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Abstract—We present a framework for automatically ordering
image patches that enables in-depth analysis of dataset
relationship to learnability of a classification task using
convolutional neural network. Our preliminary experimental
results show that an informed smart shuffling of patches at a
sample level can expedite training by exposing important features
at early stages of training. Using multiple network architectures
and datasets, we show that ordering image regions using mutual
information measure between adjacent patches, enables CNNs to
converge in a third of the total steps required to train the same
network without patch ordering.
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An emerging promising theoretical characterization of
deep learning that supports an intuition that motivated this
work is the characterization that uses an information theoretic
view of feature extraction [1]. The authors propose to study
deep learning through the lens of information theory using the
IB principle. In this characterization, deep learning is modeled
as a representation learning. Each layer of a deep neural
network can be seen as a set of summary statistics which
contain some of the information present in the training set,
while retaining as much information about the target output as
possible [2]. One relevant insight presented in these papers is
that the goal of DL is to capture and efficiently represent the
relevant information in the input variable that describe the
output variable. This is equivalent to the IB method whose goal
is to find maximally compressed mapping of the input while
preserving as much relevant information of the output as
possible. This characterization leads us to ask the question: Can
we utilize information theoretic techniques for images to make
training efficient? Particularly, can we preprocess training set
and feature maps such that the relevant information is captured
in the early stages of training?

A training set for image classification tasks that employ
supervised learning is constructed with the help of human
labeler. For instance, for a cat vs dog classification problem, the
human labeler must categorize each sample into either one of the
classes. During this process, the labeler must recognize and
classify each input using their own experience and distinguishing
capabilities. Considering this, a natural question we first must
answer before addressing the question above is: Does human
classification performance on the training dataset affect
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learnability of the task? In other words, can the networks learn
from ‘scrambled’ samples that cannot be classified by the naked
eye? This question was investigated in [3] with intriguing
outcomes. The authors present results that indicate that CNNs are
capable of easily fitting training set containing samples that have
no correlation with labels (see Fig. 3 for illustration). These
results have us reconsider the traditional view that networks build
hierarchy of features in increasing abstraction, i.e., learn
combination pixels that make edges in the lower layers, learn
combinations of edges that make up object parts in the middle
layers, learn combinations of parts that make up an object the
next layer etc. This view is challenged by the findings in this
paper (see section V for detail). We use the information theoretic
characterization of deep learning to shed light on the questions
by developing preprocessing and learning techniques that reduce
convergence time by improving features extraction from images
using multilayered CNNs. We first rule out that human
recognizable features matching labels are not necessary for
CNNs and that they are able to fit training set containing
scrambled samples with minimal impact on generalization.
Equipped with this result we then utilize similarity and
information theoretic measures of image characteristics to
preprocess and ease feature extraction from images during
training. Our methods aim to expose important features of each
training sample earlier in training by reorganizing image
regions. The contributions of our approach are:

1. We provide a framework and algorithms for

preprocessing dataset to reorder image patches using

techniques that minimize mutual entropy of adjacent image

patches of each training sample.  As the results demonstrate,

organizing patches, of each training sample using measures

such as entropy of a patch and mutual information index

between patches enable faster convergence.

2. We present several techniques for ranking samples

that use information theoretic measures of the relationship

between adjacent patches and present results that show faster

convergence compared to standard training.

Two benchmark datasets and Inception [4], VGG [5] and
ResNet [6] architectures, known for achieving exceptional
results on image classification tasks, are used for evaluation.
The networks are first trained on the corresponding datasets to
create baseline reference performance metrics for comparison.
For each network we used Adams optimization technique with
cross-entropy loss to gather emperical training, validation and
test data.

The remaining content is presented as follows. In section
2, we present the patch ordering approach and highlight the



design and implementation of algorithms used to preprocess
data and feature maps based on patch ordering. In Section 3, we
discuss the experimental setup. Then, section 4 presents
analysis of our results obtained by training Inception using
multiple unmodified and patch-ordered datasets. Finally, we
conclude by offering our insight as to why the outcomes are
important for deep learning and future generation networks.

II. METHOD

During training, CNNs construct hierarchy of feature
representations and use superposition of the hierarchical
features when generalizing to unseen input (Ian Goodfellow et
al. 2006). However, we believe learnability of a classification
task is closely related to the amount of information contained
in the dataset that enable distinguishability of one class from
the others. To further explore this claim, we developed
techniques and conducted several experiments by
preprocessing training set using various techniques. The
techniques and the general procedure are described below.

A. Patch Ordering

Our intuition is that some ordering at a sample level can
expedite training by exposing features that are important for
separating the classes in the early stages of training. For
illustration, consider the toy images in Fig. 1. If a person with
knowledge of the number system, was asked to classify or label
the two images, they can give several answers depending on
their experiences. At first glance, they can label a) as ‘large
number 1’ and b) as ‘large number 2’. If they were asked to
give more details, upon elaboration of the context, the labeler
can quickly scan a) and realize that it is a picture of digits 0
through 9. Similarly, b) would be classified as such, but
analyzing and classifying b) can cost more time because the
labeler must ensure every digit is present (we encourage the
readers to do the experiment). It’s the time cost that is of
interest to us in the context of learning systems. The mere
ordering of the numbers enables the labeler to classify a) faster
than b).

b)

0123456789 | 2703496185

Figure 1: Toy images to illustrate the importance of ordering for classification.
The two images in this context are of the same class. The label can be ‘digits
0-9’

Given this intuition, we asked if ordering patches of
training images such that the adjacent patches are ‘closer’ to
each other by similarity measure, could expedite training and
improve generalization. Based on the mental exercise, the
procedure can intuitively be justified by the fact that toy sample
a) is easier to classify because, as our eyes scan from left to
right the features (0,1,2. . .) are captured in order. Whereas it
might take several scans of b) to determine the same outcome.
Convolution based feature extractors use a similar concept to
capture features used to distinguish one class from the others.
The features are extracted by scanning the input image using
convolution filters. The output of convolution at each spatial
location are then stacked to construct the feature map.

Implementation of this operation in most deep learning
frameworks maintain spatial locations of features which then
can be obtained by deconvolution. In other words, there is a
one-to-one mapping between the location of a feature in a
feature map and its location on the original input (Fig.2.). Note
that the feature map not only encodes the feature (ear or head)
but it also implicitly encodes the location of the feature on the
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Fig. 2: a) input image b) feature map after convolving input with filter.

input image (green arrow in Fig. 2.). The encoding of location
is required for detection and localization tasks but not for
classification tasks. Another question that arises from these
observations is:

Can we control feature map construction such that the
resulting feature map has characteristics that enables efficient
learning while maintaining or improving generalization?

To answer this question, we searched for DL
characterization that aligns with this intuition and found the
work of [1] captures this intuition by relating DL training from
images to the Information Bottleneck principle (discussed
below). While the authors discuss IB in the context of the
entire training set and end-to-end training of deep networks,
our exploration is limited to individual training samples and
aim to expose information that can be captured and presented
to the network earlier during training. We developed
techniques to reconstruct training images by breaking up the
inputs into equal sized patches and reconstruct them using the
concept of ordering (Fig.3). Information-theory-based and
traditional measures of images were used for ranking and
ordering. These measures can generally be divided into two:

1. Standalone measures —measure some characteristic
of a patch. For example, the peak signal- to-noise ratio measure
returns a ratio between maximum useful signal to the amount
of noise present in a patch.

2. Similarity measures — these measures on the other
hand, compare a pair of patches. The comparison measures can
be measures of similarity or dissimilarity like L1-norm and
structural similarity or information-theoretic-measures that
compare distribution of pixel values such as joint entropy. The
similarity measures discussed in the subsections below include
Joint Entropy and Mutual Information.

u { s |

Fig. 3. An illustration of patch ordering. a) Input image, b) reconstruction of
the input using structural similarity of patches and c) feature map generated
by convolving b). Note that the encoding of spatial location of a feature is not
present in the feature map. The original image (a) is reconstructed using
structural similarity measure. This reconstruction is performed prior to
convolution at a preprocessing stage. Similar procedure can be applied to
feature maps deep in the learning pipeline.

Below we summarize the measures and present the sorting
and reconstruction algorithm
1) Entropy-Based Measures for Patch Ordering
The procedure for generating, ordering image patches and for
reconstructing image from ordered patches is below.
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Require: MeasureType, PatchSize
1. Obtain training batch B of size BatchSize

For i = 1 to BatchSize do:
For each input image Xx; in B,do:
a. p, = Generate — Patches(x;) r: 0, ..., number
of patches in x;
b. If MeasureType is standalone
i.Compute — Individual — Index(p,.)
C. Otherwise
i.Select a reference patch po
ii.Compute — Individual —
Index (p,, po)
d. Sort-Pachtesin order according to MeasureType
and indices
€. Reconstruct-Sample(X;)
2. Train network on B
3. Repeat

End
Return Network

Table 1: Patch Ordering and Reconstruction (POR) Algorithm. The function
Generate-Patches generates equal sized patches of the input image. Compute-
Individual-Index calculates the index of a given patch when the MeasureType
is of type standalone while Compute-Mutual-Index computes an index of
similarity between two patches. Sort-Pachtes sorts the patches according to
indices and Reconstruct-Sample constructs a sample using sorted patches. For
computational efficiency PatchSize is taken from (4x4, 8x8, 16x16) and all
samples are resized to 32x32 prior to preprocessing. Since the dataset consists
of color (RGB) images the algorithm computes the index of each channels and

returns the average -

a) Entropy
Information theory provides a theoretical foundation to
quantify information content, or the uncertainty, of a random
variable represented as a distribution [8], [9]. This can be
extended to image processing and computer vision [10]. One
such measure is entropy. Intuitively, entropy measures how
much relevant information is contained within an image when
representing an image as a discrete information source that is
random [9]. Formally, let X be a discrete random variable with
alphabet y and a probability mass function p(x),x € y. The
Shannon entropy or information content of X is defined as
1

EX) = Z x)log——

0= 2 plos oy
where Ologoo = 0 and the base of the logarithm determines
the unit, e.g. if base 2 the measure is in bits etc. [11]. The term

M

log $ can be viewed as the amount of information gained by

observing the outcome p(x). This measure can be extended to
analyze images as realizations of random variables [9]. A
simple model would assume that each pixel is an independent
and identically distributed random variable (i.i.d) realization
[9]. When dealing with discrete images, we express all
entropies with sums. One can obtain the probability
distribution associated with each image by binning the pixel
values into histograms. The normalized histogram can be used
as an estimate of the underlying probability of pixel intensities,
i.e.,, p(i) = by(i)/N, where by (i) denotes the histogram entry
of intensity value i in sample S and N is the total number of

pixels of S. With this model the entropy of an image S can be
computed using:

N
E(S) = | bs (1) 10gm; 2
i€x(s),s€Ts

where T, = {(x,,,):1<n <N} is the training set
comprising both the input values x, and corresponding
desired output values y,,. N is the total number of examples in
the training set. y(s) represents the image as a vector of pixels.
While individual entropy is the basic index used for ordering,
we also consider strategies that relate two image patches.
These measures include joint entropy[9], and mutual
information[13] .
b) Joint Entropy

By considering two random variables (X,Y) as a single
vector-valued random variable, we can define the joint entropy
JE(X,Y) of pair of variables with joint distribution p(x, y) as
follows:

JEWX) = =) ) pey)logpy). ()
x

When we model images as random variables, the joint entropy

is computed by gathering joint histogram between the two

images. For two patches, p;,p, € S; € T the joint entropy is

given by:

JE@1p) = ) by(Dlogh,() @

L

where b (i) is the i*" value of joint histogram between the two
patches.
c) Mutual Information

Mutual information (MI) is the measure of the statistical
dependency between two or more random variables [9]. The
mutual information of two random variables X and Y can be
defined in terms of the individual entropies of both X and Y
and the joint entropy of the two variables JE (X,Y). Assuming
pixels of the patches p,,p, the mutual information between
the two patches is

MI(py,p2) = E(p1) + E(p2) —JE(prp2).  (5)

As image similarity measure, MI has been found to be
successful in many application domains.

In addition to the entropy-based measures, we also utilized
traditional image similarity metrics including Kullback-
Leibler(KL) divergence [14], L1 and L2 norms [16], Structural
Similarity Index (SSIM) [15] and Peak-signal-to-noise ratio
(PSNR) [15].

III. RESULTS AND ANALYSIS

For evaluation we used CATSvsDOGS [16], and
CIFAR100 [17] datasets. The techniques described above
were employed to learn and classify these datasets. To gather
enough data that enable characterization of each preprocessing
technique, we set up a consistent training environment with
fixed network architectures, training procedure, as well as
hyper parameters configuration. We performed two sets of
experiments to determine the impacts of algorithm POR (Table
1) on training. The first experiment was designed to determine
correlation between the preprocessing techniques and network
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training performance while the second was conducted to
characterize the impact of granularity of patches on training.
Below we present the analysis of results obtained using each
approach. The results are summarized in Figs. 4 and 5.

A. Patch Ordering

Figure 4 shows results obtained when training Inception
network to classify CIFARI00 (Top) and Cats vs Dogs
(Bottom) datasets using slow learning rate and Adams
optimization [18]. Plots on the right side depict test
performance of the network at different iterations. In both
setups, the mutual information technique speeds up learning
rate more than all others while some techniques degrade the
learning rate compared to regular training.

However, all techniques converge to the same performance as
the regular training when trained for 10000 iterations. Given
these results we answer the questions posed in the earlier
sections. The question of whether ordering patches of the input
based on some measure to help training can partially be
answered by the empirical evidence that indicate reconstructing
the input using the MI measure enables faster convergence.
Dataset reordered using the MI measure achieves similar
accuracy as the unmodified dataset in % of the total iterations.
In support of this we hypothesize that informed ordering
techniques enable robust feature extraction and make learning
efficient. To conclusively prove this hypothesis, one must
consider variety of experimental setup. For instance, to rule out
other factors for the observed results, we must perform similar
experiments using different datasets, learning techniques, hyper
parameter configuration and network architectures.

Given that most of these techniques remove human
recognizable features by reordering (Figure 3) and the
experimental results that not all ordering techniques
compromise training or testing accuracy, we make the
following claim: Training and generalization performance of
classification networks based on the deep convolutional neural

0.7

Accuracy(%)
Accuracy (%)
°
Y

Accuracy (%)
Accuracy (%)

SK
Step

12K MK 16K

network architecture is uncorrelated with human ability to
separate the training set into the various classes.

B. Patch ordering impact on Training

In this section we provide analysis of the impact of the

patch-ordering  preprocessing  technique on training
convolutional neural networks.
Let us consider the mutual information (MI) metric, which
outperforms all other metrics. As mentioned in previous
sections the MI index is used as a measure of statistical
dependency between patches for patch ordering. Given two
patches (also applies to images) p;, p, the mutual information
formula (Eqn. 5) computes an index that describes how well
you can predict p, given the pixel values in p;. This measures
the amount of information that image p; contains about p,.
When this index is used to order patches of an input, the result
consists of patches ordered in descending order according to
their MI index. For instance, consider a 32 by 32 wide image
with sixteen 8 by 8 patches (see representation, I, below). If we
take patch p(0,0) to be the reference patch, Algorithm 1 in the
first iteration computes MI index of every other patch with the
reference patch and moves the one with the highest index to
position (0,1) and updates the reference patch. At the end, the
algorithm generates an image such that the patch at (0,0) has
more similarity to patch at (0,1) which has more similarity to
patch at (0,2) etc. In other words, adjacent patches explain each
other well more than patches that are further away from each
other. How does this impact training?

To answer this question let us consider the convolution
operator [19] and the gradient decent optimization [20] training
technique. This algorithm employs Adam optimization and the
SoftMax cross-entropy loss, to update network parameters.

We trained the networks using online training [21] mechanism,
where error calculations and weight updates occur after every
sample. Our hypothesis is that samples preprocessed using the

Measure

M Entropy
JE

M KL
L1-Norm

M L2 Norm
MI

M Original
PSNR

M SSIM

4K

6K
Step

Figure 4: Accuracy in validation classification as a function of training iterations of CIFAR100 (top) and CATSvsDOGS
(bottom) datasets using Inception network architecture. We show training (left and testing (right) results of all the
similarity and statistical measure-based patch ordering techniques: patch ordering using mutual information (MI, yellow)
between adjacent samples outperforms all other techniques. During training all parameters except for the training dataset
are fixed.
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MI measure enable rapid progress lowering the cost in the
initial stages of the training.

In other words, when the input is rearranged such that
adjacent samples have similar pixel value distribution, the
convolution filters extract features that produce smaller error.
To illustrate this let us assume the following values for the first
few patches of an image (color coded in the matrix below). For
simplicity let us assume the image is binary and all the pixel

000 001 values are either O or 1.
[1 5

‘1’ ‘1’ 1 } } } Also consider the following 3x3
I= convolution filter whose values
I
0 1
convolution of the original image with the above kernel K, the

are initialized randomly: K =
] If  one performs
resulting feature map consists of the following values.

000001 To maintain resolution of the
[0 016 6 6 original image we use O-

I«K=|1 6 6 77 7| . .
011111 padding before applying
001001 convolution. Applying a 3x3
i 0011 o ppiymg

max pooling operation with
stride 3 to the convolved sample generates a down-sampled

6 7 Lo
[1 1] ,which is
used as an input to compute probability score of each class in a

classifier. In this illustration we

feature-map of the i*" training sample, x;

00 0
|[0 01 i consider a binary classifier with
l’=|1 e 0 0 1| two possible outcomes.
i
T Given the weight matrix W =
0.01 -0.05 0.1 0.05 . _ 102
[0.7 02 005 0416 and a bias vector b = [_0.4 ,

the effective SoftMax cross-entropy loss for the correct class
can be computed using the normalized probabilities assigned to
the correct label y; given the image x; parameterized by W
(Eqn. 12).

ef Yi

PO W) = o7 (12)
The probabilities of each class using f(W,x) = (Wx; + b)

objective function after normalization are ] Assuming

0.99
the probability of the correct class is 0.01 the cross-entropy loss
becomes 4.60. Note here patches are ordered left to right and
adjacent patches have MI indices that are larger than those that
are not adjacent. After ranking each 3x3 patch using the MI
measure and preprocessing the sample using Algorithm 1, the
resulting sample I’ has ordering grey, green, pink and blue. In
this example MI of the green with the grey patch is 0.557 while
the blue has MI index equal to 0.224 against the same reference
patch.

Once I' is convolved using the same kernel K, the resulting
0.13

0.87
probabilities for each class. Taking the negative logarithm of

the correct class results in a prediction loss equal to 2.01.

This is the underlying effect we would like all measure to have
when reordering the training dataset. However, it is not
guaranteed. For instance, if we use 12-norm measure to sort the

downscaled feature map, x;’ [2 ?], produces
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patches, the resulting loss becomes 4.71, which is higher
compared to the unmodified original sample. As a result, the
training is slowed down since larger loss means more iterations
are required for the iterative optimization to converge.

C. Patch Size Impact on Training

To characterize the effect of patch size, we performed

controlled experiments where only the patch size is the varying
parameter. The results and unmodified and preprocessed
samples are depicted in Fig. 5.
As can clearly be seen in the plot, the network makes rapid
progress lowering the cost when trained on a 4x4 patch ordered
datasets. Based on the empirical evidence and observations, we
believe patch-ordering impact is more effective when mutual
information index is combined with small patch size. To clarify
consider dividing the above sample into nine 2x2 patches
(matrix I").

00 00 - If the patches are reordered using
0 0 % % MI measure(/) against a reference
"= . 0 0 . patch p(0,0), and convolve the
00 ;
5 - - reordered sarilples, , using the same
filter K =[ ] , the resulting
00 00 . 0 1
00 11 - normalized prediction probabilities
m _ | . .
=100 . . are 8';2],whlchresults in a loss of
00 .
10 . 1.96 after the first iteration.

This is one explanation for the
observed results, however, we cannot draw a conclusion
regarding proportionality of patch size to training
performance. If the pink and red patches of the above sample,
which have same MI index, were to swap places, the resulting
loss would have been 4.71 which is greater than the loss
generated using 3x3 patch size. In this scenario training is
slowed down which explains the behavior of training VGG on
the different patch sizes.

IV. SUMMARY AND DISCUSSION

We proposed several automated patch ordering techniques
to assess their impact on training and characterize the
relationship between dataset characteristics and training and
generalization performances. We used traditional image
similarity measures as well as information theory-based content
measures of images to reconstruct training samples. The
empirical evidence and our analysis using multiple datasets and
Inception network architecture, suggest that training a
convolutional neural network by supplying inputs that have
some ordering, at patch level, according to some measure, are
effective in allowing a gradient step to be taken in a direction
that minimizes cost at every iteration. Specifically, our
experiments show that supplying training sample such that the
mutual information between adjacent patches is minimum,
reduces the loss faster than all other techniques when
optimizing a non-convex loss function. In addition, using these
systematic approaches, we have shown that image
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Figure 5: Patch granularity impact on training multiple networks using the CIFAR100 dataset.
Total training loss for Unmodified dataset, and datasets modified by applying Algorithm 1 using the MI metric
and patch sizes 4x4, 8x8 and 16x16. The overall size of each sample is 32 by 32.

characteristics and human recognizable features contained
within training samples are uncorrelated with network
performance. In other words, the view that CNNs learn
combination of features in increasing abstraction does not
explain their ability to fit images that have no recognizable
features for the human eyes. Such a view also discounts the
ability of the networks to fit random noise during training.
Instead further investigation using theoretical characterizations
such as the IB method are necessary to formally characterize
learnability of a given training set using CNN.
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