
An Efficient Approach for Mining Association Rules

from Sparse and Dense Databases

Lan Vu, Gita Alaghband
Department of Computer Science and Engineering

University of Colorado Denver
Denver, USA

{Ian. vu; gita.alaghband} @ucdenver.edu

Abstract- Association rule mining (ARM) is an important task

in data mining. This task is computationally intensive and

requires large memory usage. Many existing methods for ARM

perform efficiently on either sparse or dense data but not both.

We address this issue by presenting a new approach for ARM

that runs fast for both sparse and dense databases by detecting

the characteristic of data subsets in database and applying a

combination of two mining strategies: one is for the sparse data

subsets and the other is for the dense ones. Two algorithms, FEM

and DFEM, based on our approach are introduced in this paper.

FEM applies a fixed threshold as the condition for switching

between the two mining strategies while DFEM adopts this

threshold dynamically at runtime to best fit the characteristics of

the database during the mining process, especially when

minimum support threshold is low. Additionally, we present

optimization techniques for the proposed algorithms to speed up

the mining process, reduce the memory usage and optimize the

UO cost. We also analyze in-depth the performance of FEM and

DFEM and compare them with several existing algorithms. The

experimental results show that FEM and DFEM achieve a

significant improvement in execution time and consume less

memory than many popular ARM algorithms including the well­

known Apriori, FP-growth and Eclat on both sparse and dense

databases.

Index Terms- data mInIng, frequent pattern mInIng,

association rule mining, frequent itemset, transactional database

I. INTRODUCTION

Association rule mining (ARM) aims at discovering rules
specifying the frequency co-occurrence of groups of item sets,
subsequences, or substructures in a database. For example, an
association rule of retail data may be of the form "70% of
customers who buy milk and butter also buy bread with
confidence 90%". ARM is one of fundamental tasks in data
mining. Since its first introduction for sales analysis [1], ARM
has been broadly applied in many fields such as market
analysis, biomedical and computational biology research, web
mining, decision support, telecommunications alarm diagnosis
and prediction, and network intrusion detection [2]. Google
uses this mining task for their query recommendation system
[4].

Several studies have shown that ARM methods have
typically worked well for certain types of databases. Most
methods performed efficiently on either sparse or dense
databases but poorly on the other [1, 5, 6, 7, 8, 9, 10, 11]. Table

I presents the execution time of three well-known algorithms
Apriori [1], Eclat [5] and FP-growth [6] on sparse and dense
databases which shows Eclat perform best on dense data while
FP-growth run fastest on the sparse ones (the best execution
times among the three algorithms are underlined). Therefore, it
is difficult to select a suitable algorithm for a specific
application. Moreover, data mining components in database
management systems and statistical software usually require
mining methods that stably perform on various data types.

TABLE! . EXECUTION TIME (SEC.) ON SPARSE AND DENSE DATABASES

Databases Type Minsup Apriori Eclat FP-growth

Chess Dense 20% 1924 TI 89

Connect Dense 30% 522 366 403

Retail Sparse 0.003% 18 59 l.Q
Kosarak Sparse 0.08% 4332 385 144

Contributions: Most databases consist of both dense and
sparse data portions that can only be detected during the
mining process. Applying single mining strategy for ARM will
omit this feature and result in unstable performance on
different data types. In this paper, we present a novel high
performance approach for ARM that can self-adapt to data
characteristics. The main contributions of our study include:

1) The recognition of various characteristics of databases
and the fact that this characteristics may change during
the mining process is an original idea. The new approach
presented in this paper detects the data characteristics at
various stages of the mining process, and selects one of
the two mining algorithms suitable for each subset of the
data remaining to be mined on the fly. Two algorithms
FEM and DFEM derived from the proposed approach are
discussed.

2) Effective optimization techniques are introduced for the
implementation of our mining approach to further speed
up the mining process, reduce the memory usage and the
110 cost.

3) The efficiency of our approach is demonstrated in both
execution time and memory usage via the benchmark of
our algorithms (FEM and DFEM) with six other ARM
algorithms including Apriori [1], Eclat [5], FP-growth [6],
FP-growth* [7], FP-array [12], AIM2 [10]. We also
analyze the reasons for the performance merit of our
approach.

978-1-4799-3351-8/14/$31.00 ©2014 IEEE

II. BACKGROUND

A. Problem Statement

The association rule mining problem can be stated as
follows: Let 1 = {iI, i2, . . . , in} be the set of n distinct items in the
transactional database D. Each transaction T in D contains a set
of items called itemset and a k-itemset is an itemset with k
items. The count of an itemset x is the number of occurrences
of x in D and the support of x is the percentage of transactions
containing x. Given a database D, the ARM problem is to find
all strong association rules with the form: X -7 Y I X, Y c I,
and X n Y = 0 whose support and confidence satisfy two user­
specified inputs a minimum support threshold (minsup) and a
minimum confidence threshold (minconj). The confidence of a
rule is defined as the percentage of transactions in D that
contain X also contain Y and is computed as confidence(X -7
Y) = support(XuY)/support(X). The ARM task involves two
separate steps: (1) mining all frequent patterns (or frequent
item sets) from the original database and (2) generating rules
from these frequent patterns. An itemset a is a frequent pattern
if a's support is no fewer than minsup.

TABLE II. SAMPLE DATASET WITH MINSUP = 20%

Transaction ID (TID) Items Sorted Frequent Items

l b,d,a a,b,d
2 c,b,d b,c,d
3 c,d,a,e a,c,d,e
4 d,a,e a,d,e
5 c,b,a a,b,c
6 c,b,a a,b,c
7 f
8 b,d,a a,b,d
9 c,b,a,e a,b,c,e

For example, given the database In Table II and
minsup=20%, the frequent 1-itemsets include a, b, c, d and e
while f is infrequent because the support of f is only 11 %.
Similarly, ab, ac, ad, ae, bc, bd, cd, ce, de are frequent 2-
itemsets and abc, abd, ace, ade are the frequent 3-itemset. If
minconf = 80%, some of all association rules include b�a,
c �a, d �a, e �a, and c �b because their confidences are larger
or equal to 80%. In this paper, we use the terms pattern and
itemset; database and dataset interchangeably.

B. Association Rule Mining Approaches

Most current approaches [1, 5, 6, 7, 8, 9, 10, 11] for finding
association rules utilize the property that a k-itemset is frequent
only if its sub-itemsets are frequent to significantly reduce the
search space of frequent itemsets. First, the database D is
scanned to specify all frequent items (or l-itemsets) in D based
on the minsup value. After this step, only data of frequent items
(e.g. the third column in Table II) are used to determine the
frequent itemsets as well as to generate the association rules.
This considerably reduces the memory usage and computation
by avoiding a large amount of infrequent data from loading
into memory. In next steps, the frequent (k+ l)-itemsets,
initially with k=l, are discovered using frequent k-itemsets X
of the previous step. For this purpose, the datasets Dx which
are subsets of D and contain frequent items Y co-occurring
with X (X n Y = 0) are retrieved and used to determine the
frequency of (k+l)-itemsets. Depending on the mining
methods being applied, Dx can be presented in memory in
many different data structures such as TID-list [5], Bitmap

Vectors [3], FP-tree [6], FP-array [12], etc. or even be obtained
by re-scanning the original database D from disks as in the
Apriori method [1]. The characteristics of these data structures
and the behaviors of their mining methods are very different
which result in their different performance for a given
database. For example, algorithms like Apriori [1], FP-growth
[6], H-mine [8], nonordfp [9] and those making use of FP-array
data structure [12] exploit horizontal format of data and
perform efficiently on sparse databases (e.g. web document
data or retail data) while Eclat [5], Mafia [3], AIM2 [10]
present data in vertical format and run faster on the dense ones
(e.g. biological sequence data). These mining methods
perform unstably on different data types as demonstrated in
Table I. Furthermore, the characteristics of data subsets Dx
used to mine (k+ l)-itemsets can change from very sparse to
very dense as the mining task proceeds. Hence, applying a
suitable mining strategy for each Dx is essential to improve the
performance of ARM.

III. A NEW DYNAMIC APPROACH FOR
ASSOCIA nON RULE MINING

We focus on solving the first stage of ARM, i.e.,
discovering all frequent patterns in a database because this task
is computationally intensive and constitutes the majority of
work complexity while the second stage of generating
association rules is trivial in comparison.

A. Data Structures

ARM is a memory intensive task whose data presentation and
manipulation have a huge impact on mining performance. In
our mining approach, we apply two main data structures
including FP-tree and Bit Vector for the mining task.

FP-tree is a prefix tree that compacts all sets of ordered
frequent items from database into memory. This tree consists
of a header table storing the frequent items with their count, a
root node and a set of prefix sub-trees. Each node of the tree
includes an item name, a count indicating the number of
transactions that contain all items in the path from the root
node to the current node, and a link to its parent node. Each
linked list starting from the header table links all nodes of the
same frequent item. If two itemsets share a common prefix,
the shared part can be merged as long as the count properly
reflects the frequency of each item set in the database. Fig. 1
illustrates an FP-tree constructed from the dataset in Table II
where a pair <x:y> indicates item name and its count.

Header

table

a:7 ,

b:6 ,

c:5 -

d:5 -

e:3 ,

Figure l . FP-tree constructed from the database in Table II

Bit Vector is used to store data in memory using the vertical
format. This data structure includes item name, count and
vector of binary bits associated with an item or an itemset. The
ith bit of this vector indicates if the ph transaction in the
database contains that item or item set (1: exist, 0: does not
exist). For example, the dataset in Table II can be presented in
five bit vectors as in Fig. 2. The bit vector of the item f is
removed because this item is infrequent. This structure does
not only save memory but also enables low-cost bitwise
operations for computations.

Bit Vectors
TID Frequeut Items a b c d e

1 a,b,d 1 1 0 1 0
2 b,c,d 0 I I I 0
3 a,c,d,e I 0 I I I
4 a,d,e I 0 0 I I
5 a,b,c 1 1 1 0 0
6 a,b,c I I I 0 0
7 0 0 0 0 0
8 a,b,d 1 1 0 1 0
9 a,b,c,e 1 1 1 0 1

Figure 2. Bit Vectors constructed from the dataset in in Table II

B. The Proposed Approach for Association RuLe Mining

Studying many real databases and their characteristics, we
observed that most consist of a group of items occurring much
more frequently than the others. During the mining process, the
items in this group create data subsets whose characteristic is
dense while the less frequent items create subsets which are
sparse. Our approach is combining two mining strategies: (1)
the first one which is applied for sparse data subsets presents
data as FP-tree and uses the divide and conquer approach to
generate frequent patterns; (2) the second strategy which is
used to mine the dense data portions stores data into Bit
Vectors and performs ANDing bitwise operation on pairs of
vectors to specify the frequent patterns. It has been shown that
the first mining strategy works better on sparse data [6, 7, 9]
and the second one is more suitable for dense one [5, 10, 11].
The proposed approach detects the characteristic of each data
subset (not whole database) and applies a suitable one for this
data dynamically. Based on this approach, we develop two new
algorithms FEM and DFEM which are presented in Section IV
and V. In general, our mining method includes three main
subtasks as shown Fig. 3:

FP -Tree construction

Figure 3. Mining model of the proposed approach.

FP-tree construction: Database is scanned for the first
time to find the frequent items and create the header table. A
second database scan is conducted to get frequent items of each
transaction. Then, these items are sorted and inserted in the FP-

tree in frequency descending order. During the top-down
traversal of the tree construction, if a node presenting an item
exists, its count will be incremented by one. Otherwise, a new
node is added to the FP-tree.

MineFPTree generates frequent patterns by concatenating
the suffix pattern of the previous step with each item a of the
input FP-tree. Then, it constructs a child FP-tree called
conditional FP-tree for every item a using a dataset called
conditional pattern base, i.e., Ox as discussed in Section II. This
dataset is extracted from the input FP-tree and consists of sets
of frequent items co-occurring with the suffix pattern. The new
tree is then used as the input of this recursive mining task. This
mining approach explores data in the horizontal format and
does not require generating a large number of candidate
patterns. Hence, it performs well on sparse databases.
However, unlike the related works [6, 7, 9] that perform
mining on FP-tree only, MineFPTree can switch to the second
mining strategy when it detects the current data subset is dense.
In this case, the data subset is converted into bit vectors and
MineBitVector is invoked. A weight vector w whose elements
indicate the frequency of sets in the conditional pattern base is
added as the input of MineBitVector.

MineBitVector generates frequent patterns by
concatenating the suffix pattern with each item of the input bit
vector. It then joins pairs of bit vectors using logical AND
operation and computes their support using the weight vector
to specify new frequent patterns. The resulting bit vectors are
used as the input of MineBitVector to find longer frequent
patterns. The mining process continues in a recursive manner
until all frequent patterns are found. For dense data, this mining
strategy is better than MineFPtree because the number of
frequent patterns, which is usually found in dense data, make is
suitable for the candidate generation and test approach of
MineBitVector.

Fig. 4 illustrates an example. The conditional pattern base
of item d, extracted from the FP-tree in Fig. 1, consists of the 4
sets {a:2,b:2}, {a:l, c:I}, {a:I} and {b:l, c:I} in which (a , b)
occurs twice (Fig. 4-a). This base is equivalent to the dataset
represented in Fig. 4-b. If MineFPTree is selected, the
conditional FP-tree of item d is constructed as in Fig. 4-c.
Otherwise, the bit vectors a, b, c and the weight vector w (Fig.
4-d and 4-e) are created instead to be used by MineBitVector.

{a:2,b:2}
{a: I, c:I}
{a: I}
{b:l, c: I}

(c) Condittonal pattern base of item d

Header

table

a:4 �

b:3 �

c:2 -

TID Items Frequency

1 a,b 2

2 a,c 1

3 a 1

4 b,c 1

(b) Dataset eqUtvalent to the
conditional base of item d

a b c

���
(c) Conditional FP-tree of item d (d) Bit Vectors (e) Weight vector

Figure 4. Illustration of FP-tree and Bit Vector construction

C. Switching Between Two Mining Strategies

Effective determination of how and when to switch
between the two mining strategies is key in our approach to
perform efficiently on different types of databases. During the
mining process of MineFPTree, thousands or even millions of
child FP-trees are constructed from the parent tree. A FP-tree is
organized in such a way that the nodes of the most frequent
items are closer to the top. The newly generated trees are much
smaller than their parents because the less frequent items
whose nodes are at bottom of the parent trees are removed. The
size of a conditional pattern base which is used to construct a
new FP-tree also reduces to a level where it contains mostly the
most frequent items. In these cases, the conditional pattern base
has the characteristic of a dense dataset. Therefore, only small
conditional pattern bases are considered for transforming into
bit vectors and weight vector. The size of a conditional pattern
base is specified by the number of sets in that base which is
similar to the number of transactions in a dataset. If this size is
less than or equal to a threshold K, bit vectors and a weight
vector are constructed and the mining switches to
MineBitVector.

IV. THE FEM ALGORITHM

FEM uses the method described in Section ill and includes
three sub algorithms: FEM (Fig.5), MineFPTree (Fig. 6) and
MineBitVector (Fig. 7). FEM first constructs the FP-tree from
the database and then calls MineFPTree to start searching for
frequent patterns and dynamically switch to MineBitVector if
appropriate.

FEM algorithm

Input: Transactional database D and minsup

Output: Complete set of frequent patterns

1: Scan D once to find all frequent items
2: Scan D a second time to construct the FP-tree T

3: K = 128

4: Call MineFPTree(T,.0,minsup)

Figure 5. FEM algorithm

In FEM, a fixed value of threshold K is used to decide
whether to apply MineFPTree or MineBitVector during the
mining process. Our experimental results show that selecting a
good value of K for FEM is data-specific and depends on the
user-specified minimum support threshold (minsup). For FEM
to perform well on many databases, we suggest to choose a
value of K in the range of 0-256 based on our extensive
experimental results on many real databases. In Fig.5, we select
K=128 as a default value but K can be adjusted to obtain better
performance for a specific database application. With K=128,
the maximum size of a TID bit vector is 128 bits (16 bytes.)
This is smaller than or equal to the size of just one node of FP­
tree which needs at least 16 bytes for item name (4 bytes),
count (4 bytes), a link to parent node (4 bytes) and a link to the
next node of its linked list (4 bytes). The total memory size of
all TID bit vectors is therefore not greater than the number of
items in the conditional pattern base multiplied by 16 bytes.
This data structure requires much less memory space than an
equivalent conditional FP-tree does. Furthermore, the bitwise
operations on TID bit vectors will perform faster than creating
and manipulating FP-trees [13].

MineFPTree algorithm

Input: Conditional FP-Tree T, SUffix, minsup
Output: Set of frequent patterns

1: If T contains a single path P
2: Then For each combination x of the items in T

3: Output fJ= x usuffix

4: Else For each item ain the header table of T

5: Output fJ = au suffix

6: Construct ds conditional pattern base C

7: size = the number of nodes in the linked list of a

8: If size > K

9: Then { Construct ds conditional FP-tree T'

10: Call MineFPTree (T',jJ,minsup)}
11: Else { Transform C into TID bit vectors V
12: and weight vector w

13: Call MineBitVector (V,w,jJ,minsup) }
14:

Figure 6. MineFPTree algorithm

MineBitVector algorithm

Input: Bit vectors V, weight vector w, SUffix, minsup

Output: Set of frequent patterns
1: Sort V in support-descending order of their items

2: For each vector Vi in V

3: Output fJ = item of Vi u SUffix
4: For each vector Vj in V with j < i
5: {Uj = viAND Vj
6: SUpj = support of Uj computed using w

7: If SUpj � minsup Then add Uj into U
8:
9: If all Uj in U are identical to Vi

10: Then For each combination x of the items in U

11: Output fJ' = x u fJ

12: Else If U is not empty

13: Then Call MineBitVector(U,w,jJ,minsup)
14:

Figure 7. MineBitVector algorithm

V. THE DFEM ALGORITHM

DFEM is a major improvement of FEM. Unlike FEM, it
automatically finds the dynamic value of K at runtime which
helps DFEM adapt better to the data characteristic [14].

A. Computing Dynamic Value of K

FEM perform well for many databases using a value of
K=128. However, in some cases, the best performance is not
reached with this fixed selection. The second column in Table
ill shows the runtime of FEM for Kosarak dataset with
different values of K and minsup=0.07%. As can be seen, for
K=224, the runtime of FEM is 871 seconds, significantly
faster than its runtime of 1206 seconds for K=128. This
execution time difference becomes significantly larger when
the minimum support threshold (minsup) is set to lower levels
as required by many applications such as query

recommendation for web search engine [4]. In this case, it is
important to find the best possible value of K dynamically as
the program runs on a specific database with the required
minsups to gain near-optimal performance.

TABLE III. MEASUREMENTS OF FEM FOR KOSARAK (MINSUP=0.07%)

Thres. Ki
Runtime # patterns by the

Ratio Ri
(second) MineFPTree task (Pi)

Ko=O 3341 2776266097 NIA
KI =32 2939 1316339679 2.1
K2=64 2146 206479285 6.4
K3=96 1664 26795140 7.7
K4 = 128 1206 2413815 11.1
K5 = 160 1005 407051 5.9
K6 = 192 934 86575 4.7
K7 = 224 871 63876 1.4
Ks = 256 870 58304 1.1

In Table III, when K increases, the number of frequent
patterns found solely by the MineFPTree task reduces because
more mining workload is shifted to the MineBitVector task.
Let {Ko, KjKII} be the set of all values of K where Ki= K.j
+32; Pi is the number of frequent patterns generated by the
MineFPTree task when K is applied; and Ri is the ratio
indicating the difference between P; and P;.j. R; is computed
as:

R; = P;.jIP; , i = 1 ... n (1)
Our intensive empirical study indicates that good mining

performance is achieved with Ki that satisfies: R; <2 301 Rj �
2, "r7j > i). In other words, FEM will perform best (near
optimal) at the smallest K where increasing K does not result
in a sharp drop in the number of frequent patterns found by the
MineFPTree task. In the example in Table III, the K; that
satisfies this condition is 224 and its runtime is 871 seconds.
While this result is promising, the challenge is that this K; can
only be specified when the mining process completes and all
Pi and Ri have been computed. We have developed a practical
method to predict a value of K that is close to or equal to the
best K;. The predicted value is based on all P;'s estimated
dynamically at runtime as described in UpdateK algorithm in
Fig. 8. This algorithm requires less computational need in
comparison to the one we presented in [14].

UpdateK algorithm

Input: NewPatterns and Size
Output: updated value of threshold K

1: newK= 0
2: prO} = prO} + NewPatterns
3: For i = 1 to N - 1 step 1

4: { If Size > i*Step

5: { P{i} = P{i} + NewPatterns

6: If P[i-l}>=2* P{i} Then newK=(i+1)*Step
7: } Else Exit Loop

8:

9: i = K/Step - 1
10: If (i>0 AND P[i-l) < 2* P{i}) Then K = 0
12: If newK > K Then K = newK

Figure. 8 UpdateK algorithm

B. Algorithmic Description

DFEM uses UpdateK algorithm (Fig. 8) to dynamically
select the value of K at runtime and using it to adapt its mining
behaviors to the characteristics of processed data better than
FEM. DFEM consists of four sub algorithms: DFEM (Fig. 9),
UpdateK (Fig. 8), MineFPTree* (Fig. 10) and MineBitVector
(Fig. 6). MineBitVector of DFEM is similar to the one of FEM,
shown in Fig. 6.

DFEM algorithm builds the FP-tree, initializes the
variables used by UpdateK and invokes the MineFPTree*. The
variables in Lines 3-6 must be declared in a scope that
UpdateK can access and update.

DFEM algorithm

Input: Transactional database 0 and minsup
Output: Complete set of frequent patterns

1: Scan 0 once to find all frequent items

2: Scan 0 a second time to construct the FP-tree T
3: N=9

4: Step = 32

5: K= 0
6: Create P[N] and set all elements to zero
7: items = the number of frequent items in 0
8: Call UpdateK(items, N*Step)

9: Call MineFPTree* (T,0,minsup)
Figure. 9 DFEM algorithm

MineFPTree* algorithm: This algorithm is similar to
MineFPTree with the exception of the extra steps needed to
regularly update K (Line 4-5 and Line 11-13).

MineFPTree* algorithm

Input: Conditional FP-Tree T, suffix, minsup

Output: Set of frequent patterns

1: If FP-tree T contains a single path P
2: { For each combination x of the items in P

3: {Output,8=x u suffix}

4: n = the number of outputs,8
5: Call UpdateK (n,l)
7: Else

8: { For each item ain the header table of FP-tree T

9: {Output,8= au suffix

10: Construct as conditional pattern base C
11: n = the number of items in C

12: size = the number of nodes in the linked list of a
13: Call UpdateK (n,size)
14: If size> K Then

15: {Construct ds conditional FP-tree T'

16: Call MineFPTree*(T',,B,minsup) }

17: Else

18: {Transform C into TID bit vectors V
19:

20:
21:} }

and weight vector w

Call MineBitVector(V,w,,B,minsup) }

Figure. 10 MineFPTree* algorithm

VI. OPTIMIZA TION TECHNIQUES

In addition to the mining strategies and their data
structures, the architecture of the machine on which a frequent
pattern mining program runs also has a significant impact on
mining time of an ARM task. In this section, we present
implementation techniques for our mining approach to
optimize the use of cache, memory and 110 and reduce the
mining time.

FP-tree construction: In the second database scan, FEM
and DFEM pre-load the frequency descending sorted sets of
frequent items into a lexicographically sorted list. One copy of
similar transactions is kept with its count. For very large
databases, the transaction list size is set at runtime to fit the
available memory. We organize this list in a binary tree and
maintain its order while the list grows in size. When its size
limit is reached, the sets of frequent items and their counts are
extracted from the list one by one to build the FP-tree.
Therefore, the construction time of FP-tree is significantly
reduced because similar itemsets are added into FP-tree only
once. Moreover, the lexicographical order of the transaction
list makes the FP-tree nodes most visited together to be
allocated close together in memory optimizing the use of
cache and speeding up the mining stage.

FP-tree mining task: We improve the technique proposed
in [7] to implement an additional array associated with each
FP-tree to pre-compute the count of new patterns. It helps to
reduce the traversal cost of parent FP-trees when constructing
the child FP-trees. The improvement of performance results
from maximizing the locality of consistent memory access
pattern. However, for the trees with a large number of frequent
items, the array size will be very large which consequently
consume a large amount of memory and increases the runtime.
Therefore, we only enable this technique in FEM and DFEM
whenever the array size does not go beyond a predefined limit;
current default value is 64KB.

Memory management: For better memory utilization,
large chunks of memory are allocated to store data of all FP­
trees and bit vectors which is similar to the technique used in
[7]. When all frequent patterns from a FP-tree or bit vectors
and their child FP-trees or bit vectors have been found, the
storage for these data structures are discarded. The chunk size
is variable. This technique minimizes the overhead of
allocating and freeing small pieces of data and prevents data
scattered in memory.

Output processing: The most frequent output values are
preprocessed and stored in an indexed table as proposed in
[10]. In addition, the similar part of two frequent item sets
outputted consecutively is processed only once. This technique
considerably reduces the computational time on output
reporting, especially when the output size is large.

I/O optimization: Data are read into a buffer before being
parsed into transactions. Similarly, the outputs are buffered
and only written when the buffer is full. This technique
reduces much of the 110 overhead.

VII. EXPERIMENTS AND EV ALUA TION

We evaluate the efficiency of our approach by
benchmarking the two algorithms FEM and DFEM with six
other state-of-the-art ARM on both sparse and dense real
datasets.

A. Experimental Setup

Datasets: Eight real datasets with various characteristics
and domains were selected from the Frequent Item set Mining
Implementations Repository [15]. They include four dense,
three sparse and one moderate datasets (Table IV).

TABLE IV. DATASETS AND THEIR PROPERTIES

Datasets Type # Items Avg.length # Trans.

Chess Dense 76 37 3 196

Connect Dense 129 43 67557

Mushroom Dense 119 23 8 124

Pumsb Dense 2113 74 49046

Accidents Moderate 468 33.8 340183

Retail Sparse 16470 to.3 88 126

Kosarak Sparse 4 127 1 8. 1 990002

Webdocs Sparse 52676657 177.2 1623346

Software: We benchmarked FEM, DFEM and six state-of­
the-art ARM algorithms: Apriori [1], Elcat [5], FP-growth [6],
FP-growth* [7], FP-array [12], AIM2 [10]. FEM and DFEM
are implemented using our proposed method and the
optimization techniques introduced in this paper. Source codes
of compared methods can be found at [15][16].

Hardware: Eight algorithms were tested on an Altus 1702
machine with dual AMD Opteron 2427 processor, 2.2GHz,
24GB memory and 160 GB hard drive. Its running operating
system is CentOS 5.3, a Linux-based distribution.

B. Time Comparison

The execution time of eight algorithms on eight datasets
with various minsup are presented in Fig. 11. The experimental
results show that FEM and DFEM run stably and outperform
the others in almost all cases, while the other algorithms
behave differently for different datasets. Apriori runs slowest
on eight datasets but it does better than FP-growth* and FP­
array for two dense datasets, Chess and Mushroom. For Retail
the sparse dataset, Apriori has longer execution time compared
to FEM, DFEM and FP-growth but run faster than the others.
Eclat performs better than the others except AIM2, FEM and
DFEM on the dense datasets. However, for the sparse datasets
such as Retail and Kosarak, Eclat runs slower than most of the
others. Compared to Eclat, three algorithms FP-growth, FP­
growth* and FP-array run faster for the dense datasets but
slower for the sparse ones. AIM2, a variant of Eclat, performs
well for some dense and sparse datasets but worse for the other
ones.

Based on the execution time in this experiment, we found
that FEM and DFEM run faster than Apriori - the most popular
used ARM method- from 3.4 to 5555.6 times. In comparison to
Eclat and AIM2 whose mining approach use vertical data
format, our algorithms run faster from 1.02 to 45.3 times. Our
algorithms performed 1.2 to 23.4 times better than FP-growth,
FP-growth* and FP-array which are among the best methods

Chess (dense)
800

Connect (dense)
100

Mushroom (dense)
200

Pumsb (dense)
100

I
J

�75 I 600 75
160 0

I
c I 0 I 0 120 u I I �50 400 50 I
., � 80 t1
E / I � 25 r1 200 25

40 ",ri
a 0 0 0

50 40 30 20 60 50 40 30 3.5 2.5 1.5 0.5 80 70 60 50

Minsup (%) Minsup (%) Minsup (%) Minsup (%)

200
Accidents (moderate)

40
Retail (sparse)

3200
Kosarak (sparse)

20000
Webdocs (sparse)

, , /' , I
.,tr , , I � 150 30 d" ,

2400 15000 , , c tr' , I
0 ,

, f u ,
� 100 20 , 1600 10000 , , I ,
., , I E , � 50 10 , 800 5000 " ,

.� �

0 0 0 0

9 7 5 3 0.015 0.011 0.007 0.003 0. 1 0.09 0.08 0.07 10 8 6 4

Minsup (%) Minsup (%) Minsup (%) Minsup (%)

-�-·FEMo--DFEM - Do -Apriori -_ Eclat ----- FP-growth ·········FP-growth* -o-FP-array ---o---AlM2

Figure. 11 Execution time of FEM, DFEM and other algorithms

for ARM. This experiment demonstrates the efficiency
performance of FEM and DFEM for both sparse and dense
data.

C. Memory Usage Comparison

In order to evaluate the memory usage efficiency of FEM
and DFEM, we measured their peak memory usage in
comparison to the other six algorithms for the eight datasets by
using the memusage command of Linux. Table V shows the
memory usage (megabytes) of all algorithms for the test cases
with low minimum supports so that the result can reflect the
large difference in memory usage among the algorithms. As in
Table V, FEM and DFEM consume much less memory than
Apriori in every case. Their memory requirements are closer to
the average memory usage of Eclat and FP-growth in most
cases. For the Accidents and Connect dataset, our algorithms
use less memory than both Eclat and FP-growth. For the Chess
dataset, FEM and DFEM need more memory because our
implementation includes some additional buffers to enhance
the performance. However, these buffers have fixed size and
do not require much memory. Compared to FP-growth*, FEM
and DFEM require more memory for the dense datasets but

less memory for the sparse ones. In contrast, compared with
FP-array, the memory usage of FEM and DFEM is smaller for
the dense datasets but larger for the sparse ones. The memory
usage of AIM2 is smallest in most cases. However, the
memory usage of AIM2 for Webdocs, where memory
optimization is critical due to its large memory requirements,
AIM2 uses a significantly lager memory than the others do.

To sum up, the two experiments show that FEM and
DFEM not only significantly improve the mining performance
and outperform other existing "efficient" algorithms for both
sparse and dense datasets they also compare well in memory
requirements. Their memory consumption is much less than
Apriori and FP-growth and is on average on par with the other
algorithms. These results demonstrate the efficiency and
efficacy of our algorithms. DFEM performs better than FEM,
especially when minsup is low. Therefore, for mining
application that requires low minsup, DFEM is a better choice.

D. Peiformance Impact of Our Two Mining Strategies

To study the performance merit of our mining approach, we
measured the mining time of DFEM in three separated cases:
(1) using MineFPTree* only, (2) using MineBitVector only and

TABLEV. PEAK MEMORY USAGE (MEGABYTES) OF FEM, DFEM AND OTHER ALGORITHMS

Datasets Minsup FEM DFEM Apriori Eclat FP-Growth FP-Growth* FP-array AIM2

Chess 20% 4 4 1139 2 3 3 33 I
Connect 30% 11 11 3 1 13 16 2 43 3

Mushroom 0.5% 4 4 20 3 5 2 33 I
Pumsb 50% 15 15 921 15 15 6 46 10

Accidents 3% 181 181 368 232 305 198 154 40

Retail 0.003% 30 30 1203 25 33 350 59 32

Kosarak 0.07% 141 141 16406 138 154 160 133 130

Webdocs 4% 4707 4707 24576 3996 5 103 558 1 4256 7544

(3) using both MineFPTree* and MineBitVector, i.e., our
approach. The results for DFEM on both dense and sparse data
(Fig. 12) show that it outperforms the other methods where
single mining strategy was used. This is explained by the
contribution of dynamic combination of the two strategies,
MineFPTree and MineBitVector to the mining task where each
handles data portions it can perform best.

80
Chess (dense)

--.. -- MineFPTree*

�60 - .. - MineBitVector "
= Both I 0
<.)

I f' �40
<1) �", � 20

/ '
....

0
40 45 30 35 20

Minsup (%)

1600

1200

800

400

0

Kosarak

�o, �., �'b �., �. �I:S �. �
�. �.

Minsup (%)

�'\ �.

Figure 12. Execution time of using single mining strategy vs. using both

In order to understand the level that each mining strategy of
our approach contributes to the overall performance, we
measured MineFPTree* and MineBitVector in DFEM
separately; Figure 13 shows the time distributions of the two
strategies. The results show that our approach automatically
distributes the mining workload to its two mining strategies
based on data characteristics. MineBitVector which is more
suitable for dense data has been utilized mostly for the dense
datasets like Chess, Connect, Mushroom and Pumsb. The time
percentage of this strategy reduces when the data are sparse.
For the sparse portions of the datasets, MineFPTree* is a better
choice because its mining approach does not require generating
the very large number of infrequent candidate patterns. Hence,
this strategy is used more for sparse datasets like Retail,
Kosarak and Webdocs.

100% to

75%

�
50% <1)

E
E=

25%

0%

• MineFPTree* U MineBitVector

Figure 13. Time distribution of two mining strategies in DFEM

VIII. CONCLUSION

We have presented a new approach for assocIatIOn rule
mining that works efficiently on both sparse and dense
databases. Two algorithms FEM and DFEM derived from this
approach are introduced and benchmarked with six well-known
ARM algorithms. The experimental results on eight real
datasets have shown that FEM and DFEM significantly

improve mining time and consume much less memory than the
compared methods.

REFERENCES

[1] R. Agrawal, R. Sri kant, "Fast Algorithms for Mining

Association Rules," Proc. of the 20lh Int. Conf on Very Large
Databases, pp. 487-499, 1994.

[2] J. Han, H. Cheng, D. Xin, X. Yan, "Frequent Pattern Mining:

Current Status and Future Directions," in 1. Data Mining and
Knowledge Discovery, vol. 1 5, issue 1, pp. 55-86, Aug. 2007.

[3] D. Burdick et aI., MAFIA: A Maximal Frequent Itemset

Algorithm. In IEEE Trans. on Knowledge and Data
Engineering. vol. 17, no. 1 1, pp. 1490-1504, Nov. 2005.

[4] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, PFP: Parallel

FP-Growth for Query Recommendation. In Proc. of the 2008
ACM Conf on Recommender systems, pp. 107-1 14, 2008.

[5] M. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New algorithms

for fast discovery of association rules. In Proc. of Knowledge
Discovery and Data Mining, pp. 283-286, 1997.

[6] J. Han, J. Pei, Y. Yin, Mining Frequent Patterns without

Candidate Generation. In Proc. of the 2000 ACM SIGMOD Int.
Conf on Mgt. of Data, vol. 29, issue 2. pp. 1-12, Jun. 2000.

[7] G. Grahne, J. Zhu, Efficiently Using Prefix-trees in Mining

Frequent Itemsets. In Proc. of the 2003 Workshop on Frequent
Pattern Mining Implementations, pp. 123- 132, 2003.

[8] J. Pei et al. Hmine : Hyper-structure Mining of Frequent Patterns

in Large Databases. In Proc. of the IEEE Int. Conf on Data
Mining, pp. 441--448, Nov. 200 1 .

[9] B. Racz, Nonordfp: An FP-growth Variation Without

Rebuilding the FP-tree. In Proc. of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, Nov. 2004.

[10] S. Shporer, AIM2: Improved Implementation of AIM. In Proc.
of the IEEE Workshop on Frequent Itemset Mining
Implementations, Nov. 2004.

[1 1] L. Schmidt-Thieme, Algorithmic Features of Eclat. In Proc. of
the IEEE Workshop on Frequent Itemset Mining
Implementations, Nov. 2004.

[12] L. Liu, E. Li, Y. Zhang, Z. Tang, Optimization of Frequent

Itemset Mining on Multiple-core Processor. In Proc. of the 33rd
Int. Conf on Very Large Databases, pp. 1275- 1285, 2007.

[13] L. Vu, G. Alaghband, A Fast Algorithm Combining FP-tree and

TID-List for Frequent Pattern Mining. In Proc. of the 2011 Int.
Conf on Inf and Knowledge Engineering, 472-477, luI. 20 1 1 .

[14] L. Vu, G. Alaghband, Mining Frequent Patterns Based on Data

Characteristics. In Proc. of the 2012 Int. Conf on Information
and Knowledge Engineering, pp. 369-375, Jul. 20 12.

[15] Frequent Itemset Mining Implementations Repository,

Workshop on Frequent Itemset Mining Implementation, (2003-

2004). Available at http://fimi.ua.ac.be

[16] C. Bienia, The PARSEC Benchmark Suite, Princeton University
Technical Report TR-811-08 (Jan. 2008). Available at

http://parsec.cs.princeton.edu.

