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ABSTRACT

This paper introduces an algorithm that estimates the speed
of a mobile phone by matching time-series signal strength
data to a known signal strength trace from the same road.
Knowing a mobile phone’s speed is useful, for example,
to estimate traffic congestion or other transportation perfor-
mance metrics. The proposed algorithm can be implemented
in the carrier’s infrastructure with Network Measurement
Reports obtained by a base station or on a mobile phone with
signal strength readings obtained by the handset and depend-
ing on implementation choices, promises lower energy con-
sumption than Global Positioning System (GPS) receivers.
We evaluate the effectiveness of our algorithm on highway
and arterial roads using GSM signal strength traces obtained
from several phones over a one month period. The results
show that the Correlation algorithm is significantly more ac-
curate than existing techniques based on handoffs or phone
localization.
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INTRODUCTION

Traffic congestion not only remains a nuisance to commuters,
but also causes excess gasoline consumption, pollution, and
economic inefficiency. Recent studies from the US Bureau
of Transporation [2] show that nearly 4.2 billion hours were
lost by drivers stuck in traffic on the nation’s highways in the
year of 2007. Real time traffic information can help com-
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muters plan their commute times or help them choose alter-
nate less congested roads. Traffic information is collected
from a variety of sources including inductive loop detectors
embedded in the roadway [8], traffic cameras, and eyewit-
ness reports. Recent studies [10, 14, 3] have shown, how-
ever, that it is possible to cover a larger fraction of roadways
at lower cost by using mobile sensors such as GPS-equipped
vehicles or smartphones. The level of traffic congestion can
be estimated from the speed of these probe vehicles, as mea-
sured by the GPS receiver. A cell phone based approach is
particularly attractive because it allows deploying the system
more quickly to a larger number of drivers, which improves
the quality of the traffic state estimation.

Current GPS-based speedmeasurement techniques, however,
still have several drawbacks. First, frequent sampling of
the GPS from the driver’s smartphones leads to high bat-
tery consumption on the phones. Second, the number of
programmable GPS-equipped phones is still relatively small
compared to the total number of phones in use worldwide,
particularly in developing regions. An alternate technique
that does not face the same drawbacks, is speed estimation
from cellular handoffs [9]. This technique is limited in terms
of accuracy, however, since the exact handoff location can
vary based on signal strength or cell load variations.

In this work, we address these challenges by estimating speed
directly from signal strength profiles of mobile phones [13].
We propose a novel Correlation algorithm that is founded on
the observation that the signal strength profiles along roads
remain relatively stable over time; that is, multiple passes
on the same road with the same speed generate similar sig-
nal strength traces. Passing over the same road at a lower
or higher speed leads to either stretched or compressed ver-
sion of the signal strength trace, respectively. Thus, one can
determine the speed of a phone by fitting its signal strength
profile onto a training signal strength profile obtained at a
known speed.

The algorithm can be used with signal strength measure-
ments obtained in the mobile handset or at the cellular base
stations. In the first case, which matches our experiments
setup, the mobile records signal strength measurements from
the surrounding cells every second. These readings can be
obtained from existing signaling messages and thus these



measurements generate only negligible overhead. In the sec-
ond case, base stations can collect signal measurement with-
out requiring any modifications on the handset. This, how-
ever, is only possible when the mobile phone is active (on-
going call or data connection) since the handset will then
transmit Network Measurement Report messages to the as-
sociated base station. Still, this approach is promising since
a large number of travelers use their phone while in a ve-
hicle.1 Further, the algorithm itself may run on the mobile
phone or in the infrastructure, depending on system design
goals.

Within this design space lie solutions that promise to sub-
stantially reduce energy consumption compared to obtaining
speed readings from a handset’s GPS receiver. The power
draw from a GPS receiver is quite noticeable, even if the
GPS is only sampled [11]. In contrast, obtaining signal strength
measurements at the base station, when the phone is on call,
does not create any handset energy overhead. Even when
the phone is not on call, occasionally transmitting an aggre-
gated version of the signal strength readings obtained on the
handset to a server for processing (say, every 15min) would
consume lower energy consumption.

Our experimental evaluation of this algorithm uses traces we
collected over a period of a month on different types of roads
and under different driving conditions. The main question
we investigate is how the accuracy of our algorithm com-
pares to an existing handoff-based algorithm and a localiza-
tion approach that derives speed from successive estimated
locations of the phone. We find that the Correlation algo-
rithm improves accuracy by up to 42% over the handoff al-
gorithm and by up to 71% over the localization algorithm.
We also study the performance of the Correlation algorithm
under varied driving conditions, on different phone models
and different cellular networks (AT&T and T-Mobile) and
show that it achieves consistently accurate results.

EXISTING SPEED ESTIMATION TECHNIQUES

Three existing techniques to determine a handset’s speeds
are estimating doppler shifts, deriving speed from location
estimates, and handoff-based speed prediction. Several works
[15, 16] make use of the doppler shift in frequency caused
by the moving transmitter to estimate speed. [15] can only
perform coarse speed classification while [16] can predict
the actual speed of the mobile. These techniques require
hardware support on the handset or the base station. The lat-
ter also assumes the presence of strong Line of Sight(LOS)
component between the transmitter and the receiver which
can make this technique impractical in a cellular environ-
ment. We therefore will concentrate in our evaluation on
comparisons with the following two techniques.

Localization Algorithm

The Localization algorithm estimates the speed of a mobile
phone between two points by estimating the phone’s loca-
tions at the two points, calculating the distance the phone has

1Studies from Transport Research Laboratory (TRL) [5], for exam-
ple, show that a quarter of British drivers use their phone while on
the move.

travelled and dividing it by the time travelled [1]. In this pa-
per, we use the fingerprinting [7] algorithm for determining
phone’s location. The algorithm uses the RSS fingerprints
obtained from 7 neighboring towers at different known loca-
tions as the training. When an RSS fingerprint is obtained
from a mobile at an unknown location, the algorithm esti-
mates the euclidean distance in signal space between this
obtained fingerprint and all the training fingerprints and de-
termines the location to be the location of the training fin-
gerprint that yields the minimum euclidean distance.

Handoff Algorithm

The Handoff algorithm[9] involves detecting the location of
the mobile based on existing knowledge of handoff zones. A
handoff zone is the most probable location in a given road
segment where the mobile switches from the current base
station to a new one. Whenever a handoff occurs in the
testing trace, the location of the mobile is estimated to be
the location of the most probable handoff zone. A handoff
typically occurs when the signal to noise ratio (SNR) drops
below a certain threshold. It turns out that on any given
road segment, the locations where the SNR drops below the
threshold remain stable. The average speed estimate is then
the distance between the previous predicted handoff location
and the current predicted handoff location divided by the to-
tal time between the previous and the current handoffs.

CORRELATION ALGORITHM

The Correlation algorithm matches a measured received sig-
nal strength trace to a training trace obtained from the same
road and infers the speed from the amount of stretching or
compression that yields the best match. It assumes that train-
ing traces are available for the road segments subject to speed
monitoring. These could be collected as part of the service
provider signal measurements to determine coverage. It also
assumes that the approximate starting location and the road
segment the vehicle travels on is known, for example by
monitoring handoff locations as shown in prior work [12].
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Figure 1. Stability of RSS over time

To illustrate the insights underlying this algorithms, consider
the signal traces in Figure 1. These were obtained from a
mobile phone passing three times along the same road seg-
ment, twice at the same speed of 25mph and once at 50mph.
Note how the two 25 mph traces are very similar. Also, note
how the faster trip produced an similar RSS trace except for
being compressed by a factor of two. This illustrates how
despite signal variations due to fading the signal strength on
average remains relatively stable at the same location, as also
previously reported in [7] for stationary handsets. Thus, if
we can algorithmically determine that the faster trace is a
scaled version of the slower trace by a factor of 2 and we



are given the speed of the slower trace, we can calculate the
speed of the faster trace.
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Figure 2. Generating Virtual training traces from actual training trace.

To achieve this, the Correlation algorithm creates n scaled
versions of the training trace in its training phase. The num-
ber of different scaled versions n depends on the desired
speed estimation accuracy. In our implementation we chose
1mph steps up to a maximum speed of 80mph, yielding n =

80 scaled versions of a training trace. The scaled versions
are subsampled or interpolated, so that each retains a sam-
pling rate of 1 measurement/sec. Figure 2 shows an exam-
ple of creating two scaled profiles from a training profile of
25mph. Note that the total time to completion of the 25mph
trace is twice as long as that for the 50 mph trace.

In the second step, its matching phase, the algorithm seeks to
determine which of the n scaled versions of the training trace
best fit a given measured trace, which we refer to as testing
profile. To this end, it calculates the pearson’s product mo-
ment correlation co-efficient [6] over the t seconds of the
testing profile with t seconds of each of the scaled training
profiles. The algorithm chooses the speed associated with
the scaled trace that maximizes correlations.

EXPERIMENTAL EVALUATION

Our evaluation studies the accuracy of this speed estimation
algorithm on a received signal strength dataset collectedwith
serveral handsets over a period of one month. We used GSM
enabled HTC Typhoon phones running the Intel-POLS [4]
software on the AT&T network for all our experiments. The
software records the received signal strength (RSS) and cell
ID from the 7 strongest cells. We used Holux GPSlim236
GPS receivers paired with the mobile phones through blue-
tooth for logging the ground truth location information once
every second. In order to study the speed estimation accu-
racy of our Correlation algorithm under varied driving sce-
narios, we collected traces in three different environments.

1. Highway trace: Two experimentors collected traces while
driving from home to work at varying speeds for over a
month. The common route in these drives had a 14 mile
highway stretch without traffic lights, which contributed a
total of 36 traces.

2. Constant Speed trace: This experiment involved driving
on a 5 mile stretch of road thrice at three different speeds:
25mph, 40mph and 55mph.

3. Arterial roads trace: This experiment involved 19 drives,
with each drive spanning a distance of 6 miles on arterial
roads with traffic lights.

Speed Estimation Accuracy

We define the speed estimation error as the difference be-
tween the estimated average speed and the one second speed

calculated from the ground truth GPS locations. We study
the speed estimation accuracy of the three algorithms, Cor-
relation, Localization, and Handoff by using the 36 highway
traces first. Both Correlation and Localization algorithms
use one of the traces as the training and estimate the aver-
age speed of the remaining 35 testing traces once every 100
seconds. When applying the Correlation algorithm, we in-
troduced 100m of alignment difference between the training
the testing traces to relax the assumption about having the
training and the testing profiles start at the same location.
The choice of 100m came from [7] where the median loca-
tion estimation errors are found to be around 96m. On the
other hand, the Handoff Algorithm uses 35 traces as training
to estimate the handoff zones [9] and uses the median loca-
tion of the estimated handoff zones to estimate the handoff
position in the “testing” trace. Thus an average speed esti-
mate is obtained everytime a handoff occurs.

Figure 3(a) presents for the three algorithms the cumulative
distribution function (CDF) of the speed estimation errors
calculated at one second intervals. We observed from Fig-
ure 3(a) that the Correlation algorithm achieves the best per-
formance with a median error of 7mph, whereas Handoff
and Localization have a median error of 10mph and 12mph
respectively. This is very encouraging as it shows that the
Correlation algorithm can significantly outperform existing
algorithms.

We next study the impact of matching duration on the esti-
mation accuracy for the Correlation algorithm. The match-
ing duration is defined as the duration of the testing trace that
is used to obtain a single average speed estimate. Choosing
the right matching duration is very important because a short
matching duration may not leave enough signal profile data
for a goodmatch, whereas a longmatching durationwill ren-
der the algorithm too inflexible to track the changing speed
of a vehicle. Figure 3(b) depicts the estimation error CDF
of the Correlation algorithm under different matching dura-
tions. We found that a matching duration of 200 seconds
achieves the smallest error of 6.6 mph in our case.

Finally, we examine the performance of the Correlation al-
gorithm on the dataset of the constant speed trace under
different matching durations as shown in Figure 3(c). As
expected, we found that the performance of the Correla-
tion algorithm improves as the matching duration increases
because more signal strength profile data is available for
matching. We do not see the adverse effect of increase in
the matching duration as in Figure 3(b) because in this case
the vehicle speed remains constant over the entire trace.

Sensitivity to Varied Driving Conditions

We turn to examine the sensitivity of the speed estimation al-
gorithms to different driving conditions. Figure 4 compares
the performance of the Correlation algorithm with the Lo-
calization and Handoff algorithms on constant speed traces
and arterial road traces.

Under constant speed traces as shown in Figure 4 (a), we
observed that the Correlation algorithm outpeforms the other
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(a) Highway Trace - Accuracy of
Different Algorithms
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(b) Highway Trace - Impact of matching-
time on Correlation algorithm
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(c) Constant Speed Trace - Impact of
matching time on Correlation algorithm

Figure 3. Speed Estimation Accuracy comparison across three algorithms: Correlation, Localization, and Handoff

two algorithms. In particular, the Correlation algorithm achieves
a 50% improvement on the median error over the Local-
ization algorithm and a 67% improvement over the Hand-
off algorithm. This indicates that the Correlation algorithm
is highly effective under both highway traces and constant
speed traces.
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(b) Arterial Road Traces

Figure 4. Speed Estimation Accuracy of different algorithms on Con-

stant Speed and Arterial Road traces

Figure 4 (b) presents the performance of all three algorithms
for arterial road traces. The arterial road traces involved
drives on roads with traffic lights, and thus the speed of the
vehicles varied more over time. Because all three algorithms
estimate an average speed over a matching duration, their
performance degrades in the case of frequent instantaneous
speed changes. However, the Correlation and Localization
algorithm maintain the comparable performance with a me-
dian error of 9mph. While the Handoff algorithm under-
performs the other two algorithms with a median error of
20mph.

Sensitivity to Different Networks and Phone Models.

To study the effect of a cellular network and a phone model
on the performance of the Correlation algorithm, we col-
lected three additional constant speed traces on two phones
connected to the T-Mobile network and one phone connected
to the AT&T network, simultaneously. The median speed es-
timation error was 2.3mph and 2.9mph for the phones con-
nected to the T-Mobile network and 3.6mph for the phone
connected to the AT&T network. These results show that
the performance of the Correlation algorithm is consistently
good across phone models and cellular networks.

CONCLUSION

We described a Correlation algorithm that exploits the sta-
bility in the signal strength profiles on any given road for ve-
hicular speed estimation and compared its accuracy with the
state of the art Localization and Handoff speed estimation

algorithms. We showed that the Correlation algorithm is up
to 71% more accurate than the Localization algorithm and
up to 42% more accurate than the Handoff algorithm. We
also investigated the performance of the Correlation algo-
rithm under varied driving conditions, different phone mod-
els and different cellular networks (AT&T and T-Mobile)
and showed that it achieves consistently accurate results.
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