424(4):175–308, 2006.

[17] M. Boddy and T. Dean. Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence, 67(2):245–285, 1994.

[18] B. Brejová. Analyzing variants of shellsort. Information Processing Letters,
79(5):223–227, 2001.

[19] V. Castro and D. Wood. An adaptive generic sorting algorithm that uses vari-
able partitioning. International journal of computer mathematics, 61(3-4):181–
194, 1996.

[20] Center for Discrete Mathematics and Theoretical Computer Science. Dimacs.
Website, 2010. http://www.dis.uniroma1.it/challenge9/download.shtml.

[21] P. Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB,
volume 73. Springer, 2011.

[22] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms
(the third edition), 2009.

[23] R. Couturier. Designing Scientific Applications on GPUs. CRC Press, 2013.

[24] T. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[25] T. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. Web-
site, 2014. http://www.cise.ufl.edu/research/sparse/matrices/.

[26] F. Dehne and K. Yogaratnam. Exploring the limits of gpus with parallel graph
algorithms. arXiv preprint arXiv:1002.4482, 2010.

127



[27] M. Dinneen, M. Khosravani, and A. Probert. Using opencl for implement-
ing simple parallel graph algorithms. In Proceedings of the 17th annual con-
ference on Parallel and Distributed Processing Techniques and Applications
(PDPTA11), part of WORLDCOMP, volume 11, pages 1–6, 2011.

[28] J. Edd, S. Payen, B. Rubinsky, M. Stoller, and M. Sitti. Biomimetic propul-
sion for a swimming surgical micro-robot. In Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on,
volume 3, pages 2583–2588. IEEE, 2003.

[29] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys (CSUR), 24(4):441–476, 1992.

[30] R. Farber. CUDA Application Design and Development. Elsevier Science,
Burlington, 2011.

[31] W. Feng, H. Lin, T. Scogland, and J. Zhang. Opencl and the 13 dwarfs: a
work in progress. In Proceedings of the third joint WOSP/SIPEW international
conference on Performance Engineering, pages 291–294. ACM, 2012.

[32] M. Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Pearson Education, 1994.

[34] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous Com-
puting with OpenCL: Revised OpenCL 1. Morgan Kaufmann, 2012.

[35] N. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and approximate
stream mining of quantiles and frequencies using graphics processors. In Pro-
ceedings of the 2005 ACM SIGMOD international conference on Management
of data, SIGMOD ’05, pages 611–622, New York, NY, USA, 2005. ACM.

[36] E. Hansen and S. Zilberstein. Monitoring and control of anytime algorithms: A
dynamic programming approach. Artificial Intelligence, 126(1):139–157, 2001.

[37] Hardkernel Co., Ltd. ORDOID Platforms. Website, 2013. http:http://www.

hardkernel.com/main/products/prdt_info.php?g_code=G138745696275.

[38] P. Harish and P. Narayanan. Accelerating large graph algorithms on the gpu
using cuda. In Proceedings of the 14th international conference on High perfor-
mance computing, HiPC’07, pages 197–208, Berlin, Heidelberg, 2007. Springer-
Verlag.

[39] M. Harris and M. Garland. Optimizing parallel prefix operations for the fermi
architecture. GPU Computing Gems Jade Edition, page 29, 2011.

[40] M. Harris, S. Sengupta, and J. Owens. Parallel prefix sum (scan) with cuda.
GPU Gems, 3(39):851–876, 2007.

128



[41] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Rela-
tional joins on graphics processors. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, SIGMOD ’08, pages 511–524,
New York, NY, USA, 2008. ACM.

[42] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating cuda graph
algorithms at maximum warp. In Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming, PPoPP ’11, pages 267–276,
New York, NY, USA, 2011. ACM.

[43] T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering
algorithm. Acoustics, Speech and Signal Processing, IEEE Transactions on,
27(1):13–18, 1979.

[44] K. Ikuta, H. Ishii, and M. Nokata. Safety evaluation method of design and
control for human-care robots. The International Journal of Robotics Research,
22(5):281–297, 2003.

[45] T. K. G. Inc. OpenCL Reference Pages. Website, 2010. http://www.khronos.
org/registry/cl/sdk/1.1/docs/man/xhtml/.

[46] M. Ishii, S. Sakane, M. Kakikura, and Y. Mikami. A 3-d sensor system for
teaching robot paths and environments. The International journal of robotics
research, 6(2):45–59, 1987.

[47] L. Jordan and G. Alaghband. Fundamentals of parallel processing. Prentice
Hall Professional Technical Reference, 2002.

[48] D. Kirk and W. Hwu. Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2010.

[49] A. Klckner. PyOpenCL. Website, 2010. http://mathema.tician.de/

software/pyopencl.

[50] A. Klckner. PyCUDA. Website, 2012. http://mathema.tician.de/software/
pycuda.

[51] D. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting and
searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1998.

[52] A. Krishnamoorthy and D. Menon. Matrix inversion using cholesky decompo-
sition. arXiv preprint arXiv:1111.4144, 2011.

[53] C. Lejdfors. PyGPU - Python for the GPU. Website, 2007. http://fileadmin.
cs.lth.se/cs/Personal/Calle_Lejdfors/pygpu/.

129



[54] litecoin.info. Mining hardware comparison. Website, 2014. https://litecoin.
info/Mining_hardware_comparison.

[55] L. Luo, M. Wong, and W. Hwu. An effective gpu implementation of breadth-
first search. In Proceedings of the 47th design automation conference, pages
52–55. ACM, 2010.

[56] C. Ma, L. Yang, W. Gao, and Z. Liu. An improved sobel algorithm based on
median filter. In Mechanical and Electronics Engineering (ICMEE), 2010 2nd
International Conference on, volume 1, pages V1–88. IEEE, 2010.

[57] Mathworks. Parallel Computing Toolbox. Website, 2013. http://www.

mathworks.com/products/parallel-computing/.

[58] M. McCool, J. Reinders, and A. Robison. Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

[59] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal. In
Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, pages 117–128. ACM, 2012.

[60] D. Merrill and A. Grimshaw. Revisiting sorting for gpgpu stream architectures.
In Proceedings of the 19th international conference on Parallel architectures and
compilation techniques, pages 545–546. ACM, 2010.

[61] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL programming
guide. Addison-Wesley Professional, 2011.

[62] M. Nagao and S. Mori. A new method of n-gram statistics for large number of n
and automatic extraction of words and phrases from large text data of japanese.
In Proceedings of the 15th conference on Computational linguistics-Volume 1,
pages 611–615. Association for Computational Linguistics, 1994.

[63] Y. Nagasaka, K.and Kuroki, S. Suzuki, Y. Itoh, and J. Yamaguchi. Integrated
motion control for walking, jumping and running on a small bipedal entertain-
ment robot. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, volume 4, pages 3189–3194. IEEE, 2004.

[64] NVIDIA Corporation. Whitepaper: NVIDIA’s Next Generation CUDA Com-
pute Architecture: Fermi. Technical report, NVIDIA Corporation, 2011.

[65] NVIDIA Corporation. CUDA C Programming Guide, 4.2 edition, 2012.

[66] NVIDIA Corporation. Whitepaper: NVIDIA’s Next Generation CUDA Com-
pute Architecture: Kepler GK110i. Technical report, NVIDIA Corporation,
2012.

[67] NVIDIA Corporation. Cuda zone – opencl. Website, 2013. https://

developer.nvidia.com/opencl.

130



[68] NVIDIA Corporation. Nvidia gpudirect. Website, 2014. https://developer.
nvidia.com/gpudirect.

[69] NVIDIA Corportation. NVIDA webpage on GPGPU. Website, 2013. http:

//www.nvidia.com/object/what-is-gpu-computing.html.

[70] K. Opencl and A. M. The opencl specification version: 1.2 document revision:
15, 2012.

[71] J. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[72] G. Petrie and T. Kennie. Terrain modeling in surveying and civil engineering.
Computer-aided design, 19(4):171–187, 1987.

[73] W. Petryshyn. On the inversion of matrices and linear operators. Proceedings
of the American Mathematical Society, 16(5):893–901, 1965.

[74] R. Porra. The chequered history of the development and use of simultaneous
equations for the accurate determination of chlorophylls a and b. Photosynthesis
Research, 73(1-3):149–156, 2002.

[75] Rosenzweig, M. How to Construct an Invertible Matrix? Just Choose Large
Diagonals. Website, 2013. http://matthewhr.wordpress.com/2013/09/01/

how-to-construct-an-invertible-matrix-just-choose-large-diagonals/.

[76] L. S. and R. Box. A Fast Easy Sort. Website, 1991. http://cs.clackamas.

cc.or.us/molatore/cs260Spr03/combsort.htm.

[77] A. Saba and R. Mangharam. Anytime algorithms for gpu architectures.
AVICPS 2010, page 31, 2010.

[78] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 1st edition, 2010.

[79] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for
manycore gpus. In IEEE International Symposium on Parallel & Distributed
Processing, 2009. IPDPS 2009., pages 1–10. IEEE, 2009.

[80] R. Senser and T. Altman. DEF-G: Declarative Framework for GPU Environ-
ment. In Proceedings of the 19th annual conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA13), part of WORLDCOMP,
volume II, pages 490–496, 2013.

[81] R. Senser and T. Altman. A second generation of DEFG: Declarative Frame-
work for GPUs. In Proceedings of the 20th annual conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA14), part of
WORLDCOMP, volume t.b.d., page t.b.d, 2014. To be available November
2014.

131



[82] R. Senser and T. Altman. Poster: DEFG, Declarative Framework for GPUs
- ID P4194. NVIDIA GPU Technology Conference, GTC 2014, March
24-27, 2014, San Jose, CA, 2014. http://on-demand-gtc.gputechconf.

com/gtcnew/on-demand-gtc.php?searchByKeyword=senser&searchItems=

&sessionTopic=&sessionEvent=2&sessionYear=2014&sessionFormat=

5&submit=&select=+\#sthash.v9BEY0N0.dpuf.

[83] J. Shen and M. Lipasti. Modern Processor Design: Fundamentals of superscalar
processors, beta edition. McGraw-Hill Science/Engineering/Math, 2003.

[84] M. Sid-Ahmed. Image processing. McGraw-Hill, 1994.

[85] K. Skadron. Rodinia: Accelerating compute-intensive applications with accel-
erators. Website, 2013. http://lava.cs.virginia.edu/Rodinia/.

[86] I. Sobel and G. Feldman. A 3x3 isotropic gradient operator for image processing.
a 1968 talk at the Stanford Artificial Project, 1968.

[87] M. Sonka, V. Hlavac, and R. Boyle. Image processing, analysis, and machine
vision. 1999. Champion & Hall, pages 2–6, 1998.

[88] Stanford SNAP Group. Stanford network analysis project. Website, 2014.
http://snap.stanford.edu/.

[89] P. Stanimirovic. Self–correcting iterative methods for computing {2}–inverses.
Arch Math (Brno), 39:27–36, 2003.

[90] R. Tewarson. A direct method for generalized matrix inversion. SIAM Journal
on Numerical Analysis, 4(4):499–507, 1967.

[91] TINYXML2. Tinyxml2. Website, 2013. http://www.grinninglizard.com/

tinyxml2/index.html.

[92] N. Tuck. Bacon: A gpu programming language with just in time specialization
(draft). University of Massachusetts Lowel, Lowel MA 01854, 2012.

[93] O. Vincent and O. Folorunso. A descriptive algorithm for sobel image edge
detection. In Proceedings of Informing Science and IT Education Conference
(InSITE), pages 97–107, 2009.

[94] W. Wang. Reach on sobel operator for vehicle recognition. In Artificial In-
telligence, 2009. JCAI’09. International Joint Conference on, pages 448–451.
IEEE, 2009.

[95] Z. Wei and J. JaJa. Optimization of linked list prefix computations on multi-
threaded gpus using cuda. In IPDPS, pages 1–8. IEEE, 2010.

[96] S. Wesolkowski, M. Jernigan, and R. Dony. Comparison of color image edge
detectors in multiple color spaces. In Image Processing, 2000. Proceedings. 2000
International Conference on, volume 2, pages 796–799. IEEE, 2000.

132



[97] Wikipedia. Comb sort. Website, 2014. http://en.wikipedia.org/wiki/

Comb_sort.

[98] Wikipedia. Embarrassingly parallel. Website, 2014. http://en.wikipedia.

org/wiki/Embarrassingly_parallel.

[99] Wikipedia. Hilbert matrix. Website, 2014. http://en.wikipedia.org/wiki/

Hilbert_matrix.

[100] J. Xiong, J. Johnson, R. Johnson, and D. Padua. Spl: A language and compiler
for dsp algorithms. In ACM SIGPLAN Notices, volume 36, pages 298–308.
ACM, 2001.

[101] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73, 1996.

133



APPENDIX A

DEFG User’s Guide

A.1 Introduction

DEFG is a Domain Specific Language (DSL) that uses declarative statements to

provide much of the information needed to generate the CPU-portion of OpenCL GPU

applications. It is not a general-purpose programming language, nor is it intended to

be. DEFG gives up some of the power that a universal language, such as C++ or Java,

provides. In exchange for decreased power, DEFG is able to perform certain GPU-

related activities efficiently with minimal software developer effort. This efficiency

relates both to the degree of effort required by the developer to create an OpenCL

application, and the performance achieved by the generated OpenCL application.

While not a general-purpose language in itself, DEFG does have the ability, with

its code statement, to insert arbitrary C/C++ code into the applications it generates.

These inserted C/C++ code snippets are referred to as DEFG morsels, which are

intended to allow the developer to insert small snippets to do minor calculations, to

format display output, and to assist in debugging.

This User’s Guide provides DEFG source code examples and summary descrip-

tions of the common DEFG design patterns. These examples and design pattern

descriptions are followed by the detailed DEFG Language Reference Section. Also

covered in this DEFG are advanced features and error handling.

134



A.2 Intended Audience

The intended audience for this User’s Guide is both experienced developers who are

starting to use GPUs, and seasoned GPU developers. It is assumed that the reader

has a basic understanding of GPU technology, the OpenCL Specification, and GPU

kernel programming.

A.3 DEFG Examples

Two DEFG example programs are presented here. They provide a glimpse of how

the DEFG language is utilized, and they show the CPU-side operations needed for

GPU implementation of two common applications. The first example provides for

the execution of a single GPU kernel, which is an image filter. The second one shows

more of the DEFG power in the form of the looping operation used in a GPU-based

Breadth-First Search (BFS) implementation.

A.3.1 Sobel Image Filter Example

This is a simple DEFG application. It loads an image, copies it to the GPU, processes

the image with a GPU kernel named sobel filter, and then brings the image back to

the CPU for display.

// SobelRef.txt: Sobel algorithm in DEFG syntax

declare application sobel

declare integer Xdim (0)

integer Ydim (0)

integer BUF_SIZE (0)

declare gpu gpuone ( * )

declare kernel sobel_filter SobelFilter_Kernels

( [[ 2D,Xdim,Ydim ]] )

declare integer buffer image1 ( Xdim Ydim )

integer buffer image2 ( Xdim Ydim )

call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

execute run1 sobel_filter ( image1(in) image2(out) )

call disp_output (image2(in) Xdim (in) Ydim (in) )

end

135



The DEFG declare statements define the characteristics of the DEFG application.

In this case the application name is sobel; it has three integer scalar variables; it

uses any available GPU and the OpenCL kernel name is sobel filter, from the OS

file named “SobelFilter Kernels.cl”. There are two GPU integer buffers: image1 and

image2. The C++ function init input is called to load the image, and the C++

function disp output is called to display the resulting image. Between these two C++

functions, the DEFG execute statement schedules the execution of the GPU kernel

and arranges for the movement of the two buffers. The (in) and (out) denotations

allow DEFG to optimize the movement of the integer buffers between the CPU and

GPU.

A.3.2 Breadth-First Search Example

The second DEFG example shows multiple kernel execution and the looping capabil-

ities of DEFG. Here, a DEFG looping construct is used to repeat the set of kernels,

and DEFG internally optimizes the loop’s data buffer movements between the CPU

and GPU devices.

// bfsRef.txt: BFS (Harish version)

declare application bfs

declare integer NODE_CNT (0)

integer EDGE_CNT (0)

integer MAX_DEGREE (0)

integer STOP (0)

declare gpu gpuone ( * )

declare kernel kernel1 bfs_kernel ( [[ 1D,NODE_CNT ]] )

kernel kernel2 bfs_kernel ( [[ 1D,NODE_CNT ]] )

declare struct (8) buffer graph_nodes ( NODE_CNT )

integer buffer graph_edges (EDGE_CNT )

integer buffer graph_mask ( NODE_CNT )

integer buffer updating_graph_mask ( NODE_CNT )

integer buffer graph_visited (NODE_CNT )

integer buffer cost (NODE_CNT)

call init_input (graph_nodes(out)

graph_edges(out)

graph_mask(out)

136



updating_graph_mask(out)

graph_visited (out)

cost (out)

NODE_CNT(out)

EDGE_CNT(out)

MAX_DEGREE(out))

loop

execute part1 kernel1 ( graph_nodes(in)

graph_edges(in)

graph_mask(in)

updating_graph_mask(inout)

graph_visited(in)

cost(inout)

NODE_CNT(in)

)

set STOP (0)

execute part2 kernel2 ( graph_mask(inout)

updating_graph_mask(inout)

graph_visited(inout)

STOP(inout)

NODE_CNT(in)

)

while STOP eq 1

call disp_output (cost(in) NODE_CNT(in))

end

Here, the DEFG declare, call, and execute statements function as was described in

the first example. This example introduces the loop, set, and while DEFG statements

to manage the required looping behavior. The loop statement denotes the beginning

of a processing loop. The while statement denotes the end of the processing loop and

provides the loop-exit condition. The set statement assigns the given value to the

scalar variable, STOP. In this example, the value previously set in STOP is changeable

by the second kernel executed and thus forms the loop exit control, which is managed

by the second kernel.

Although this appears to be just a procedural programming loop, the DEFG

optimizer processing uses very carefully the characteristics of this loop to generate

the OpenCL code to move data buffers. For instance, the graph edges buffer, which

is used by the first kernel within the loop, is only moved once from the CPU to the

137



GPU. If the (in), (inout), and (out) denotations were coded differently, DEFG could

generate code to move this buffer in each iteration of the loop.

A.4 Common DEFG Design Patterns

DEFG relies heavily on a set of templates to generate the needed OpenCL code. When

these templates are combined with certain DEFG coding techniques, the results are

the DEFG design patterns. This section describes the most commonly used patterns.

Some of them are engaged via the use of certain DEFG statements or keywords.

Other design patterns are invoked by using the common DEFG statements in specific

groupings. By their very nature, these design patterns can be overlapped, and in

certain cases, limited by the presence of other patterns. Most of the complexity in

using these design pattern arises when using the DEFG multiple-GPU card support.

Use of single-GPU DEFG design patterns tends to be straight-forward.

A.4.1 Execution-Flow Design Patterns

DEFG provides the three execution-flow design patterns, described in this section.

These patterns provide the basic processing template that the DEFG code generator

uses to form the C/C++ code.

A.4.1.1 Sequential-Flow Design Pattern

The Sequential-Flow design pattern is always present. It causes the statements fol-

lowing the DEFG declare statement to be executed from top to bottom. The Single-

Kernel Repeat Sequence and Multiple-Kernel Loop Design Patterns, discussed below,

can substantially alter this top-to-bottom ordering.

138



A.4.1.2 Single-Kernel Repeat Sequence Design Pattern

The Single-Kernel Repeat Sequence is a looping design pattern that allows a single

DEFG execute or multi exec statement to be executed a fixed number of times. The

DEFG statement to utilize this pattern is the sequence. It can be used with both the

Sequential-Flow and Multiple-Kernel Design Patterns.

A.4.1.3 Multiple-Kernel Loop Design Pattern

The Multiple-Kernel Loop design pattern is a conditional looping pattern. It is used

within the Sequential-Flow design pattern. The DEFG statements needed to form this

design pattern are the loop and while statements. The Multiple-Kernel Loop design

pattern may not be embedded within itself. In other words, a DEFG loop/while

construct may not contain another loop/while construct. The Single-Kernel Repeat

Sequence design pattern may be used within the Multiple-Kernel Loop design pattern.

A.4.2 Anytime Processing Design Pattern

The Anytime Processing design pattern is used with the Multiple-Kernel Loop design

pattern. This pattern is used to cause a premature exit of the design pattern’s loop.

The criteria to exit the loop can be run-time based, through the use of the DEFG

anytime statement, or data-comparison based, through the use of the DEFG code

morsel.

A.4.3 Application versus Module Design Patterns

Standalone applications, with a C/C++ main() entry function, and callable func-

tions can both be created with DEFG.

139



A.4.3.1 Application Design Pattern

The Application design pattern generates a standalone application and is indicated

by using a DEFG declare application statement.

A.4.3.2 Module Design Pattern

The Module design pattern generates a callable C/C++ function and is indicated

by using the DEFG declare module statement, sometimes followed by one or more

optional DEFG declare parameter statements.

A.4.4 BLAS Design Pattern

The clMath Basic Linear Algebra Subprograms (BLAS) library is provided for OpenCL

[2]. The clMath library was formerly known as APPML. This set of subprograms pro-

vides a set of OpenCL-callable BLAS capabilities. DEFG makes use of the double-

precision matrix multiply API, clAmdBlasDgemm(), from this library with its blas

statement.1 The main difference between execute and blas is that the execute state-

ment executes a specific OpenCL kernel, and the blas statement executes the desired

subprogram from the library which then calls its own set of OpenCL kernels.

A.4.5 Virtual-Pointer/Prefix Sum Design Pattern

DEFG is supplied with several OpenCL kernels that perform parallel prefix sum. We

have found that prefix sum is a common operation performed in DEFG applications.

These kernels can be used by any OpenCL application that needs prefix-sum pro-

cessing. They are specifically included in DEFG to facilitate the developer-use of

prefix sum in assigning offsets in a shared buffer, without the use of low-level syn-

chronization. These kernels are named: bermanPrefixSumP1, bermanPrefixSumP2b,

1Support for additional clMath functions may be added to DEFG at a later date.

140



and getCellValue. They are used in the Breadth-First Search Application, discussed

in Section 5.2.

A.4.6 Multiple GPU Support Design Patterns

When the design of the GPU algorithms used in a DEFG program permit the con-

current use of more than one GPU device, DEFG supports design patterns to enable

the use of multiple GPU devices.

A.4.6.1 Multiple-Execution Design Pattern

With certain applications, it is desirable to split the workload over more than a single

GPU device. This may be done to obtain faster performance, handle larger problems,

or both. DEFG makes this possible with the use of the multi exec statement. With

this capability, DEFG will execute the workload over the group of GPU devices

declared in the declare gpu statement. The basic algorithms in use must be intended

for this high degree of parallelism, and the OpenCL kernels in use must also have been

designed for this mode of use. This pattern is used in the image filters applications,

discussed in Section 5.1. The design pattern described next is often used with this

Multiple-Execution design pattern.

A.4.6.2 Managed Buffer Design Pattern

When the just-described Multiple-Execution design pattern is used, it is often neces-

sary to segment the data passed to each GPU. DEFG provides a number of declare

buffer options to make it possible for DEFG to automatically segment the data. These

options are halo, multi, and nonpartable. In the single-GPU context, these options have

no effect; they are ignored. When the multi exec is used, DEFG buffers are considered

partable, unless a buffer option is supplied. The default partable behavior is to split

the data into equal segments for passing to the selected GPUs. When the nonpartable

141



option is used, the buffer is not segmented and is given, in full, to each GPU. The halo

option is often used with images, because it notifies DEFG that the data contains

small edges. The result of using halo is that edge data is sent to each GPU using the

edge. The multi option is used with the DEFG GLOB variable to handle complex seg-

mentations of the input data. With the DEFG GLOB approach, the C/C++ function

that brings the data into the DEFG-generated program controls the splitting of the

data. It also notifies DEFG-generated program, via DEFG GLOB, how the data is

allocated to the GPU buffers. This option is often needed when graphical data needs

to be processed over more than a single GPU. Use of DEFG GLOB is shown in the

Breadth-First Search application, discussed in Section 5.2.

A.5 DEFG Language Reference

A.5.1 DEFG Statements

This section lists the DEFG statements in alphabetical order. Each DEFG statement

is described, followed by a syntax description and then a very small code example.

The “<” and “>” meta characters, used in the syntax descriptions, are used to denote

names, variables, constants, and literals; the single “[” and ‘]” meta characters are

used to denote optional repeating sequences; and the “|” meta character is used to

denote options. Note that the double “[[” and “]]” character sequences are literal

characters and are part of the actual DEFG syntax.

1. blas Statement

DEFG is able to utilize the clAmdBlasDgemm() BLAS function to perform

double-precision matrix multiplication. To utilize the DEFG blas statement, the

AMD clMath (formerly APPML) library must have already been installed. The

DEFG blas statement is a wrapper around the clAmdBlasDgemm() C/C++

function. Note that this statement requires that all fields be provided. In most

142



cases, the scalar variables must be to be set to 0 or 1 to get the desired results.

Note that the “->” character sequence is part of the actual statement syntax.

In the example below, the linear algebra calculation performed is:

matrix3 = scalar1 ∗matrix1 ∗matrix2 + scalar2 ∗matrix3

Syntax:

blas (<scalar1> * <matrix1> * <matrix2> + <scalar2> * <matrix3> ->

<matrix3>)

Example:

set dZero (0.0)

set dOne (1.0)

blas (dOne * mP * mP + dZero * mW -> mW)

2. broadcast Statement

When a DEFG program is being used in multiple-GPU mode, the broadcast

statement is used to make the contents of a data buffer on a given GPU available

to the other GPUs. The statement’s GPU number must be a constant and

preceded by the “@” character. In the current DEFG implementation, this

statement forces the data buffer to be copied back to the CPU for later usage

by a requesting GPU. This operation is not done as a GPU to GPU copy and,

therefore, tends to be relatively slow.

Syntax:

broadcast (<variable> @<gpu>)

Example:

broadcast (frontier0 @0)

3. call Statement

It is very common for a DEFG program to rely on C/C++ functions to bring

143



data into the DEFG program and to forward the GPU-processed data to the

CPU for further processing or output. The call statement is used to execute

C/C++ functions. The name of the called C/C++ function, and all referenced

DEFG variable names, must follow C/C++ naming conventions and not begin

with either defg or DEFG . The required options in, inout, and out are described

in this manual’s DEFG Statement Options Section. These three options provide

the DEFG Translator with the data movement directions.

Syntax:

call <function name> (<variable>(<direction>) [<variable>(<direction>)] )

where: <function name> is a C/C++ function name

and: <variable> is a DEFG scalar or buffer name

and: <direction> is a direction

Example:

call init input (image1(in) Xdim (out) Ydim (out) BUF SIZE(out))

The DEFG Generated C/C++ code for this call statement would be:

init input(image1, Xdim, Ydim, BUF SIZE);

Whereas, the corresponding declaration in actual C/C++ function could be:

void init input (void * image1, int& Xdim, int& Ydim, int& BUF SIZE);

Note: (1) the function is of type void, and (2) the required use of the C++ call-

by-reference operator, that is, the & character, on all the scalar values passed

between the DEFG-generated code and the C/C++ function. Since the data

buffers are passed as void pointers, they are also passed by reference.

4. code Statement

The DEFG code statement may be used to insert C/C++ code into the gener-

144



ated C/C++ program. These inserted code snippets are called morsels. The

morsel’s code snippet, provided between the “[[” and “]]” markers, is inserted

into the generated program without being parsed or verified. Common uses

for this statement are outputting scalar values (for debugging) and generating

input data (for testing). Note that when outputting GPU results, the GPU’s

data must be current and valid on the CPU. References to any DEFG fields,

from embedded C/C++ code, are not managed by the DEFG optimizer. There-

fore, the DEFG release statement can be used to force a copy of the GPU data

back to the CPU. Obviously, the DEFG code statement can create hard-to-find

software errors; it should only be used with great care.

Syntax:

code [[ <native C/C++ code> ]]

Example:

code [[ printf(”KCNT: %d\n”, KCNT); ]]

5. declare application Statement

Each DEFG application requires a name, which is provided by the declare ap-

plication. The name is listed in the generated C/C++ code along with a DEFG

translation time stamp.

Syntax:

declare application <application name>

where: <application name> is the name used in code generation

Example:

declare application sobel

6. declare buffer Statement

Each data buffer used within a DEFG program must be declared, and all in

145



a single declare buffer statement. The maximum size of the buffers can be

changed with a run-time environment variable, called DEFG MAX BUF. The

data buffers are treated as C/C++ arrays of type double, float, integer or struct.

The DEFG support for struct arrays is limited and these limits are discussed in

the DEFG Data Types Section.

Syntax:

declare buffer <buffer entry> [<buffer entry>]

where: <buffer entry> consists of

<data type> <name> ( <size>) [<buffer option>]

and: <data type> consists of the data type

and: <name> consists of the buffer name

and: <size> consists of the number of occurrences

and: <buffer option> consists of halo | local | multi | nonpartable

Example:

declare integer buffer data1 ( size )

integer buffer data2 ( size )

The halo, local, multi, and nonpartable options are described in the DEFG State-

ment Options Section; the DEFG Advanced Features Section provides addi-

tional information.

7. declare gpu Statement

The gpu declaration determines which device or devices are selected for use.

The devices are normally any GPUs, or the CPU. The GPU selection criteria

are defined as follows:

(a) *: Matches any single device, CPU included.

(b) any: Matches any single GPU, CPU excluded.

146



(c) all: Matches all GPUs.

(d) quoted list: Matches device names listed.

Syntax:

declare gpu <gpu group name> (<gpu criteria>)

where: <gpu group name> is the group name

and: <gpu criteria> consists of * | any | all | < gpu list>

and: < gpu list> consists of a sequence of one or more quoted GPU names.

Two examples:

declare gpu gpuone ( * )

declare gpu gpuone ( ”GeForce GT 220” )

8. declare kernel Statement

The names of the kernel or kernels required are declared with the declare kernel

statement. Each kernel referenced has an internal name, and in most cases a

file name. The internal name must match the actual kernel name and the file

name is the name of the text file containing the kernel code. The text file must

have an extension of “.cl”. Note that there is an option to insert the kernel text

into the DEFG code through the use of the insert code [[ .. ]] phrase. This

kernel insert code option is intended for debugging purposes; that is, for the

temporary execution of small amounts of uncommented kernel code.

Each kernel requires global parameters and may include local sizing pa-

rameters. The current DEFG version uses the [[ .. ]] syntax to contain the

parameters needed for OpenCL. The first parameter is 1D or 2D, denoting the

dimensionality of the data. The next one or two parameters denote the associ-

ated dimension size. Note the use of commas, which is not the normal DEFG

syntax design, and the optional colon character. The optional local parameters,

with one or two values, are preceded by a colon character.

147



Syntax:

declare kernel <kernel name> <kernel file name> (<kernel run-time>)

where: <kernel name> consists of the name of the kernel function

and: <kernel file name> consists of the name of the kernel text file

and: <kernel run time> consists of the sizing parameters

note that <kernel file name> can be replaced by the

insert code [[ .. ]] as shown below.

Three examples:

declare kernel mfavg filter Mfavg Kernels ( [[ 1D,Dim ]] )

declare kernel local sample Samples ( [[ 1D,100:10 ]] )

declare kernel tiny kernel

insert code [[

kernel void tiny kernel( global int* p1){p1[0] = 34; return;}

]] ( [[ 1D,1 ]] )

9. declare module Statement

DEFG has the option to generate C/C++ functions instead of standalone ap-

plications with a C/C++ main entry point. In order to generate a function,

the declare module statement is used. The module name provided becomes the

function name of the generated C/C++ code. The arguments to the C/C++

function are provided with the declare parameter statement, discussed in the

next section.

Syntax:

declare module <module name>

where: <module name> is the name used for the generated function

Example:

declare module sobelc

148



10. declare parameter Statement

When the DEFG declare module statement is used, the arguments to the gen-

erated function are defined using the declare parameter statement. Only the

parameter name is supplied and the name must reference a declared variable or

buffer.

Syntax:

declare parameter <parameter name>

where: <parameter name> matches a declared variable or buffer

Example:

declare parameter image1

11. declare variable Statement

Each developer-defined scalar variable used within a DEFG program must be

declared. All variables are declared within a single declare statement. These

variables are treated as C/C++ variables of type double, float, or integer. Note

that the literal “variable” is not part of this DEFG statement.

Syntax:

declare <variable entry> [<variable entry>]

where: <variable entry> consists of <data type> <name>

Example:

declare integer num1 data1

integer data2

12. end timer Statement

DEFG automatically provides one timer that the developer can use to compute

the run times of DEFG code. See the start timer statement below for a full

description.

149



13. execute Statement

The DEFG execute statement schedules the execution of the kernel on a single

GPU. If the needed input variables and buffers are not already on the GPU,

then copies of these are moved to the GPU. The required options in, inout, and

out express the direction of data movement and are more fully described in

this guide’s Statement Options Section. The correct setting of these options is

critical, as the DEFG optimizer uses their values to efficiently move the variables

and buffers between the devices. The incorrect setting of these options can cause

poor performance and/or incorrect results.

Syntax:

execute <run name> <kernel name> ( [<variable>(<option>)] )

where: <run name> is the unique name of this execution step

and: <kernel name> consists of the kernel name

and: <variable> consists of a variable name

and: <option> is one of in, inout, or out

Example:

execute run1 sobel filter ( image1(in) image2(out) )

14. include Statement

The DEFG include statement may be used to insert C/C++ code into the gen-

erated C/C++ program. The code snippet provided, between the ’[[’ and ’]]’

markers can define C-style macros, as well as, contain C/C++ #include state-

ments. The DEFG include statement can create hard-to-find software errors;

it should only be used after careful consideration as the side effects on its use.

This statement differs from the code statement insertions in that the include

insertions occur at the very beginning of the generated C/C++ program.

Syntax:

150



include [[ <native C/C++ include and similar statements> ]]

Example:

include [[ #define INDEX2(xi,xj,xsize,xind) xind = (xi * xsize) + xj; ]]

15. interchange Statement

The DEFG interchange statement is used to make DEFG programs easier to

understand, faster, and smaller by making it possible to interchange the contents

of two GPU buffers. The interchange occurs without copying the contents back

to the CPU and actually swapping the buffer contents. This statement is often

used when a given kernel is executed more than once and the output of the

previous iteration is the input to the next iteration.

Syntax:

interchange (<variable1> <variable2>)

Example:

loop

execute Run2 Kernel (LR(inout) LRout(out) size(in) stride(in) groupSize(in))

interchange(LR LRout)

while ...

16. loop Statement

The DEFG loop statement is used to repeat a sequence of DEFG statements

a variable number of times. The loop termination condition is handled by a

single variable, checked by the while clause. If more than one condition needs

to be checked, then the while clause has to be preceded by a code morsel that

processes the multiple conditions and returns the results in one scalar DEFG

variable. DEFG loop statements may not be layered or embedded in other loops,

but the DEFG loop statement may contain one or more sequence statements.

These DEFG domain-specific language limits make it possible for the DEFG

151



optimizer to efficiently manage the OpenCL buffer transfers within the loop via

static optimizations.

Syntax:

loop <DEFG statements> while <condition>

where: <DEFG statements> consists of executable statements

and: <condition> consists of

<variable name> <operator> <numeric constant>

and: <operator> consists of one of eq ne lt le gt ge.

Example:

loop

//maybe execute some DEFG code

set again (0)

//execute some DEFG code that updates again variable

while again eq 1

The eq ne lt le gt and ge operators represent =, 6=, <, etc.

17. multi exec Statement

The DEFG multi exec statement schedules the execution of the kernel on two

or more GPUs. The associated declare gpu statement must have provided for

at least two GPUs, or the multi exec statement fails with an error. More in-

formation on the use of this statement is available in the execute statement

description and in the Multiple GPU Support Section. The required options in,

inout, and out are described in this guide’s Statement Options Section.

Syntax:

multi exec <run name> <kernel name> ( [<variable>(<option>)] )

where: <run name> is the unique name of this execution step

152



and: <kernel name> consists of the kernel name

and: <variable> consists of a variable name

and: <option> is one of in, inout, or out

Example:

multi exec run1 sobel filter ( image1(in) image2(out) )

18. output timer Statement

DEFG automatically provides one timer that the developer can use to compute

the run times of DEFG code. See the start timer statement for a full description.

19. release Statement

In certain instances, the DEFG optimizer needs to be informed that a variable

or buffer must contain valid contents on the CPU. The release statement pro-

vides this functionality. As an example, a release statement is required for any

variable or buffer that is returned to a calling program from a DEFG module;

this statement guarantees the data being returned to the caller is valid. This

statement may also be used before the end timer statement to verify that the

referenced CPU field has valid, not old, contents.

Syntax:

release (<name>)

where: <name> consists of the name of a variable

Example:

release (image2)

20. sequence Statement

The DEFG sequence statement is a looping construct and must be immediately

followed by an associated execute or multi exec statement. The associated exe-

cute or multi exec statement is re-executed, in a sequence, the number of times

153



specified. The DEFG CNT system variable provides an iteration count. This

DEFG CNT system variable is zero-indexed.

Syntax:

sequence <count> times <exec>

where: <count> consists of a variable or constant

and: <exec> consists of an execute or multi exec statement

Example:

sequence NODE CNT times

execute run1 FWarshall ( buffer1(inout) buffer2(inout) DEFG CNT(in))

21. set Statement

The DEFG set statement is used to copy the value of a constant to a scalar

variable. Note: for scalar-variable-to-scalar-variable copying, a code morsel

may be used.

Syntax:

set <name>(<value>)

where: <name> consists of the name of the variable

and: <value> consists of the constant value given to the variable

Example:

set STOP (0)

22. start timer Statement

DEFG automatically provides one timer that the developer may use to compute

simple run times of DEFG code. Note that to get accurate times, the data being

processed or updated likely has to be copied back to the CPU, otherwise the

the full time used may not be captured. This may require use of the release

statement to force the updated buffers to the CPU.

154



Three simple statements are used to compute run times: start timer, end timer,

and output timer. Here is an example of their use.

Example:

start timer

// do something to update image2

release (image2)

end timer

// optionally, do something un-timed

output timer

23. while Statement

The DEFG while statement is always paired with a preceding loop statement.

See the loop statement description for the details of the while statement.

A.5.2 DEFG Statement Options

1. halo Option

When the multi exec statement is used, DEFG has the ability to share buffer

data between the selected GPUs. The halo option is used on the declare buffer

statement to provide DEFG with the number of edge cells (for 1D processing) or

rows (for 2D processing) that must be sent to both GPUs that are processing the

edge. The GPU processing boundaries are at the edges and when halo is used,

DEFG manages the needed duplication of data for each GPU. This statement

option is most commonly used with image filters where each pixel’s processing

requires the data values of the neighboring pixels.

2. in/inout/out/* Option

In this discussion, field refers to either a DEFG buffer or variable. The options

155



in, inout, out and * are used to inform the DEFG optimizer how a given field

on a DEFG call, execute, or multi exec statement is used. The field can be used

for input, output, or both. The * can be used with the call statement to mark

a given field as don’t care, which means the DEFG optimizer does not need to

move any data for this field. The in marks a field as input ; the out marks a field

as output ; and inout marks a field as both input and output ; A given in, inout or

out is appropriate for only the DEFG statement it appears with. For example,

an in associated with a given field on a call statement means that field is used

for input by this called function. Likewise, an in associated with a given field

on an execute statement means that field is used for input by this GPU kernel.

A note of caution: if these options are not set correctly, then a given DEFG

program may perform poorly, due to unnecessary data moves between the de-

vices. Worse, erroneous results may produced due to the necessary data moves

not being performed. The correct results may be contained in the GPU’s mem-

ory, but if these options are not set correctly, then these results may not be

present on the CPU. The DEFG translator does not parse the GPU kernel code

to verify passed fields and their option settings.

3. local Option

Local is a declare buffer statement option that is used to mark a buffer as local to

the GPU. Buffers of this type are not transferred between the CPU and GPU,

and they are usually restricted in size. Local buffers are normally processed by

the kernels more quickly than buffers kept in GPU global storage. Note that

each GPU work-group has private local storage.

4. multi Option

When the multi exec statement is used, a sharing of the workload between GPUs

is implied. In cases where the other declare buffer statement options do not

156



provide the required data segmentation, the multi option is available. When

this option is used, DEFG relies on the C/C++ program loading the given data

buffer to set the DEFG GLOB variable (actually a C/C++ structure) with the

information to determine which area of the given buffer goes to a given GPU.

This option is complex and not easy to use. As the name implies, this variable

is global and shared by all multi buffers. It should be used as a solution of last

resort.

5. nonpartable Option

The nonpartable option makes it possible to mark a buffer as non-segmented

when the multi exec statement is used. A buffer declared with the nonpartable

option is passed, in full, to each GPU. This option is very useful when the same

read-only data must be passed to each GPU participating in a multi exec step.

6. [[ . . . ]] Option

The [[ . . . ]] construct is used to pass the exact characters between the “[[”

and “]]” delimiters to the DEFG run-time code. In the case of C/C++ code,

the code is processed by the CPU C/C++ compiler or the OpenCL driver,

as appropriate. In the case of global and optional local sizing parameters in

the DEFG declare gpu statement, these parameters are passed to the OpenCL

clEnqueueNDRangeKernel() function. Note that these NDRange values

may be adjusted automatically when multiple-GPU support is active.

A.5.3 DEFG Data Types

This section discusses data type support in DEFG. First, note that the common

C/C++ char and string data types are not directly supported by DEFG. The DEFG

code morsels make it possible to deal with char and string data types, from within

DEFG, but the majority of the DEFG statements do not support them. The remain-

157



der of this section describes the data types supported by DEFG.

A.5.3.1 Data Type: double

The DEFG double data type maps directly to the C/C++ double data type provided

by the C/C++ compiler.

A.5.3.2 Data Type: float

The DEFG float data type maps directly to the C/C++ float data type provided by

the C/C++ compiler.

A.5.3.3 Data Type: integer

The DEFG integer data type maps directly to the C/C++ int data type provided by

the C/C++ compiler.

A.5.3.4 Data Type: struct

The DEFG direct support of C/C++ structures is limited to copying the contents of

the struct variables through DEFG. When accessing the actual fields within a struct,

a DEFG code statement must be used.

A.5.4 DEFG System Variables

DEFG provides a number of internal system variables. These variables make it pos-

sible for the DEFG developer to access DEFG internal information.

A.5.4.1 DEFG CNT Variable

DEFG CNT is a read-only DEFG system variable that provides the current loop count

when a DEFG sequence is used. It is a zero-indexed counter. When this variable is

read outside of a sequence loop, it has a value of zero.

158



A.5.4.2 DEFG GLOB Structure

The DEFG GLOB variable is a C/C++ structure that is internal to DEFG. It is used

to manage the partitioning of data buffers when the multi option is used on a buffer.

The values in DEFG GLOB are normally set by the C/C++ function that populates

the data buffers. This structure must be passed as an argument to any such C/C++

function. See the DEFG Advanced Features Section for more details.

A.5.4.3 DEFG GPU Variable

The read-only DEFG system variable DEFG GPU provides the ordinal of the current

GPU. This variable is intended to be used with the multi exec statement, when it is

necessary to know which of the selected GPUs is active. This variable is zero indexed.

A.5.4.4 DEFG GPU COUNT Variable

The read-only DEFG system variable DEFG GPU COUNT provides the maximum

number of GPUs active for this program. The number of GPUs active is determined

by the declare gpu statement and the actual hardware configuration.

A.5.5 DEFG Environment Variables

These DEFG environment variables can be accessed via the operating system. They

can be used to influence the behavior of the DEFG Translator compilation and run-

time behavior of the generated DEFG program.

A.5.5.1 DEFG MAX BUF Environment Variable

The DEFG MAX BUF environment variable is used at run time to set the size of CPU

buffers used to hold DEFG data buffers. The default value is 4MB. Larger values can

be used, depending on the available RAM on the CPU and GPU.

159



A.5.5.2 DEFG TIMERS Environment Variable

The DEFG TIMERS environment variable is used at compile time. This is not a

run-time setting. When this environment variable is set to a value of “1,” many of

the low-level OpenCL calls for buffer movement and kernel execution are timed and

displayed. This feature can be helpful for DEFG debugging and tuning; it should

only be used for debugging and testing, as it impacts the overall performance and

stability of DEFG.

A.5.6 DEFG Utilities and Functions

DEFG provides additional added features to assist the developer.

A.5.6.1 rsDevices Utility

rsDevices is a small utility program that can be used to list the available GPUs on a

given CPU. The output lists the OpenCL platforms available and then each OpenCL-

supported device. Each device name is followed by “|CPU” or “|GPU”, depending

on its device type. These device names can be used with the DEFG declare gpu

statement’s quoted list of GPU names.

Here is the output from a sample Linux execution:

$ ./rsDevices

platform: Advanced Micro Devices, Inc.

platform: NVIDIA Corporation

Six-Core AMD Opteron(tm) Processor 2427|(CPU)

Tesla S2050|(GPU)

Tesla S2050|(GPU)

$

160



A.5.6.2 Loader Functions

DEFG provides a number of C/C++ functions to input data files, output results,

and perform simple calculations. These functions are supplied in the ”defg loaders.h”

include file. Additional loader functions can be added to this header file or additional

header files listed in DEFG. These new headers can be referenced with a DEFG include

statement. A partial list of the commonly used ”defg loaders.h” functions is given in

Table A.1.2

Facility Description Function
Name

ImageLoader From the AMD SDK init input()
Floyd Warshall Graph Loader From the AMD SDK init input()
BFS Graph Loader From Rodinia Benchmark init input()
Array Partition Partition for 2-GPU use ArrayPartition2GPU()
Array Merge Merge for 2-GPU use MergeCost2GPU()
Dump Scalar Output a scalar variable dumpScalar()
Dump Buffer Output a buffer dumpBuffer()
Debug Exit Immediate processing stop debugExit
Increment Increment a scalar inc()
Decrement Decrement a scalar dec()

Table A.1: A Partial List of DEFG Loaders and Functions

A developer should review the ”defg loaders.h” include file to see exactly which

functions are available and the types of data processed. New application-specific

functions can be added to this header file.

A.6 DEFG Advanced Features

A.6.1 Direct Insertion of C/C++ Code

The DEFG optimizer uses the limited domain of the DEFG language to assist in

the generation of efficient OpenCL code. Specifically, this domain limit makes it

possible for the optimizer to manage the scalar variables and data buffers in ways

2Duplicate function names are managed through the use of application name C-style macros; see
the actual header file for the names and details.

161



that avoid unneeded OpenCL data movement operations between the CPU and GPU.

This optimizer does not process the actions performed in the DEFG code statements,

referred to as DEFG morsels. Therefore, morsels that modify data, or use assumptions

as to the current CPU or GPU location of modified data, should be written with great

care. The release statement can be used to notify DEFG that a given buffer needs

to be made current on the CPU. The DEFG optimizer may move, or not move,

data between the CPU and GPU at expected times; it may have pre-staged the data

movement or postponed the data movement, depending on factors unique to the

optimizer.

A.6.2 Multiple GPU Support

When an application is written in DEFG, the application is limited by the capabil-

ities of the resources available. A single-GPU DEFG application is limited to the

resources of one GPU. If the data being processed is even one byte larger than the

available GPU memory, the application likely will not execute. Therefore, DEFG

supplies the capability to utilize more than a single GPU. For applications that per-

mit a higher degree of parallelism, this capability makes it possible to obtain faster

performance, handle larger problems, or both. When this capability is engaged with

the multi exec statement, the processing is spread over the GPUs selected by the de-

clare gpu statement. It cannot be over emphasized that this multiple GPU support

capability is limited by the algorithms in use and the implementation of the OpenCL

kernels used. This feature simplifies the CPU coding to support multiple GPUs; it

does not automatically turn an arbitrary, single-GPU application into a new one with

multiple-GPU support.

162



A.6.3 Support for Mobile GPU Platforms

DEFG has the potential to be used on mobile platform hardware, when the Linux

operating system is used. We do not anticipate DEFG being used with the An-

droid operating system. C/C++ programs generated by DEFG have been built and

executed on the ARM Cortex AP processor used with the ORDOID U3 [37]. Un-

fortunately, the Linux OpenCL driver for the integrated ARM Mali-400 Quad Core

440MHz GPU was not available at the time of our testing.

A.6.4 Use of DEFG GLOB

Caveat: DEFG GLOB is a very advanced DEFG feature and should only be used by

experienced C/C++ developers who have determined that the other DEFG buffer

options will not provide the functionality they need.

When the DEFG multi option is added to a buffer and multi exec is used, the

buffer’s layout is then managed by the C/C++ function that populates the buffer.

This capability provides a mechanism for the developer to influence what data does

to each GPU, with DEFG performing the data transfers to the selected GPUs. The

DEFG GLOB variable is a C/C++ structure that contains offsets and lengths, which

are used to manage associated DEFG buffers. The actual structure is declared in

“defg template.txt” and its format is DEFG-version dependent.

A.6.5 Global and Local Range Settings

The DEFG declare kernel statement requires that the OpenCL global range be set.

This parameter determines the number of device threads started and how they are

to be managed. OpenCL has the capability to set the local range automatically and

DEFG routinely uses this capability. In some instances, the developer may wish to

set this local range setting directly. In this event, the global range within the “[[” and

“]]” phrase is followed by a colon character and then the local range is given. The use

163



of local storage by a kernel is likely to require the developer to set the corresponding

declare kernel statement’s local range. See the declare kernel statement description for

its full syntax.

A.6.6 A Few DEFG Advanced Techniques

A.6.6.1 Changing the DEFG Run-Time Output Location

DEFG generates informational output and error messages at run time. The generated

DEFG code uses the DEFG PRINTF C-style macro to route output to the printf()

function. This routing may be changed by updating the DEFG PRINTF macro

content in the “defg template.txt” file.

A.6.6.2 Changing the DEFG Exit Behavior

At run time, DEFG will sometimes abort the processing due to unrecoverable errors.

The generated DEFG code uses the DEFG EXIT C-style macro to route execution

to the exit() function. This routing may be changed by updating the DEFG EXIT

macro setting in the generated code.

A.6.6.3 Additional Anytime Exit Capabilities

Additional Anytime-like processing can be inserted into a DEFG application with code

morsels. This basically involves using a C/C++ if statement and goto statement to

jump out of the DEFG loop.3 It will be necessary examine at the generated code to

determine the label of the C/C++ loop exit. This is a very advanced DEFG feature

and is DEFG-version dependent. It should only be used as a solution of last resort.

3The use of a goto statement is related to the scoping of internal DEFG C/C++ variables.

164



A.6.6.4 DEFG call statement is preferred over DEFG code morsel

As stated earlier, the code morsel can easily introduce errors. This small section

discusses why the call statement is preferred over the code statement.

The DEFG call statement contains the in/out/inout/* settings. These inform the

DEFG optimizer how the fields being given to the called function are used. Using

this information, the optimizer moves the needed input data to the CPU and moves

updated DEFG variables and buffers back to the GPU. The DEFG code morsels

lack this capability. DEFG will insert the provided C/C++ code into the generated

program at the given location, but DEFG does not monitor the variables and buffers

accessed. Data read in the morsel may be invalid and updates done in the morsel

may be lost. It is the developer’s responsibility to be certain that the data used and

updated in the morsel is correctly used.

A.7 How to Execute the DEFG Translator

In order to execute the DEFG translator under Windows, the translate batch file is

supplied. This batch file will execute the DEFG parser, optimizer, and code generator.

The DEFG source code must be in a text file with the extension type of “.txt” and

the resulting program will have an extension of type “.cpp”. The translate batch

file expects one input command-line argument, and that must be the name of the

source file to be translated from DEFG to C/C++. The example below translates

“sobel.txt” to “sobel.cpp”.

Example:

translate sobel

165



A.8 DEFG Error Handling

A.8.1 Translator Errors

The DEFG Translator has somewhat limited error reporting capabilities and will

only report one translation error at a time. It may take multiple editing sessions

and translator executions to find all the errors present. When an error occurs, a

corresponding “.cpp” file will not be generated.

Example: Translation with an error on line 21

C>translate sobelerr

C>echo off

“******** TRANSLATE ********”

“sobelerr parse”

sobelerr.txt line 21:2 extraneous input ’this is an error’ expecting END

C>

A.8.2 Run-Time Errors

DEFG translates the DEFG input into a C/C++ program that is then compiled

and executed. This C/C++ program can produce run-time errors. When DEFG-

generated code senses a run-time error condition, its default behavior is to describe

the error with a call to the C/C++ printf( ) function. This behavior can be adjusted

via the DEFG PRINTF C-style macro defined in “defg template.txt”. Here is the

display of a run-time error showing an OpenCL failure:

Example from Windows:

C>sobel

NOTICE: run 1 CPU

clCreateKernel (332) status: -44

C>

166



The “NOTICE:” line is a DEFG informational message and not an error. The sub-

sequent line is the actual error output message. The “clCreateKernel” is the name

of the OpenCL API function that failed, “(322)” is the source code line number dis-

playing this error message, and the -44 is the returned OpenCL error code. These

displayed error codes are normally listed and described in the “opencl.h” header file.

A.8.3 Useful Debugging Techniques

The C/C++ programs generated by DEFG, like any other programs, may contain

errors. Here are some debugging techniques that are known to be useful with DEFG

problems and programming mistakes:

• Have available, and use, an existing test case with known results.

• Debug the DEFG program first on a simple computer using a single DEFG

device before debugging it on a complex server with high-powered GPUs. Any

Windows personal computer large enough to support C/C++ compilers can

run OpenCL, with or without an actual GPU defined to OpenCL.

• If possible, debug each program portion separately. DEFG program lines can

be commented out by inserting “//” at the beginning of the program line.

• Use call statements to the dumpScalar() and dumpBuffer() functions to display

intermediate results.

• Use code morsels to output descriptive text, as well as processing results.

• Use additional temporary DEFG data buffers to move intermediate results to

the CPU for additional analysis.

• Inspect the generated C/C++ code. It is possible to temporarily modify this

code with additional debugging statements.

167



APPENDIX B

Source Code and Other Items

B.1 Hardware and Software Description

We used three different platforms in our research. The vast majority of our work

was done on the University of Colorado Denver, Department of Computer Science

and Engineering’s Penguin Server, known as Hydra. In certain instances, two other

computers were used. All three are described below in Table B.1.

Name Configuration Data

Server: Hydra Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427
2.2 GHz, 24 GB RAM, using NVIDIA OpenCL SDK 4.0, two NVIDIA
Tesla T20s, each with 14 Compute Units, 1147 MHz and 2687M RAM
OpenCL: CUDA vers: 5 (driver) and OpenCL 1.1 CUDA 4.2.1
Compiler: gcc version 4.4.4

Server: Rabbit Single Server, Linux 2.6.32-5-686, AMD Sempron 145, 2.8 GHz, 2 GB
RAM, using AMD SDK 2.8, GPU1: AMD HD 7850 2GB RAM and
GPU2: AMD Radeon R9 270X 2GB RAM
OpenCL: AMD Catalyst 13.25.5 (driver) and AMD OpenCL 2.8 SDK
Compiler: gcc version 4.4.5 (Debian 4.4.5-8)

CPU-only Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM (no GPU)
OpenCL: Support via AMD OpenCL 2.8 SDK x86 CPU driver
Compiler: Microsoft VC 2008

Table B.1: Testing Configurations, Hardware and Software

B.2 Suggested DEFG Technical Improvements

DEFG, as with many other complex software implementations, can benefit from added

features and existing-feature enhancements. Below is a list of potential DEFG fea-

168



tures, in no particular order, that we have considered for future addition to DEFG.

1. Add a DEFG optimizer step to verify the in/out/inout option settings. These

settings are used with execution, multi exec and call statements. Currently,

DEFG does not cross check the option settings; the option settings coded by

the developer might be syntactically valid, but semantically wrong. Using the

wrong option settings can cause DEFG to omit required transfer operations,

creating hard-to-find failures. Verification would facilitate finding DEFG coding

errors.

2. The DEFG code statement, the morsel, could be enhanced to include an optional

list of DEFG field names and their associated in/out/inout settings. This would

make it possible for the DEFG optimizer to assist in always having valid data

present in the DEFG variables and buffers. In the present version, this is the

responsibility of the developer.

3. DEFG currently allocates a DEFG MAX BUF-sized CPU memory segment for

each declared buffer. This approach can waste a significant amount of CPU

memory. Once the CPU buffer is loaded with data, DEFG could release the

unused CPU memory. The DEFG CPU buffers are currently allocated with a

C++ malloc() call. The unused memory could be carefully released with an

associated realloc() call. The performance implications of this change would

need to be explored. We note that the memory allocated on the GPU is not

allocated in fixed-size blocks; its allocation size is determined by the width of

the data stored.

4. The DEFG interchange statement is often used, after an execute or multi exec

statement, to swap the contents of two DEFG buffers. With a syntax change to

the execute and multi exec statements, the interchange statement functionality

169



could be included within the execute and multi exec. This would make the

DEFG programs simpler, and likely faster.

5. DEFG has the ability to automatically collect run-time statistics for each major

OpenCL API request. This facility could be expanded to collect timing data for

all major DEFG actions, including the calls to CPU functions and the execution

of DEFG morsels. The added information could then be used to obtain detailed

run-time profile statistics, which are often quite helpful in achieving high levels

of performance.

6. The DEFG optimization is currently performed statically; it is completed just

before program generation. In the future, DEFG could also have the option to

utilize dynamic (run-time) optimization of the OpenCL buffer transfers. This

change would greatly simplify the static optimization and likely permit DEFG

to provide additional looping structures.

B.3 The DEFG Mini-Experiment with Four GPUs

One of our goals is to produce applications that utilize multiple GPUs. In this short

discussion, we describe our results from performing a mini-experiment with a small,

4-GPU, DEFG application. We wrote a computationally intense DEFG diagnostic

program, called DIAG4WAY; it performed, 26 times, the multi exec of a small kernel.

This kernel mainly executed this step:

for (int i=0; i < 1024*512; i++) {

d = d + i; e = (int) (sqrt( (float) d)); d = d - e; d = d + e;

}

The purpose of this contrived workload is obviously to keep the GPU very busy.

We would have preferred to run our existing MEDIAN5M application in this 4-GPU

environment; however, as we lacked administrator privileges on the 4-GPU server, we

were not able to install the needed AMD SDK to provide the image-loading modules

170



Figure B.1: Run-Time Comparison with 1, 2 and 4 GPUs

needed by our filtering applications. We used DIAG4WAY instead, and we obtained

interesting results. The DIAG4WAY source code is in Section B.4.

We ran our diagnostic four times for each of the 1-GPU, 2-GPU, and 4-GPU

execution modes and averaged the respective run times. These run-time averages

are, 1-GPU: 0.797 secs, 2-GPU: 0.409 secs, and 4-GPU: 0.220 secs. Figure B.1 graphs

the execution seconds against the number of GPUs. The 2-GPU test shows a 1.95

speedup and the 4-GPU shows a 3.62 speedup.

DEFG shows a significant multiple-GPU performance gain with this very compu-

tationally intense application. A special thanks to Mark Smith, at the Exxact Cor-

poration1, for providing a weekend of access to one of their GPU-equipped servers.

This server had 32 Xeon processors (E5-2660 @ 2.20GHz) and four NVIDA K20,

Kepler-generation GPU cards, each with 5119MB of RAM.

1Exxact Corporation, Fremont, CA; A distributor of AMD, NVIDIA, and PNY products; URL:
www.exxactcorp.com

171



B.4 DEFG Application Source Code

B.4.1 BFSDP2GPU Application

001. // bfsdp2gpu.txt: BFS (Harish-like version) with VPs for 2 GPUs

002. declare application bfsdp2gpu

003. declare integer NODE_CNT (0)

004. integer NODE_CNTt2 (0)

005. integer NODE_CNT0 (0)

006. integer NODE_CNT0p1 (0)

007. integer NODE_CNT1 (0)

008. integer NODE_CNT1p1 (0)

009. integer KCNT (0)

010. integer KCNT0 (0)

011. integer KCNT1 (0)

012. integer EDGE_CNT (0)

013. integer MAX_DEGREE (0)

014. integer STOP (0)

015. integer STOP0 (0)

016. integer STOP1 (0)

017. integer LIST_WIDTH (150000)

018. integer listused0 (0)

019. integer listused1 (0)

020. declare gpu gpugrp ( all )

021. declare kernel bermanPrefixSumP1 bfsdp_kernelv3 ( [[ 1D,NODE_CNTt2 ]] )

022. kernel bermanPrefixSumP2b bfsdp_kernelv3 ( [[ 1D,NODE_CNTt2 ]] )

023. kernel getCellValue bfsdp_kernelv3 ( [[ 1D,1 ]] )

024. kernel kernel1a2 bfsdp_kernelv3 ( [[ 1D,NODE_CNT ]] )

025. kernel kernel1b bfsdp_kernelv3( [[ 1D,EDGE_CNT ]] )

026. kernel kernel2 bfsdp_kernelv3 ( [[ 1D,NODE_CNT ]] )

027. declare integer buffer graph_edges (EDGE_CNT ) nonpartable

028. integer buffer frontier0 (LIST_WIDTH) nonpartable // list

029. integer buffer payload0 (LIST_WIDTH) nonpartable // list

030. integer buffer frontier1 (LIST_WIDTH) nonpartable // list

031. integer buffer payload1 (LIST_WIDTH) nonpartable // list

032. struct (8) buffer graph_nodes (NODE_CNT) multi

033. integer buffer graph_mask (NODE_CNT) multi

034. integer buffer updating_graph_mask (NODE_CNT) multi

035. integer buffer graph_visited (NODE_CNT) multi

036. integer buffer cost (NODE_CNT) multi

037. integer buffer offset (NODE_CNT) multi

038. integer buffer offset2 (NODE_CNT) multi

039. call init_input (graph_nodes(out)

040. graph_edges(out)

041. graph_mask(out)

042. updating_graph_mask(out)

043. graph_visited (out)

044. cost(out)

045. NODE_CNT(in)

046. EDGE_CNT(out)

047. MAX_DEGREE(out)

048. )

049. // partition nodes and some other buffers for multi-GPU use

050. call ArrayPartition2GPU2 (graph_nodes (inout)

051. graph_visited (inout)

052. cost (inout)

053. graph_mask (inout)

054. updating_graph_mask (inout)

055. NODE_CNT0(out)

056. NODE_CNT1(out)

057. NODE_CNT(in)

058. DEFG_GLOB(*)

(Continued on next page)

172



(Continued from previous page)

059. )

060. code [[ NODE_CNT0p1 = NODE_CNT0 + 1; NODE_CNT1p1 = NODE_CNT1 + 1;

NODE_CNTt2 = (NODE_CNT+1) * 2; ]]

061. loop

062. multi_exec run2 bermanPrefixSumP1 (offset (out)

063. graph_mask(in)

064. NODE_CNT0p1 @0 (in)

065. NODE_CNT1p1 @1 (in)

066. )

067. code [[ KCNT0 = (int) ceil((log((double) NODE_CNT0p1))/log(2.0)); ]]

068. code [[ KCNT1 = (int) ceil((log((double) NODE_CNT1p1))/log(2.0)); ]]

069. code [[ KCNT = (KCNT0 >= KCNT1) ? KCNT0 : KCNT1; ]]

070. sequence KCNT times

071. multi_exec run2 bermanPrefixSumP2b (offset2 (inout)

072. offset (inout)

073. DEFG_CNT(in)

074. NODE_CNT0p1 @0 (in)

075. NODE_CNT1p1 @1 (in)

076. )

077. code [[ if ((KCNT % 2) == 0) {cl_mem s = defg_buffer_offset[0];

defg_buffer_offset[0] = defg_buffer_offset2[0];

defg_buffer_offset2[0] = s; } ]]

078. code [[ if ((KCNT % 2) == 0) {cl_mem s = defg_buffer_offset[1];

defg_buffer_offset[1] = defg_buffer_offset2[1];

defg_buffer_offset2[1] = s; } ]]

079. multi_exec run3 getCellValue (offset2 (in)

080. NODE_CNT0 @0 (in)

081. NODE_CNT1 @1 (in)

082. listused0 @0 (out)

083. listused1 @1 (out)

084. )

085. call sync (listused0(in))

086. call sync (listused1(in))

087. code [[ if (listused0 >= LIST_WIDTH || listused1 >= LIST_WIDTH) {

088. printf("Error list overflow %d %d.\n",

listused0, listused1); exit(0);

089. } ]]

090. multi_exec s2 kernel1a2 (graph_nodes(in)

091. graph_edges (in)

092. graph_mask (inout)

093. offset2 (in)

094. cost (in)

095. frontier0 @0 (out)

096. payload0 @0 (out)

097. NODE_CNT0 @0 (in)

098. frontier1 @1 (out)

099. payload1 @1 (out)

100. NODE_CNT1 @1 (in)

101. )

102. broadcast (frontier0 @0)

103. broadcast (payload0 @0)

104. broadcast (frontier1 @1)

105. broadcast (payload1 @1)

106. multi_exec s3 kernel1b (frontier0(in)

107. payload0(in)

108. listused0(in)

109. frontier1(in)

110. payload1(in)

111. listused1(in)

112. updating_graph_mask (inout)

113. graph_visited (in)

114. cost (inout)

(Continued on next page)

173



(Continued from previous page)

115. DEFG_GPU(in) // which GPU

116. )

117. set STOP0 (0)

118. set STOP1 (0)

119. set STOP (0)

120. multi_exec s4 kernel2 (graph_nodes(in)

121. graph_mask(inout)

122. updating_graph_mask(inout)

123. graph_visited(inout)

124. STOP0 @0(inout)

125. STOP1 @1(inout)

126 // STOP (inout) // debug, is wrong

127. NODE_CNT0 @0(in)

128. NODE_CNT1 @1(in)

129. )

130. call logicalor(STOP(out) STOP0(in) STOP1(in))

131. while STOP eq 1

132. // merge costs into 1 array for testing

133. call MergeCost2GPU2(cost(inout) DEFG_GLOB(*))

134. call disp_output (cost(*) NODE_CNT(*))

135. end

OpenCL Kernels:

001. // kernel for DEFG BFSDP2GPU with PrefixSum-based buffer allocation

002. // using "berman" 2-phase PrefixSum version

003. //

004. // macros used to seperate device and node for VP

005. #define MAP_DEVICE(x) (x & 1)

006. #define MAP_NODE(x) (x >> 1)

007. typedef struct

008. {

009. int starting;

010. int no_of_edges;

011. }Node;

012. ////

013. //// PrefixSum kernels -- two versions

014. ////

015. // Simple 1-thread prefix sum -- slow but reliable -- unused

016. __kernel void kernelPrefixSum(

017. __global int* output, // buffer of sums

018. __global int* input, // buffer of values

019. __global int* block, // workarea

020. const int length) // length of buffers

021. {

022. if (length < 1) return;

023. // clearly, i must be increasing with each call...

024. // NOTICE: length+1; goes 1 past end of normal buffer !!!!

025. for (int k=0; k < length+1; k++) {

026. if (k == 0) {

027. output[0] = 0;

028. } else {

029. output[k] = output[k-1] + input[k-1];

030. }

031. }

032. return;

033. }

034. // Berman page 378, part 1

035. // global_work is size

036. __kernel void bermanPrefixSumP1(

037. __global int* output, // buffer of partial sums

038. __global int* input, // buffer of values

039. const int size) // size of buffer

040. {

041. int offset = get_global_id(0);

(Continued on next page)

174



(Continued from previous page)

042. if (offset > size) return;

043. if (offset == 0) {

044. output[0] = 0;

045. } else if (offset == 1) {

046. output[1] = input[0];

047. } else {

048. output[offset] = input[offset-2] + input[offset-1];

049. }

050. return;

051. }

052. // Berman page 378, part 2

053. __kernel void bermanPrefixSumP2b(

054. __global int* buffer2, // buffer of new partial sums

055. __global int* buffer1, // buffer of partial sums

056. const int CNT,

057. const int size) // size of buffer

058. {

059. int offset = get_global_id(0);

060. if (offset >= size) return;

061. int k = 1 << (CNT + 1);

062. if ((CNT %2) == 0) {

063. // buffer1 --> buffer2

064. buffer2[offset] = buffer1[offset];

065. if (offset < (k + 1)) return;

066. buffer2[offset] = buffer1[offset - k] + buffer1[offset];

067. } else {

068. // buffer2 --> buffer1

069. buffer1[offset] = buffer2[offset];

070. if (offset < (k + 1)) return;

071. buffer1[offset] = buffer2[offset - k] + buffer2[offset];

072. }

073. return;

074. }

075. ////

076. //// getCellValue:

077. ////

078. __kernel void getCellValue(

079. __global int* buffer,

080. const int offset,

081. __global int* value

082. )

083. {

084. *value = buffer[offset];

085. }

086. ////

087. //// kernel1a2

088. ////

089. __kernel void kernel1a2(__global const Node* g_graph_nodes,

090. __global int* g_graph_edges,

091. __global int* g_graph_mask,

092. __global int* g_graph_offset,

093. __global int* g_cost,

094. __global int* g_frontier,

095. __global int* g_payload,

096. int no_of_nodes) {

097.

098. unsigned int tid = get_global_id(0);

099. // in range, in frontier, and has edges

100. if(tid < no_of_nodes && g_graph_mask[tid] != 0)

101. {

102. g_graph_mask[tid] = 0;

103. if (g_graph_nodes[tid].no_of_edges > 0)

104. {

105. int cost = g_cost[tid];

(Continued on next page)

175



(Continued from previous page)

106. int max = (g_graph_nodes[tid].no_of_edges + g_graph_nodes[tid].starting);

107. int index = g_graph_offset[tid];

108. for(int i = g_graph_nodes[tid].starting; i < max; i++)

109. {

110. int id = g_graph_edges[i];

111. g_frontier[index] = id;

112. g_payload[index] = cost;

113. index++;

114. }

115. }

116. }

117. }

118. ////

119. //// kernel1b

120. ////

121. __kernel void kernel1b(

122. __global int* g_frontier0,

123. __global int* g_payload0,

124. int list_size0,

125. __global int* g_frontier1,

126. __global int* g_payload1,

127. int list_size1,

128. __global int* g_updating_graph_mask,

129. __global int* g_graph_visited,

130. __global int* g_cost,

131. int gpu_id)

132. {

133. int index = get_global_id(0);

134. if (index < list_size0) {

135. int id = g_frontier0[index];

136. if (MAP_DEVICE(id) == gpu_id) {

137. int nid = MAP_NODE(id);

138. if(!g_graph_visited[nid])

139. {

140. g_cost[nid] = g_payload0[index] + 1;

141. g_updating_graph_mask[nid] = 1;

142. }

143. }

144. }

145. if (index < list_size1) {

146. int id = g_frontier1[index];

147. if (MAP_DEVICE(id) == gpu_id) {

148. int nid = MAP_NODE(id);

149. if(!g_graph_visited[nid])

150. {

151. g_cost[nid] = g_payload1[index] + 1;

152. g_updating_graph_mask[nid] = 1;

153. }

154. }

155. }

156. }

157. __kernel void kernel2(__global const Node* g_graph_nodes,

158. __global int* g_graph_mask,

159. __global int* g_updating_graph_mask,

160. __global int* g_graph_visited,

161. __global int* g_over,

162. int no_of_nodes)

163. {

164. unsigned int tid = get_global_id(0);

165. if(tid < no_of_nodes && g_updating_graph_mask[tid] == 1)

166. {

167. g_graph_mask[tid] = g_graph_nodes[tid].no_of_edges; // was 1;

168. g_graph_visited[tid] = 1; *g_over = 1;

169. g_updating_graph_mask[tid] = 0;

170. }

171. }

176



B.4.2 IMIFLX Application
001. // imiflx.txt: Altman iterative matrix inversion

002. // * input <pgm> <file>.txt | <file>.mtx | I<size> | M<size> | H<size> [epsilon maxCycles newAlpha]

003. //

004. declare application imiflx

005. include [[

006. #define INDEX2(xi,xj,xsize,xind) xind = (xi * xsize) + xj;

007. #ifdef _WIN32

008. #define isfinite _finite

009. #endif

010. ]]

011. declare integer mSIZE (0)

012. integer mSIZEt2 (0)

013. integer LIMIT (0)

014. integer cycles (200)

015. integer localWork (1024)

016. integer localSize (2048) // 2 * localWork

017. integer basketSize (2048) // 2 * localWork

018. double epsilon (0)

019. double result (0)

020. double newAlpha (0)

021. double norm (0)

022. double alpha (0)

023. integer LCNT (0)

024. integer ITR (0)

025. double dOne (1.0)

026. double dZero (0.0)

027. double dThree (3.0)

028. double dmThree (-3.0)

029. declare gpu gpuone ( * )

030. declare kernel CopyArray imiflx ( [[ 1D,mSIZEt2 ]] )

031. kernel PlusIdentityThree imiflx ( [[ 1D,mSIZE ]] )

032. kernel MinusMatThree imiflex ( [[ 1D,mSIZEt2 ]] )

033. kernel prefixSum imiflx ( [[ 1D,localWork:localWork ]] )

034. kernel MinusIdentity imiflx ( [[ 1D,mSIZE ]] )

035. kernel SweepSquares imiflx ( [[ 1D,basketSize ]] )

036. kernel ReadLastSqrt imiflx ( [[ 1D,1 ]])

037. declare double buffer mA ( mSIZE mSIZE )

038. double buffer mP ( mSIZE mSIZE )

039. double buffer mRn ( mSIZE mSIZE )

040. double buffer mRnp1 ( mSIZE mSIZE )

041. double buffer mW ( mSIZE mSIZE )

042. double buffer mS ( basketSize )

043. double buffer mBasket (basketSize)

044. double buffer mLocal (localSize) local

045. call defg_matloader( mA(out) mSIZE(out))

046. code [[ mSIZEt2 = mSIZE * mSIZE; ]]

047. code [[ if (mSIZEt2 >= ((int) (DEFG_MAX_BUF * sizeof(double))))

{ printf("buffer overflow error\n"); exit(0); } ]]

048. code [[ cycles = mSIZEt2; ]]

049. code [[ newAlpha = -1.0; ]]

050. code [[ epsilon = 0.00001; ]]

051. code [[ if (argc > 2) { epsilon = atof(argv[2]); } ]]

052. code [[ if (argc > 3) { cycles = atoi(argv[3]); } ]]

053. code [[ if (argc > 4) { newAlpha = atof(argv[4]); } ]]

054. code [[ LIMIT = (mSIZEt2 < 16) ? mSIZEt2 : 16; ]]

055. code [[ printf("imiflx GPU version using SweepSquares and prefixSum\n"); ]]

056. code [[ printf("SQ MAT size: %d, epsilon: %lf, max cycles: %d, newAlpha: %g\n",

mSIZE, epsilon, cycles, newAlpha); ]]

057. // compute norm

058. execute k1 SweepSquares(mA(in) mSIZEt2(in) mBasket(inout) basketSize(in))

059. execute k2 prefixSum(mS (out) mBasket(in) mLocal(*) basketSize(in))

060. execute k3 ReadLastSqrt(mS(in) basketSize(in) norm(out))

061. release (norm) // gets value onto CPU

(Continued on next page)

177



(Continued from previous page)

062. code [[ alpha = 1.0 / norm; ]]

063. code [[ if (newAlpha != -1.0) alpha = newAlpha; ]]

064. code [[ if (alpha < 0.0 || alpha >= 1.0) { printf("Error, invalid alpha!\n"); exit(0); } ]]

065. // cpu: mRn = Identity Matrix * alpha

066. code [[ for (int i=0; i < mSIZEt2; i++) { mRn[i] = 0.0; } ]]

067. code [[ for (int i=0; i < mSIZE; i++) { mRn[i*mSIZE +i] = alpha; } ]]

068. // mP = mA * mRn

069. blas (dOne * mA * mRn + dZero * mP -> mP)

070. loop

071. // desired result: mRnp1 = mRn * (mI*3 - mP*3 + mP2) mP2 is mP*mP

072. // mW = mP * mP

073. blas (dOne * mP * mP + dZero * mW -> mW)

074. // mW += mI * 3

075. execute k8 PlusIdentityThree(mW(inout) mSIZE(in))

076. // mW -= mP * 3

077. execute k9 MinusMatThree(mW(inout) mP(in) mSIZEt2(in))

078. // mRnp1 = mRn * mW

079. blas (dOne * mRn * mW + dZero * mRnp1 -> mRnp1)

080. // mP = mA * MRnp1

081. blas (dOne * mA * mRnp1 + dZero * mP -> mP)

082. // copy mP to mW

083. execute k10 CopyArray(mW(out) mP(in) mSIZEt2(in))

084. // mW -= mI

085. execute k11 MinusIdentity(mW(inout) mSIZE(in)) // note: mSize not mSizet2

086. // result = norm(mW)

087. execute k12 SweepSquares(mW(in) mSIZEt2(in) mBasket(inout) basketSize(in))

088. execute k13 prefixSum(mS (out) mBasket(in) mLocal(*) basketSize(in))

089. execute k14 ReadLastSqrt(mS(in) basketSize(in) result(out))

090. release (result) // gets value onto CPU

091. code [[ ITR = LCNT + 1; ]]

092. code [[ if (!isfinite(result)) { printf("infinite result, exiting\n"); LCNT = cycles; } ]]

093. code [[ if (result != result) { printf("result is nan, exiting\n"); LCNT = cycles; } ]]

094. code [[ if (result <= epsilon) LCNT = cycles; ]]

095. loop_escape at 6 secs // "anytime" processing

096. // mRn <==> mRnp1

097. interchange(mRn mRnp1)

098. call inc(LCNT(inout))

099. while LCNT lt cycles

100. call defg_write_matrix(mRn(in) mSIZE(in))

101. end

OpenCL Kernels: The prefix sum kernel is used from the AMD OpenCL 2.8 SDK and is copyrighted by AMD;

the full kernel source code can be obtained from this SDK.

001-076 contain the prefix_sum kernel and are ommited, see above.

077. //

078. // senser-written kernels start here

079. //

080. __kernel void CopyArray(

081. __global double* output, // buffer of out data values

082. __global double* input, // buffer of in data values

083. const int length) // length of buffer

084. {

085. unsigned int tid = get_global_id(0);

086. if (tid >=length) return;

087. output[tid] = input[tid];

088. }

089. __kernel void SweepSquares(

090. __global double* input, // buffer of data values

091. const int length, // full length of buffer

092. __global double* basket, // basket of partial sums

093. const int basket_length) // full length of basket

094. {

095. double d;

096. double sum = 0.0;

(Continued on next page)

178



(Continued from previous page)

097. // int index;

098. if (length < 1) return;

099. unsigned int tid = get_global_id(0);

100. if (tid >=length) return;

101. // strides of basket_length size ....

102. for (int k=tid; k < length; k += basket_length) {

103. d = input[k] * input[k];

104. sum += d;

105. }

106. basket[tid] = sum;

107. return;

108. }

109. __kernel void PlusIdentityThree(

110. __global double* matrix, // buffer of values

111. const int length) // size of diag NOT full length

112. {

113. unsigned int tid = get_global_id(0);

114. if (tid >= length) return;

115. unsigned int offset = tid * length + tid;

116. matrix[offset] += 3;

117. }

118. __kernel void MinusMatThree(

119. __global double* baseMatrix, // buffer of result values

120. __global double* otherMatrix, // 2nd Matrix buffer

121. const int length) // size of full matrix

122. {

123. unsigned int tid = get_global_id(0);

124. if (tid >= length) return;

125. baseMatrix[tid] -= 3 * otherMatrix[tid];

126. }

127. __kernel void MinusIdentity(

128. __global double* matrix, // buffer of values

129. const int length) // size of diag NOT full length

130. {

131. unsigned int tid = get_global_id(0);

132. if (tid >= length) return;

133. unsigned int offset = tid * length + tid;

134. matrix[offset] -= 1.0;

135. }

136. __kernel void ZeroBasketDEAD(

137. __global double* matrix, // basket of future partial sums

138. const int length) // size of basket

139. {

140. unsigned int tid = get_global_id(0);

141. if (tid >= length) return;

142. matrix[tid] = 0.0;

143. }

144. __kernel void ReadLastSqrt(

145. __global double* matrix, // array

146. const int length, // size of array

147. __global double* last) // return value

148. {

149. *last = sqrt(matrix[length - 1]);

150. }

179



B.4.3 MEDIAN Application
01. // mediam.txt: Median algorithm in DEFG syntax

02. declare application median

03. declare integer Xdim (0)

04. integer Ydim (0)

05. integer BUF_SIZE (0)

06. declare gpu gpuone ( * )

07. declare kernel median_filter insert code [[

08. __kernel void median_filter(__global uint* inputImage, __global uint* outputImage)

09. {

10. uint sort_buf[9];

11. uint h;

12. int i;

13. int j;

14. uint x = get_global_id(0);

15. uint y = get_global_id(1);

16.

17. uint width = get_global_size(0);

18. uint height = get_global_size(1);

19. int c = x + y * width;

20. if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1)

21. {

22. /* outputImage[c] = inputImage[c]; return; */

23. sort_buf[0] = inputImage[c - 1 - width];

24. sort_buf[1] = inputImage[c - width];

25. sort_buf[2] = inputImage[c + 1 - width];

26. sort_buf[3] = inputImage[c - 1];

27. sort_buf[4] = inputImage[c];

28. sort_buf[5] = inputImage[c + 1];

29. sort_buf[6] = inputImage[c - 1 + width];

30. sort_buf[7] = inputImage[c + width];

31. sort_buf[8] = inputImage[c + 1 + width];

32. for (i=0; i < 9; i++) {

33. for (j=i; j < 9; j++) {

34. if (sort_buf[i] > sort_buf[j]) {

35. h = sort_buf[i];

36. sort_buf[i] = sort_buf[j];

37. sort_buf[j] = h;

38. }

39. }

40. }

41. outputImage[c] = sort_buf[4];

42. }

43. }

44. ]] ( [[ 2D,Xdim,Ydim ]] )

45. declare integer buffer image1 ( Xdim Ydim ) halo (1)

46. integer buffer image2 ( Xdim Ydim ) halo (1)

47. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

48. start_timer

49. execute run1 median_filter ( image1(in) image2(out) )

50. call sync (image2(in)) // helps timer accuracy

51. end_timer

52. call disp_output (image2(in) Xdim (in) Ydim (in) )

53. output_timer

54. end

180



B.4.4 MEDIAN5 Application
01. // mediam5.txt: Median algorithm in DEFG syntax

02. // use 5x5, not 3x3, "window" to compute the median

03. declare application median

04. declare integer Xdim (0)

05. integer Ydim (0)

06. integer BUF_SIZE (0)

07. declare gpu gpuone ( * )

08. declare kernel median_filter insert code [[

09. __kernel void median_filter(__global uint* inputImage, __global uint* outputImage)

10. {

11. uint sort_buf[25];

12. uint h;

13. int i;

14. int j;

15. int k;

16. uint x = get_global_id(0);

17. uint y = get_global_id(1);

18.

19. uint width = get_global_size(0);

20. uint height = get_global_size(1);

21. int c = x + y * width;

22. if( x >= 2 && x < (width - 2) && y >= 2 && y < (height - 2))

23. {

24. k = 0;

25. for (i=-2; i < 3; i++) {

26. sort_buf[k++] = inputImage[c + i - width - width];

27. }

28. for (i=-2; i < 3; i++) {

29. sort_buf[k++] = inputImage[c + i - width];

30. }

31. for (i=-2; i < 3; i++) {

32. sort_buf[k++] = inputImage[c + i];

33. }

34. for (i=-2; i < 3; i++) {

35. sort_buf[k++] = inputImage[c + i + width];

36. }

37. for (i=-2; i < 3; i++) {

38. sort_buf[k++] = inputImage[c + i + width + width];

39. }

40. for (i=0; i < 25; i++) {

41. for (j=i; j < 25; j++) {

42. if (sort_buf[i] > sort_buf[j]) {

43. h = sort_buf[i];

44. sort_buf[i] = sort_buf[j];

45. sort_buf[j] = h;

46. }

47. }

48. }

49. outputImage[c] = sort_buf[12];

50. }

51. }

52. ]] ( [[ 2D,Xdim,Ydim ]] )

53. declare integer buffer image1 ( Xdim Ydim ) halo (2)

54. integer buffer image2 ( Xdim Ydim ) halo (2)

55. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

56. execute run1 median_filter ( image1(in) image2(out) )

57. call disp_output (image2(in) Xdim (in) Ydim (in) )

58. end

181



B.4.5 MEDIAN5M Application
01. // median5m.txt: Multi-GPU Median 5x5 algorithm in DEFG syntax

02. // use 5x5 "window" to compute the median

03. declare application nedian5

04. declare integer Xdim (0)

05. integer Ydim (0)

06. integer BUF_SIZE (0)

07. declare gpu gpuone ( all )

08. declare kernel median5_filter insert code [[

09. __kernel void median5_filter(__global uint* inputImage, __global uint* outputImage)

10. {

11. uint sort_buf[25];

12. uint h;

13. int i;

14. int j;

15. int k;

16. uint x = get_global_id(0);

17. uint y = get_global_id(1);

18.

19. uint width = get_global_size(0);

20. uint height = get_global_size(1);

21. int c = x + y * width;

22. if( x >= 2 && x < (width - 2) && y >= 2 && y < (height - 2))

23. {

24. k = 0;

25. for (i=-2; i < 3; i++) {

26. sort_buf[k++] = inputImage[c + i - width - width];

27. }

28. for (i=-2; i < 3; i++) {

29. sort_buf[k++] = inputImage[c + i - width];

30. }

31. for (i=-2; i < 3; i++) {

32. sort_buf[k++] = inputImage[c + i];

33. }

34. for (i=-2; i < 3; i++) {

35. sort_buf[k++] = inputImage[c + i + width];

36. }

37. for (i=-2; i < 3; i++) {

38. sort_buf[k++] = inputImage[c + i + width + width];

39. }

40. for (i=0; i < 25; i++) {

41. for (j=i; j < 25; j++) {

42. if (sort_buf[i] > sort_buf[j]) {

43. h = sort_buf[i];

44. sort_buf[i] = sort_buf[j];

45. sort_buf[j] = h;

46. }

47. }

48. }

49. outputImage[c] = sort_buf[12];

50. }

51. }

52. ]] ( [[ 2D,Xdim,Ydim ]] )

53. declare integer buffer image1 ( Xdim Ydim ) halo (2)

54. integer buffer image2 ( Xdim Ydim ) halo (2)

55. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

56. multi_exec run1 median5_filter ( image1(in) image2(out) )

57. call disp_output (image2(in) Xdim (in) Ydim (in) )

58. end

182



B.4.6 RSORT Application
01. // RSort.txt: Altman’s roughly sort algorithm in DEFG syntax

02. // useage: pgm <file or genK> <size>

03. // arg1 can be an input file or the genK value if generating data

04. // arg2 is the size, if generating data, 2**size

05. declare application RSort

06. include [[ char* vers = "V1.1"; ]]

07. declare integer stride (1)

08. integer size (64)

09. integer sizeDB (0)

10. integer genK (0)

11. integer bufSize (0)

12. integer radius (1)

13. integer groups (0)

14. integer again (0)

15. integer offset (0)

16. integer offset2 (0)

17. integer logSize (0)

18. declare gpu gpuone ( * )

19. declare kernel LRmax RSort_Kernels ( [[ 1D,size ]] )

20. kernel RLmin RSort_Kernels ( [[ 1D,size ]] )

21. kernel DM RSort_Kernels ( [[ 1D,size ]] )

22. kernel UB RSort_Kernels ( [[ 1D,size ]] )

23. kernel comb_sort RSort_Kernels ( [[ 1D,groups ]] )

24. declare integer buffer arrayS (bufSize )

25. integer buffer LR (bufSize)

26. integer buffer LRout (bufSize)

27. integer buffer RL (bufSize)

28. integer buffer RLout (bufSize)

29. integer buffer DMbuf (bufSize)

30. code [[ char* arg = "16"; if (argc > 1) {arg = argv[1];} ]]

31. code [[ if (argc > 2) { size = (int) pow(2.0, (double) atoi(argv[2])); } ]]

32. code [[ if ( ((int) (size * sizeof(int))) >= DEFG_MAX_BUF)

{ printf("Error, buffer too small!\n"); exit(0);}

]]

33. // has to be C-style invocation due to arg being a string ...

34. code [[ getArray(arg, arrayS, size); bufSize = size; ]]

35. code [[ logSize = int(log(double(size))/log(2.0)); ]]

36. code [[ if (bufSize > 16) sizeDB = 16; else sizeDB = bufSize; ]]

37. code [[ printf("version %s size: %d, logSize: %d\n", vers, size, logSize); ]]

38. // ==> LR

39. set stride (1)

40. execute LR1 LRmax (arrayS(in) LR(out) stride(in))

41. call times2(stride(*))

42. set again (1)

43. loop

44. execute LR2 LRmax (LR(inout) LRout(out) stride(in))

45. call times2(stride(*))

46. interchange(LR LRout)

47. code [[ again++; ]]

48. while again lt logSize

49. // ==> RL

50. set stride (1)

51. execute RL1 RLmin (arrayS(in) RL(out) stride(in))

52. call times2(stride(*))

53. set again (1)

54. loop

55. execute RL2 RLmin (RL(in) RLout(out) stride(in))

56. call times2(stride(*))

57. interchange(RL RLout)

58. code [[ again++; ]]

59. while again lt logSize

60. // ==> DM

61. execute DM1 DM (LR(in) RL(in) DMbuf(out))

(Continued on next page)

183



(Continued from previous page)

62. // ==> FU

63. call cpy(groups(*) size(*))

64. loop

65. set again (0)

66. call times2(radius(*))

67. execute UB1 UB (DMbuf(in) size(in) radius(in) again(inout))

68. while again ne 0

69. code [[ radius *= 2; ]]

70. code [[ if (radius > size) { radius = size; } ]]

71. code [[ groups = (int) ceil( ((double) size / (double) radius)); ]]

72. // ==> COMB SORT pass 1

73. execute SORT1 comb_sort(arrayS(inout) radius(in) offset(in) groups(in))

74. // ==> COMB SORT pass 2

75. code [[ offset2 = radius / 2; ]]

76. // lower groups by one and then put it back

77. call dec(groups(*))

78. // groups is used implicitly, see kernel declare ...

79. execute SORT2 comb_sort(arrayS(inout) radius(in) offset2(in) groups(in))

80. call inc(groups(*))

81. call sync (arrayS(in))

82. code [[ putMergeArray("sorted.txt", arrayS, size); ]]

83. end

OpenCL Kernels:

001. /*

002. * For a description of the algorithm and the terms used, please see:

003. * http://en.wikipedia.org/wiki/Comb_sort

004. */

005. __kernel void comb_sort(__global int* base, uint size, uint offset, uint groups)

006. {

007. uint block = get_global_id(0);

008. if (block >= groups) return; // used with multi-GPU

009. __global int* input;

010. const float shrink = 1.3f;

011. int swap;

012. uint i, gap = size;

013. bool swapped = false;

014.

015. input = base + (block * size) + offset;

016. while ((gap > 1) || swapped) {

017. if (gap > 1) {

018. gap = (size_t)((float)gap / shrink);

019. }

020.

021. swapped = false;

022.

023. for (i = 0; gap + i < size; ++i) {

024. if (input[i] - input[i + gap] > 0) {

025. swap = input[i];

026. input[i] = input[i + gap];

027. input[i + gap] = swap;

028. swapped = true;

029. }

030. }

031. }

032.

033. }

034. __kernel void LRmax(__global int src[], __global int dst[], uint stride)

035. {

036. // src is input array

037. // dst is output array

038. // stride is the offset to the relevant rhs cells

(Continued on next page)

184



(Continued from previous page)

039. uint block = get_global_id(0);

040. uint size = get_global_size(0);

041. uint arnold = size - stride;

042. if (block >= arnold) return; /* Terminator! */

043. uint js = block + stride;

044. if (js >= size) return; /* Terminator II */

045. int src_j_item = src[block];

046. int src_js_item = src[js];

047. if (block < stride) { // copy already processed

048. dst[block] = src_j_item;

049. }

050. if (src_js_item < src_j_item) {

051. dst[js] = src_j_item;

052. } else {

053. dst[js] = src_js_item;

054. }

055. }

056. __kernel void RLmin(__global int src[], __global int dst[], uint stride)

057. {

058. // src is input array

059. // dst is output array

060. // blk_width is number of compares for this thread to perform

061. uint block = get_global_id(0);

062. uint size = get_global_size(0);

063. if (block < stride) return; /* Terminator! */

064. int js = block - stride;

065. if (js < 0) return; /* Terminator II */

066. if (block >= (size - stride)) { // copy already processed

067. dst[block] = src[block];

068. }

069. if (src[js] > src[block]) {

070. dst[js] = src[block];

071. } else {

072. dst[js] = src[js];

073. }

074. }

075. __kernel void DM(__global int B[], __global int C[], __global int D[])

076. {

077. int i = get_global_id(0);

078. for (int j = i; j >= 0; j--) {

079. if ((j <=i) && (i>=0) && C[i]<=B[j] && ((j==0) || (C[i]>=B[j-1]))) {

080. D[i] = i-j;

081. break;

082. }

083. }

084. }

085. __kernel void UB( __global int D[], uint size, int d, __global uint *again)

086. {

087. if (*again == 1) return; // speeds up CPU version ??

088. int i = get_global_id(0);

089. if ((D[i]+0) <= d) { // this +1 sets up a better radius for sorting control

090. // good

091. } else {

092. *again = 1;

093. }

094. }

095. __kernel void UBsplit( __global int D[], __global uint again[], uint size, int d)

096. {

097. again[1] = d;

098. if (again[0] != 0) return; // speeds up CPU version ??

099. int i = get_global_id(0);

100. // debug < to <= ??

101. if ((D[i]) > d) { // this +1 sets up a better radius for sorting control

102. again[0] = D[i]; // 1;

(Continued on next page)

185



(Continued from previous page)

103. again[1] = i;

104. }

105. }

106. __kernel void UBreset( __global uint again[])

107. {

108. if (get_global_id(0) > 0) return;

109. again[0] = 0;

110. }

186



B.4.7 RSORTM Application
01. // RSortm.txt: Altman’s roughly sort algorithm in DEFG syntax, multi GPU

02. declare application RSortm

03. include [[

04. char* vers = "MV1.1b";

05. ]]

06. declare integer groupSize (1)

07. integer stride (1)

08. integer size (4194304)

09. integer sizeDB (0)

10. integer genK (0)

11. integer bufSize (0)

12. integer radius (1)

13. integer groups (0)

14. integer groupsMulti (0)

15. integer again (0)

16. integer offset (0)

17. integer offset2 (0)

18. integer logSize (0)

19. integer againSize (4)

20. declare gpu gpugrp ( all )

21. declare kernel LRmax RSort_Kernels ( [[ 1D,size ]] )

22. kernel RLmin RSort_Kernels ( [[ 1D,size ]] )

23. kernel SHexit RSort_Kernels ( [[ 1D,size ]] )

24. kernel DM RSort_Kernels ( [[ 1D,size ]] )

25. kernel UBsplit RSort_Kernels ( [[ 1D,size ]] )

26. kernel UBreset RSort_Kernels ( [[ 1D,size ]] )

27. kernel comb_sort RSort_Kernels ( [[ 1D,groups ]] )

28. declare integer buffer arrayS (bufSize)

29. integer buffer LR (bufSize)

30. integer buffer LRout (bufSize)

31. integer buffer RL (bufSize)

32. integer buffer RLout (bufSize)

33. integer buffer DMbuf (bufSize)

34. integer buffer againPart (againSize)

35. code [[ char* arg = "16"; if (argc > 1) {arg = argv[1];} ]]

36. code [[ if (argc > 2) { size = (int) pow(2.0, (double) atoi(argv[2])); } ]]

37. code [[ if ( ((int) (size * sizeof(int))) >= DEFG_MAX_BUF)

38. { printf("Error, buffer too small!\n"); exit(0); } ]]

39. code [[ getArray(arg, arrayS, size); bufSize = size; ]]

40. code [[ if (bufSize > 16) sizeDB = 16; else sizeDB = bufSize; ]]

41. code [[ logSize = int(log(double(size))/log(2.0)) - 1 ; ]] // <<---- multi change

42. code [[ printf("version %s size: %d, logSize: %d\n", vers, size, logSize); ]]

43. // ==> LR

44. set stride (1)

45. multi_exec LR1 LRmax (arrayS(in) LR(out) stride(in))

46. call times2(stride(*))

47. // main LR loop

48. set again (1)

49. loop

50. multi_exec LR2 LRmax (LR(inout) LRout(out) stride(in))

51. call times2(stride(*))

52. interchange(LR LRout)

53. code [[ again++; ]]

54. while again lt logSize

55. // ==> RL

56. set stride (1)

57. multi_exec RL1 RLmin (arrayS(in) RL(out) stride(in))

58. call times2(stride(*))

59. // main RL loop

60. set again (1)

61. loop

62. multi_exec RL2 RLmin (RL(inout) RLout(out) stride(in))

(Continued on next page)

187



(Continued from previous page)

63. call times2(stride(*))

64. interchange(RL RLout)

65. code [[ again++; ]]

66. while again lt logSize

67. // ==> DM

68. multi_exec DM1 DM (LR(in) RL(in) DMbuf(out))

69. call cpy(groups(*) size(*))

70. loop

71. multi_exec UB1 UBreset (againPart(inout))

72. call times2(radius(inout))

73. multi_exec UB2 UBsplit (DMbuf(in) againPart(inout) size(in) radius(in))

74. call sync (againPart(in))

75. code [[again = againPart[0] + againPart[2]; ]]

76. while again ne 0

77. code [[ radius *= 2; ]]

78. code [[ groups = (int) ceil( ((double) size / (double) radius)); ]]

79. code [[ if (groups < 2) { printf("sort ended, too few sort groups, use 1 GPU sort!\n"); exit(1); } ]]

80. // ==> COMB SORT pass 1

81. code [[ groupsMulti = groups / DEFG_GPU_COUNT; ]]

82. multi_exec SORT1 comb_sort(arrayS(inout) radius(in) offset(in) groupsMulti(in))

83. // ==> COMB SORT pass 2

84. code [[ offset2 = radius / 2; ]]

85. call dec(groups(*))

86. code [[ groupsMulti = groups / DEFG_GPU_COUNT; ]] // this is critical!!

87. multi_exec SORT2 comb_sort(arrayS(inout) radius(in) offset2(in) groupsMulti(in))

88. call sync (arrayS(in))

89. code [[ putMergeArray("sorted.txt", arrayS, size); ]]

90. end

OpenCL kernels for RSORTM are the RSORT kernels.

188



B.4.8 SOBEL Application
01. // Sobel.txt: Sobel algorithm in DEFG syntax

02. declare application sobel

03. declare integer Xdim (0)

04. integer Ydim (0)

05. integer BUF_SIZE (0)

06. declare gpu gpuone ( * )

07. declare kernel sobel_filter SobelFilter_Kernels ( [[ 2D,Xdim,Ydim ]] )

08. declare integer buffer image1 ( Xdim Ydim ) halo (1)

09. integer buffer image2 ( Xdim Ydim ) halo (1)

10. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

11. execute run1 sobel_filter ( image1(in) image2(out) )

12. call disp_output (image2(in) Xdim (in) Ydim (in) )

13. end

OpenCL Kernel:

The SOBEL kernel is used from the AMD OpenCL 2.8 SDK and is copyrighted by AMD. The full kernel source code

can be obtained from this SDK.

B.4.9 SOBELM Application
01. // Sobelm.txt: Sobel algorithm in DEFG syntax

02. // ’m’ version for 2 GPU execution

03. declare application sobelm

04. declare integer Xdim (0)

05. integer Ydim (0)

06. integer BUF_SIZE (0)

07. declare gpu gpuone ( all )

08. declare kernel sobel_filter SobelFilter_Kernels ( [[ 2D,Xdim,Ydim ]] )

09. declare integer buffer image1 ( Xdim Ydim ) halo (1)

10. integer buffer image2 ( Xdim Ydim ) halo (1)

11. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))

12. multi_exec run1 sobel_filter ( image1(in) image2(out) )

13. call disp_output (image2(in) Xdim (in) Ydim (in) )

14. end

OpenCL Kernel:

The SOBEL kernel is used from the AMD OpenCL 2.8 SDK and is copyrighted by AMD. The full kernel source code

can be obtained from this SDK.

189



B.5 DEFG Diagnostic Source Code

B.5.1 diagAT Diagnostic Program
01. //

02. // DiagAT.txt: diagnostic to verify anytime escape at in DEFG

03. //

04. declare application diagat

05. declare integer BUF_SIZE (2)

06. integer iMore (1)

07. declare gpu gpuone ( * )

08. declare kernel dummy_kernel insert code [[

09. __kernel void dummy_kernel(__global int* p1)

10. {

11. p1[0] = 34;

12. return;

13. }

14. ]] ( [[ 1D,1 ]] )

15. kernel dummy_kernel2 insert code [[

16. __kernel void dummy_kernel2(__global int* p1)

17. {

18. p1[0] = 99;

19. return;

20. }

21. ]] ( [[ 1D,1 ]] )

22. declare integer buffer b1 ( BUF_SIZE )

23. integer buffer b2 ( BUF_SIZE )

24. start_timer

25. loop

26. execute run1 dummy_kernel ( b1(out) ) // b1[0] = 34

27. execute run1 dummy_kernel2 ( b2(out) ) // b2[0] = 99

28. call sync(b1(in))

29. call sync(b2(in))

30. loop_escape at 20 ms

31. while iMore eq 1

32. end_timer

33. code [[ if (b1[0] == 34 && b2[0] == 99 )

printf("ok.\n"); else printf("error.\n"); ]]

34. output_timer

35. end

190



B.5.2 diagIK Diagnostic Program
01. //

02. // DiagIK.txt: diagnostic to verify include kernel code in DEFG

03. //

04. declare application diagik

05. declare integer BUF_SIZE (2)

06. declare gpu gpuone ( * )

07. declare kernel dummy_kernel insert code [[

08. __kernel void dummy_kernel(__global int* p1)

09. {

10. p1[0] = 34;

11. return;

12. }

13. ]] ( [[ 1D,1 ]] )

14. kernel dummy_kernel2 insert code [[

15. __kernel void dummy_kernel2(__global int* p1)

16. {

17. p1[0] = 99;

18. return;

19. }

20. ]] ( [[ 1D,1 ]] )

21. declare integer buffer b1 ( BUF_SIZE )

22. integer buffer b2 ( BUF_SIZE )

23. start_timer

24. execute run1 dummy_kernel ( b1(out) ) // b1[0] = 34

25. execute run1 dummy_kernel2 ( b2(out) ) // b2[0] = 99

26. call sync(b1(in))

27. call sync(b2(in))

28. end_timer

29. code [[ if (b1[0] == 34 && b2[0] == 99 )

printf("ok.\n"); else printf("error.\n"); ]]

30. output_timer

31. end

191



B.5.3 diag4way Diagnostic Program
01. //

02. // Diag4way.txt: diagnostic to verify 4-way operations

03. // vers: C5D4_D6C7D6E2

04. declare application diag4way

05. declare integer BUF_SIZE (262144)

06. integer N (26)

07. integer iMore (1)

08. declare gpu gpuall ( all )

09. declare kernel dummy_kernel insert code [[

10. __kernel void dummy_kernel(__global int* p1)

11. {

12. uint index = get_global_id(0);

13. p1[index] = 2 * p1[index];

14. int d = 0;

15. int e;

16. for (int i=0; i < 1024*512; i++) { d = d + i;

e = (int) (sqrt( (float) d)); d = d - e; d = d + e; }

17. p1[index] += d;

18. p1[index] -= d;

19. return;

20. }

21. ]] ( [[ 1D,BUF_SIZE ]] )

22. declare integer buffer b1 ( BUF_SIZE )

23. code [[ for (int ii=0; ii < BUF_SIZE; ii++) { b1[ii] = ii + 1; } ]]

24. start_timer

25. sequence N times

26. multi_exec run1 dummy_kernel ( b1(inout) )

27. call sync(b1(in))

28. end_timer

29. code [[ int err = 0;

30. printf("(version 1) N: %d\n", N);

31. int factor = 1;

32. for (int ii=0; ii < N; ii++) { factor = factor * 2; }

33. printf("factor: %d\n", factor);

34. for (int ii=0; ii < BUF_SIZE; ii++) {

if (b1[ii] != (factor * (ii + 1)) ) { err = ii+1; break; }

}

35. if (err == 0) printf("ok.\n");

else printf("error. (%d %d)\n", err-1, b1[err-1] );

36. ]]

37. output_timer

38. end

192



B.6 DEFG Major Components

B.6.1 ParserV2.g: DEFG Grammar Source Code

DEFG Parser Antler code available from the Department of Computer Science and Engi-

neering, University of Colorado Denver.

B.6.2 DEFGopt.java: DEFG Optimizer Source Code

DEFG Optimizer Java code available from the Department of Computer Science and

Engineering, University of Colorado Denver.

B.6.3 defgv2.cpp: DEFG Code Generator Source Code

DEFG Code Generator C++ code available from the Department of Computer Science

and Engineering, University of Colorado Denver.

193


