GPU DECLARATIVE FRAMEWORK: DEFG

Dissertation Defense

Robert Senser

October 29, 2014

PhD Committee:
Gita Alaghband (chair)
Tom Altman (advisor)
Michael Mannino
Boris Stilman
Tam Vu
Presentation Outline

• Motivation for *GPU Declarative Framework*: DEFG
• Background: Graphics Processing Units (GPUs) and OpenCL
• DEFG Framework
 – Description
 – Performance
• Diverse Applications using DEFG
 – Image Filters (Sobel and Median)
 – Breadth-First Search
 – Sorting Roughly Sorted Data
 – Iterative Matrix Inversion
• Dissertation Accomplishments
• Future Research
DEFG Motivation

• GPUs can provide high throughput
 – Radeon HD 7990: 2 TFLOPS (double-precision)
• Developing parallel HPC software is difficult
• Parallel development for GPUs is even more difficult
• GPU HPC software development requires:
 – Understanding of unique GPU hardware characteristics
 – Use of specialized algorithms
 – Use of GPU-specific, low-level APIs
• Driving notion behind DEFG: *Let software minimize the complexity and difficulty*
Background: GPUs and OpenCL

• Graphics Processing Unit (GPU)
 – Highly specialized coprocessor
 – Hundreds of cores, with thousands of threads
 – SIMT: *Single Instruction, Multiple Thread*
 • Similar to Single Instruction, Multiple Data (SIMD) model
 • Threads not on the execution path are paused

• Common GPU programming environments
 – OpenCL: an open, royalty-free standard
 – CUDA: NVIDIA proprietary

• DEFG is designed for OpenCL
High-Level GPU Architecture

GPU Characteristics:
• Processors commonly connected by Peripheral Component Interconnect Express (PCIe) bus
• GPU has own fast Global RAM
• Threads have a small amount of fast local memory
• May have a hardware cache
• Many hardware-managed threads
• Lacks CPU-style predictive branching, etc.
OpenCL Overview

• Specification maintained by Khronos Group
• Open, multiple-vendor standard
• Support over a wide range of devices
 – GPUs
 – CPUs
 – Digital signal processors (DSPs)
 – Field-programmable gate arrays (FPGAs)
• Device kernels written in C
• Executing threads share the same kernel
• CPU-side code
 – C/C++
 – Very detailed CPU-side application programming interface (API)
 – Third-party bindings for Java, Python, etc.
GPU Applications

• Three components
 – Application algorithms
 – GPU kernel code
 • Can have multiple kernels per application
 • Each kernel usually contains an algorithm or algorithm step
 • Kernel code often uses GPU-specific techniques
 – CPU-side code
 • Moves OpenCL kernel to GPU
 • Manages GPU execution and errors
 • Moves application data between CPU and GPU
 • May contain a portion of application’s algorithms

• **DEFG’s domain is the CPU-side**
GPU Performance

• Major GPU Performance Concerns
 – Kernel Instruction Path Divergence
 • Due to conditional statements (ifs, loops, etc.)
 • Threads may pause
 • Minimize, if not totally avoid
 – High Memory Latency
 • One RAM access time equals time of 200-500 instructions
 • Accesses to global RAM should be coalesced

• Farber’s GPU suggestions [Farber2011]:
 – “Get the data on the GPU and leave it”
 – “Give the GPU enough work to do”
 – “Focus on data reuse to avoid memory limits”
DEFG Overview

• GPU software development tool for OpenCL
• Contains a Domain Specific Language (DSL)
 – Specialized computer language, focused on a domain
 – Developer writes CPU code with DEFG’s DSL
• Relative to hand-written code
 – *Faster development* by using declarative approach
 – *Simpler* by using design patterns and abstractions
• DEFG generates the corresponding CPU program
• Developer provides standard OpenCL GPU kernels
The DEFG generates C/C++ code for the CPU

DEFG Translator

- DEFG Source Input
- ANTLR-based Parser
- XML-based Tree
- Optimizer (Java)
- Code Generator (C++)
- Template Driven
- C/C++ Output

[Image of DEFG Translator Architecture]

[Refs: Senser2014]
DEFG Code Sample

01. declare application sobel
02. declare integer Xdim (0)
03. declare integer Ydim (0)
04. declare integer BUF_SIZE (0)
05. declaregpu gpusone (any)
06. declare kernel sobel_filter SobelFilter_Kernels ([[2D,Xdim,Ydim]])
07. declare integer buffer image1 (BUF_SIZE)
08. integer buffer image2 (BUF_SIZE)
09. call init_input (image1(in) Xdim (out) Ydim (out) BUF_SIZE(out))
10. execute run1 sobel_filter (image1(in) image2(out))
11. call disp_output (image2(in) Xdim (in) Ydim (in))
12. end

(Generates 440 lines of C/C++)

... status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2);
if (status != CL_SUCCESS) { handle error }
// *** execution
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ;
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0,
 NULL, NULL);
if (status != CL_SUCCESS) { handle error }
// *** result buffers
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0,
 NULL, NULL);
...
DEFG Benefits and Features

- Implements OpenCL applications with less effort
- Requires writing many fewer lines of code
- Encourages the developer to focus on the kernels
- How is this done?
 - With the Domain-Specific Language
 - Data characteristics are declared
 - Pre-defined DEFG design patterns are specified
 - Many implementation details are managed inside DEFG
 - Technical Features
 - Abstracts the OpenCL APIs, and their many details
 - Automatic optimization of buffer transfers
 - Supports multiple GPU devices
 - Handles error detection
DEFG Design Patterns

• Invocation Patterns (*Control Flow*)
 – Sequential-Flow
 – Single-Kernel Repeat Sequence
 – Multiple-Kernel

• Concurrent-GPU Patterns (*Multiple-GPU Support*)
 – Multiple-Execution
 – Divide-Process-Merge
 – Overlapped-Split-Process-Concatenate

• Other patterns include:
 – Prefix-Allocation (buffer allocation)
 – Code-Morsel (code insertion)
 – Anytime algorithm (control flow change on event)
 – BLAS-Usage (interface to Basic Linear Algebra Subprograms)

• Design patterns can be combined
 – Example: Sequential-Flow + Multiple-Execution + Divide-Process-Merge
Diverse DEFG Applications

• Demonstrate DEFG’s applicability
• Four diverse GPU application areas
 – *Image Filters*
 • Sobel Operator
 • Median Filter
 • Showcase for multiple GPU support
 – *Graph Theoretic*
 • Breadth-First Search with large graphs
 • Prefix-sum based buffer management
 – *Sorting*
 • Sorting partially sorted data
 • Prefix scan
 – *Numerical*
 • Iterative Matrix Inversion
 • clMath BLAS (Basic Linear Algebra Subprograms)
 • Anytime algorithm
Filter Application: Sobel Image Filter

• Sobel operator detected edges in images
• Pixel gradient was calculated from 3x3 mask
• A single GPU kernel was invoked once
• Example of DEFG Sobel operator processing:

Common uses: Object recognition, autonomous vehicle navigation, etc.
Filter Application: Median Filter

- Median determined for 5x5 mask
- Value at center of mask replaced by median value
- Like Sobel: a single GPU kernel, invoked once
- Example of DEFG median 5x5 filter processing:

Common uses: Electronic signal smoothing, noise removal, image preprocessing, etc.
Application: Breadth-First Search (BFS)

- Well-studied graph-theoretic problem
- Focus: BFS with Large Very Irregular (LVI) Graphs
 - Social Networks, Network Routing, A.I., etc.
- Numerous published GPU BFS approaches, starting with Harish [Harish2007]

- Harish used “Dijkstra” BFS
- Level-synchronous
- A GPU thread assigned to each vertex
- Vertex frontier stored as a Boolean array
List-Based BFS Vertex Frontier

• Merrill approach to vertex buffer management [Merrill2010]
 – Issue: list with multiple update threads
 – Solution: prefix sum to allocate buffer elements

• Shared buffers with multiple GPU devices
Goal: Improve on $O(n \log n)$ sorting bound when sequence is partially sorted

Based on the prior sorting work by T. Altman, et al. [Altman1989]

k is a measure of “sortedness”

A sequence is k-sorted if no element is more than k positions out of sequence

This k-sorted trait can be exploited

Knowing k allows for sorts of $O(n \log k)$

If k is small, obtain a substantial performance gain
Parallel Roughly Sorting Algorithm

Notion: Convert the large sort operation into many smaller, parallel sort operations.

Algorithm steps:

- LR: Left-to-right prefix scan (maximum)
- RL: Right-to-left prefix scan (minimum)
- DM: Computed distance measure using LR and RL
- UB: Computed upper bound of distance measure
 - This value became the k value
 - Value used to determine size of sort blocks
- Sort: Individual blocks sorted in parallel
Iterative Matrix Inversion (IMI)

• Matrix inversion using M. Altman’s method [Altman1960]

• Required GPU matrix operations
 – Used OpenCL clMath BLAS library
 – Required clMath integration into DEFG

• With *anytime* approach
 – Inversion can produce early results
 – Balance run time against accuracy
 – Anytime management in DEFG
M. Altman IMI Approach

The initial inverse approximation, that is R_0, can be formed by:

$$R_0 = \alpha I$$

where $\alpha = 1 / \| A \|$

$\| A \|$ is the Euclidean norm of A

and I is the identity matrix.

To invert matrix A, each iteration calculates:

$$R_{n+1} = R_n(3I - 3AR_n + (AR_n)^2).$$

- Better R_0 estimate provides for quicker convergence
- Application will end iterations when
 - Inversion quality measure is met
 - Maximum iterations have occurred
 - Anytime algorithm run-time limit is crossed

Example performance: $7,000 \times 7,000$ matrix inversion in 9 iterations
Accomplishments
DEFG Framework

• Fully Implemented
 – Consists of approximately 5,000 lines of code
 – 7 different applications
 – Complete User’s Guide
 – Packaged for general use

• Design Patterns
 – 12+ Patterns
 – Patterns designed to be combined

• Description of DEFG Limits
DEFG Usability and Performance

• Published DEFG Papers
 – Conference: Parallel and Distributed Processing Techniques and Applications (PDPTA’13) [Senser2013]
 – Conference: Parallel and Distributed Processing Techniques and Applications (PDPTA’14) [Senser2014]

• Existing OpenCL applications converted to DEFG
 1. Breadth-First Search (BFS)
 2. Floyd-Warshall (FW, All-Pairs Shortest Path)
 3. Sobel Image Filter (SOBEL)

• CPU-side re-coded in DEFG, used existing GPU kernels

• Comparisons between DEFG and existing applications
 – Lines-of-Code
 – Run-time Performance
On average, the DEFG code is 1/20th of the reference code size
• Shown are average run times
• CPU-based BFS-4096 was likely faster due to CPU’s cache

Summary: *DEFG provided equal, or better, performance*
Performance of Diverse Applications

• Implementations
 – Filtering
 – BFS
 – Sorting
 – Iterative Inversion

• Implementation Goals
 – Show general applicability of DEFG
 – Multiple-GPU: Filtering, BFS, and Sorting
 – Interesting Algorithms: Sorting and Iterative Inversion
 – BLAS Proof of Concept: Iterative Inversion

• Performance results
 – Problem-size characteristics
 – Run-time metrics
 – Observations for both single-GPU and multiple-GPU modes
 – Platform: C.S.E. Department’s Hydra server
Image Filtering

• Filtering Applications
 – Design patterns used in both SOBEL and MEDIAN
 • *Sequential-Flow*
 • *Multiple-Execution*
 • *Overlapped-Split-Process-Concatenate*

• Image Neighborhoods
 – SOBEL Application: 3x3 grid
 – MEDIAN Application: 5x5 grid

• SOBEL application refactored for multi-GPU use
 – Based upon earlier DEFG SOBEL application
 – Utilized existing OpenCL kernel
SOBEL Application

• Performance Tests
 – 50% image plus overlapped area given to each GPU
 – Produced identical image as 1-GPU version

• Run-time Performance with 2 GPUs
 – Run time was not as expected
 • OpenCL data transfer times went up
 • Kernel execution times stayed the same
 – Issue: computational workload not sufficiently intense
MEDIAN Application

• CPU-side DEFG code very similar to SOBEL
 – Developed OpenCL kernel for MEDIAN
 – More computationally intense

• Performance with 2-GPU, 5x5 MEDIAN
 – Run-time improvement with all test images
 • Example: Speedup of 1.34 (1.062 s / 0.794 s) with 7k by 7k image
 • Handled larger images (22k by 22k) than 1-GPU

• Performance Analysis with 2 GPUs
 – Kernel execution times dropped
 – OpenCL data transfer times increased
Breadth-First Search

- BFSDP2GPU Application Summary
 - Design patterns used in BFSDP2GPU
 - Multiple-Kernel
 - Multiple-Execution
 - Divide-Process-Merge
 - Prefix-Allocation
 - DEFG use of Merrill approach
 - Prefix-scan based buffer allocation
 - “Virtual pointers” to vertices
 - Shared buffers are dense data structures
 - Otherwise, kept Harish’s sparse data structures
Multiple-GPU BFS Implementation

- BFSDP2GPU DEFG Application
 - Based on earlier DEFG BFS application
 - Two kernels increased to six
 - Used two GPUs
 - Complex OpenCL application
 - Management of shared buffers
 - Run-time communications between GPUs

- Tested against LVI graphs
 - Test graphs from SNAP and DIMACS repositories
 - Stanford Network Analysis Package (SNAP) [SNAP2014]
 - Center for Discrete Mathematic and Theoretical Computer Science [DIMACS2010]
 - Very large graph datasets: millions of vertices and edges
BFSDP2GPU Performance Results

- Compared against existing DEFG BFS
- Processed large graphs (4.8M vertices, 69M edges)
- Run-time performance was not impressive
 - Run times increased by factors of 6 to 17
 - Issue: OpenCL's lack of GPU-to-GPU communications (77% of run-time, 0.59 of 0.771 seconds)
 - Lesser issue: mix of sparse and dense data structures
- External Experiment
 - Transfer rate comparison CUDA vs. OpenCL
 - CUDA GPU-to-GPU transfer: 21 times OpenCL rate
Roughly Sorting

• Design Patterns used in RSORT application
 – Multiple-Kernel
 – Multiple-Execution
 – Divide-Process-Merge

• GPU sort used: Comb Sort
 – sort-in-place design
 – non-recursive
 – similar to Bubble Sort, but much faster
 – elements are compared gap apart

• Five kernels: LRmax, RLmin, DM, UB, and comb_sort
RSORT Performance

• Comparison over three configurations
 – QSORT on CPU, fast sort used as baseline
 – RSORT with one GPU
 – RSORTM with two GPUs

• Run-time comparisons
 – Generated datasets with set k values
 – Fully perturbed data
• Roughly Sorting’s run times impressive when \(k \) is small
• At \(K:2000 \), with \(2^{26} \) items
 • Two-GPU RSORTM is faster than QSORT
 • Two-GPU versus One-GPU speedup near 2 (15.36 s/ 7.4 s)
• Second GPU adds sorting capacity
Iterative Matrix Inversion

• Design patterns used in IMIFLX application
 – Multiple-Kernel
 – BLAS-Usage

• Application characteristics
 – Blend of blas statements and kernels
 • blas for matrix multiplication
 • kernels for simpler matrix operations
 – Multiple blas statements per iteration
 – Anytime operation stopped iterating at time limit

• Analysis of application
 – Range of matrices: size and type
 – Inversion iterations
 – Data from University of Florida Sparse Matrix Collection
 [UFL2011]
IMIFLX Sample Result

- **Kuu Matrix**: 7,102 by 7,102 elements, sparse
- **Structural problem with 340,200 non-zero values**
- **9 iterations**
- **Norm value**: $\|/(A*R_n) - I\|$
Sample IMIIFLX Inversion Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>Iterations</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>Hilbert</td>
<td>2x2</td>
<td>4</td>
<td>0.018</td>
</tr>
<tr>
<td>H12</td>
<td>Hilbert</td>
<td>12x12</td>
<td>70</td>
<td>0.089</td>
</tr>
<tr>
<td>M500</td>
<td>Generated</td>
<td>500x500</td>
<td>13</td>
<td>0.259</td>
</tr>
<tr>
<td>M8000</td>
<td>Generated</td>
<td>8000x8000</td>
<td>17</td>
<td>1380.320</td>
</tr>
<tr>
<td>1138_bus</td>
<td>Repository</td>
<td>1138x1138</td>
<td>14</td>
<td>3.262</td>
</tr>
<tr>
<td>Kuu</td>
<td>Repository</td>
<td>7102x7102</td>
<td>9</td>
<td>605.310</td>
</tr>
</tbody>
</table>

Hydra’s NVIDIA T20 GPU

- Available RAM: 2.68 GB
- Limits double-precision matrix size to just over 8,000 by 8,000
DEFG Generalization

• HPC with GPUs
 – Note the Faber suggestions for GPU performance:
 • “Get the data on the GPU and leave it”
 • “Give the GPU enough work to do”
 • “Focus on data reuse to avoid memory limits”
 – The CPU becomes the *orchestrator*

• DEFG provides the CPU code to orchestrate
 – Declarations to describe the data
 – Design patterns to describe the orchestration
 – Optimization to minimize the data transfers
Dissertation Accomplishments

• Designed, Implemented, and Tested DEFG

• Created DEFG’s Design Patterns

• Compared DEFG to Hand-Written Applications
 – DEFG required less code
 – DEFG produced equal or better run times

• Applied DEFG to Diverse GPU Applications
 – Each application fully implemented
 – Good application results
Future Research

• Additional DEFG Design Patterns
 – Multiple-GPU load balancing
 – Resource sharing

• GPU-side declarative approach

• DEFG Enhancements
 – Internal DSL, in addition to existing external DSL
 • More-standard programming environment
 • Enable support of more environments
 – Technical improvements
 • Better CPU RAM management
 • Additional collection of run-time statistics

• DEFG Support for NVIDIA’s CUDA
References

Additional Slides
DEFG Implementation Metrics

• Lines of Code
 – ANTLR-based parser: 580 lines
 – Optimizer: 660 lines of Java
 – Code Generator: 1,500 lines of C++
 – Templates and includes: 1,500 lines of C++

• Testing investment: 20% of total effort
 – Issues tended to be in the C/C++ code generation
 – Most were in multi-GPU buffer management
Raw Performance Numbers for Three Applications, in Milliseconds

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>GPU-Tesla T20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEFG</td>
<td>Ref.</td>
</tr>
<tr>
<td>BFS-4096</td>
<td>1.5</td>
<td>2.6</td>
</tr>
<tr>
<td>BFS-65536</td>
<td>12.3</td>
<td>14.2</td>
</tr>
<tr>
<td>FW</td>
<td>111.8</td>
<td>152.0</td>
</tr>
<tr>
<td>SOBEL</td>
<td>23.0</td>
<td>24.8</td>
</tr>
</tbody>
</table>
Sample DEFG Code Showing a Sequence

01. declare application floydwarshall
02. declare integer NODE_CNT (0)
03. declare integer BUF_SIZE (0)
04. declare gpu gpuone (any)
05. declare kernel floydWarshallPass FloydWarshall_Kernels ([[2D,NODE_CNT]])
06. declare integer buffer buffer1 (BUF_SIZE)
07. integer buffer buffer2 (BUF_SIZE)
08. call init_input (buffer1(in) buffer2(in) NODE_CNT(out) BUF_SIZE(out))
09. sequence NODE_CNT times
10. execute run1 floydWarshallPass (buffer1(inout) buffer2(out) NODE_CNT(in) DEFG_CNT(in))
11. call disp_output (buffer1(in) buffer2(in) NODE_CNT(in))
12. end
declare application bfs
declare integer NODE_CNT (0)
declare integer EDGE_CNT (0)
declare integer STOP (0)
declare gpu gpuone (any)
declare kernel kernel1 bfs_kernel ([[1D,NODE_CNT]])
kernel kernel2 bfs_kernel ([[1D,NODE_CNT]])
declare struct (4) buffer graph_nodes (NODE_CNT)
 integer buffer graph_edges (EDGE_CNT)
 integer buffer graph_mask (NODE_CNT)
 integer buffer updating_graph_mask ($NODE_CNT)
 integer buffer graph_visited (NODE_CNT)
 integer buffer cost (NODE_CNT)
// note: init_input handles setting "source" node
call init_input (graph_nodes(out) graph_edges(out) graph_mask(out) updating_graph_mask(out) graph_visited (out) cost (out) NODE_CNT(out) EDGE_CNT(out))

loop
execute part1 kernel1 (graph_nodes(in)
 graph_edges(in)
 graph_mask(in)
 updating_graph_mask(out)
 graph_visited(in)
 cost(inout)
 $NODE_CNT(in))
// set STOP to zero each time thru...
set STOP (0)
// note: STOP value is returned...
execute part2 kernel2 (graph_mask(inout)
 updating_graph_mask(inout)
 graph_visited(inout)
 STOP(inout)
 NODE_CNT(in))
while STOP eq 1
 call disp_output (cost(in) NODE_CNT(in))
end
Table 5.13: Sort Run Times on Hydra with 2^{26} Items, in Seconds

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Qsort</td>
<td>8.394</td>
<td>8.008</td>
<td>7.972</td>
<td>7.922</td>
<td>7.890</td>
</tr>
<tr>
<td>Rsort</td>
<td>2.527</td>
<td>11.216</td>
<td>15.360</td>
<td>17.120</td>
<td>29.556</td>
</tr>
<tr>
<td>RsortM</td>
<td>1.459</td>
<td>6.487</td>
<td>7.400</td>
<td>11.189</td>
<td>24.682</td>
</tr>
</tbody>
</table>

Table 5.14: Sort Run Times on Hydra with 2^{27} Items, in Seconds

|--------------|-----------|-------------|-------------|-------------|-------------|
IMIFLX Data

Table 5.16: IMIFLX Inversion Results for Various Matrices

<table>
<thead>
<tr>
<th>Cnt</th>
<th>Matrix Name</th>
<th>Type</th>
<th>Size</th>
<th>Epilon</th>
<th>Iterations</th>
<th>Run Time Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2</td>
<td>Hilbert</td>
<td>2x2</td>
<td>0.000001</td>
<td>4</td>
<td>0.018</td>
</tr>
<tr>
<td>2</td>
<td>H3</td>
<td>Hilbert</td>
<td>3x3</td>
<td>0.000001</td>
<td>8</td>
<td>0.022</td>
</tr>
<tr>
<td>3</td>
<td>H4</td>
<td>Hilbert</td>
<td>4x4</td>
<td>0.000001</td>
<td>12</td>
<td>0.023</td>
</tr>
<tr>
<td>4</td>
<td>H5</td>
<td>Hilbert</td>
<td>5x5</td>
<td>0.000001</td>
<td>15</td>
<td>0.030</td>
</tr>
<tr>
<td>5</td>
<td>H6</td>
<td>Hilbert</td>
<td>6x6</td>
<td>0.000001</td>
<td>18</td>
<td>0.034</td>
</tr>
<tr>
<td>6</td>
<td>H7</td>
<td>Hilbert</td>
<td>7x7</td>
<td>0.000001</td>
<td>21</td>
<td>0.036</td>
</tr>
<tr>
<td>7</td>
<td>H8</td>
<td>Hilbert</td>
<td>8x8</td>
<td>0.000001</td>
<td>24</td>
<td>0.037</td>
</tr>
<tr>
<td>8</td>
<td>H9</td>
<td>Hilbert</td>
<td>9x9</td>
<td>0.000001</td>
<td>27</td>
<td>0.042</td>
</tr>
<tr>
<td>9</td>
<td>H10</td>
<td>Hilbert</td>
<td>10x10</td>
<td>0.001</td>
<td>30</td>
<td>0.035</td>
</tr>
<tr>
<td>10</td>
<td>H11</td>
<td>Hilbert</td>
<td>11x11</td>
<td>0.005</td>
<td>40</td>
<td>0.057</td>
</tr>
<tr>
<td>11</td>
<td>H12</td>
<td>Hilbert</td>
<td>12x12</td>
<td>0.15</td>
<td>70</td>
<td>0.089</td>
</tr>
<tr>
<td>12</td>
<td>H13</td>
<td>Hilbert</td>
<td>13x13</td>
<td>n.a.</td>
<td>n.a.</td>
<td>#INF error</td>
</tr>
<tr>
<td>13</td>
<td>M500</td>
<td>Invertible</td>
<td>500x500</td>
<td>0.000001</td>
<td>13</td>
<td>0.259</td>
</tr>
<tr>
<td>13a</td>
<td>M500</td>
<td>Invt-AnyTime</td>
<td>500x500</td>
<td>0.000001</td>
<td>10</td>
<td>0.206</td>
</tr>
<tr>
<td>14</td>
<td>M1000</td>
<td>Invertible</td>
<td>1000x1000</td>
<td>0.000001</td>
<td>14</td>
<td>2.112</td>
</tr>
<tr>
<td>15</td>
<td>M5000</td>
<td>Invertible</td>
<td>5000x5000</td>
<td>0.000001</td>
<td>16</td>
<td>329.619</td>
</tr>
<tr>
<td>16</td>
<td>M8000</td>
<td>Invertible</td>
<td>8000x8000</td>
<td>0.000001</td>
<td>17</td>
<td>1380.320</td>
</tr>
<tr>
<td>17</td>
<td>M8500</td>
<td>Invertible</td>
<td>8500x8500</td>
<td>n.a.</td>
<td>n.a.</td>
<td>error -4</td>
</tr>
<tr>
<td>18</td>
<td>685_bus</td>
<td>Repository</td>
<td>685x685</td>
<td>0.000001</td>
<td>12</td>
<td>0.665</td>
</tr>
<tr>
<td>19</td>
<td>1138_bus</td>
<td>Repository</td>
<td>1138x1138</td>
<td>0.000001</td>
<td>14</td>
<td>3.262</td>
</tr>
<tr>
<td>20</td>
<td>Kuu</td>
<td>Repository</td>
<td>7102x7102</td>
<td>0.000001</td>
<td>9</td>
<td>605.310</td>
</tr>
</tbody>
</table>
DEFG 4-Way Mini-Experiment SpeedUp

<table>
<thead>
<tr>
<th>GPUs</th>
<th>SpeedUp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.947</td>
</tr>
<tr>
<td>4</td>
<td>3.622</td>
</tr>
</tbody>
</table>

![Graph of 4-GPU SpeedUp](image)