
Optimizing Training using Information Theory-
Based Curriculum Learning Factory

Abstract— We present a new system that can automatically 
generate input paths (syllabus) for a convolutional neural network 
to follow through a curriculum learning to improve training 
performance. Our system utilizes information-theoretic content 
measures of training samples to form syllabus at training time. We 
treat every sample as 2D random variable where a data point 
contained in the sample (such as a pixel) is modelled as an 
independent and identically distributed random variable (i.i.d) 
realization. We use several information theory methods to rank 
and determine when a sample is fed to a network by measuring its 
pixel composition and its relationship to other samples in the 
training set. Comparative evaluation of multiple state-of-the-art 
networks, including, GoogleNet, and VGG, on benchmark 
datasets demonstrate a syllabus that ranks samples using 
measures such as Joint Entropy between adjacent samples, can 
improve learning and significantly reduce the amount of training 
steps required to achieve desirable training accuracy. We present 
results that indicate our approach can reduce training loss by as 
much as a factor of 9 compared to conventional training.

Keywords—Deep Learning, Curriculum Learning, 
Convolutional Neural Network. Information Theory, Curriculum 
Factory

I. INTRODUCTION 

When used in supervised machine learning, curriculum-
based training (Figure 1) exposes samples to the learning 
system in predetermined order. The basic idea is to present 
samples that have low complexity at the start of training and 
gradually increase complexity of samples fed to the network 
over the course of training. Hence, at core of this approach lies 
ranking (weighting) training samples based on their level of 
presumed difficulty.

Many techniques described in the literature consider 
difficulty level of a sample to be proportional to a chosen 
distance metric between the output label and the actual truth 

label of the sample [3],[5]. The distance metric is often 
provided by the loss function used by the learning algorithm, 
since it already attempts to minimize the distance between the 
expected and truth sample labels. In order to use this approach, 
one must employ two training passes: the first to measure the 
difference between the true label and predicted label value of 
each sample to get the presumed difficulty (or rank) of the 
sample. The training set is then ordered according to rank of 
each sample to form a curriculum used to train the network in 
the second training pass. 

In contrast to the existing class of curriculum algorithms, 
our proposed method combines information theory tools (ITT) 
with curriculum learning to assess and adaptively order training 
samples (Figure 1). We utilize ITT-based image analysis 
techniques to assess each sample and its relationship with other 
samples to determine the time the sample is fed to the network.  
A unique feature of our approach is that the syllabus is 
generated, enforced and evaluated at training time using a 
node, curriculum factory, integrated into training pipeline. The 
node is designed to handle both online and batch training 
modes. When training using batches, a random subset (batch) 
of samples of size M from the training set is processed and the 
weights are updated based on the cumulative error. With online 
training, one sample is fed to the network at every iteration and 
weights are updated based on error corresponding to that 
sample. During batch training, the samples in a batch are 
ordered to form a syllabus corresponding to that batch. The 
primary means of ordering is a metric m that ranks a sample by 
measuring its content. The syllabus and batch are then supplied 
to the network to train via curriculum learning. 

To summarize, this paper makes the following
contributions. Currently there exists no methods in the literature 
that take characteristics of training data into account to expedite
non-convex optimization via curriculum learning or other 
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Fig. 1. Curriculum Learning with and without the proposed system
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means. As the first contribution, we present a curriculum 
learning algorithm that reduces training loss at each iteration by 
ordering batches to form a syllabus. When used in stochastic 
gradient descent (SGD)-based training, our algorithm expedites 
training and reduces the overall loss by as much as a factor of 9 
without compromising generalization performance. Second, we 
present results that showcase improved generalization 
performance of popular CNN models on benchmark datasets in 
comparison to baseline, state-of-the-art performance. 

II. PROPOSED METHOD

The goal of training CNNs is to try and determine optimal 
network weights to approximate target mapping ࢍ: ࢞ → ࢟ [3]
where ࢞ is the input vector and ࢟ is the corresponding desired 
output taken from a training set, ࢙ࢀ = ,࢞)} :(࢟  ≤  ≤ (1)                       ,{ࡺ
consisting of ࡺ samples. If we consider a ࢎ࢚ training batch   ⊂ ࢙ࢀ  containing ࡹ samples, a curriculum training 
syllabus, ࢙࢛࢈ࢇ࢟ࡿ of  is generated by ranking and 
ordering every sample in the batch based on some measure m.
The syllabus is then applied to train the network. Note here, ࡹ =  corresponds to online training where samples (not 
batches) are fed one by one. In our system, ܯ = 1 is a special 
case where the syllabus corresponds to ordering of the entire 
training set. 

TABLE I. CURRICULUM TRAINING OF A CNN NETWORK . HERE, AT LEAST TWO 
M VALUES, A PRIMARY MEASURE AND BACKUP MEASURES, FROM TABLE 2 ARE 
PRE-SPECIFIED. IF NO M IS PRESPECIFIED, SP-MODULE PICKS A PRIMARY AND 
BACKUP MEASURES RANDOMLY FROM THE SET OF MEASURES LISTED IN TABLE
2.

Curriculum factory, an original feature of our proposal, is a 
system that generates ordering of samples of a selected batch 
during training. It comprises a syllabus proposal submodule
(curriculum factory) that takes a batch of randomly ordered 
samples as input and returns an ordering of the samples that 
serves as a syllabus. Given ࢙ࢀ we denote the ݆௧ mini batch
containing ࡹ ≪ ࡺ samples by  = ,࢙}  ,࢙ … , {ࡹ࢙ . A 
training syllabus,  is defined as an ordering of ࢙࢛࢈ࢇ࢟ࡿ 
every sample, ࢙ = ,࢞) (࢟ ∈ for   ≤  ≤  in ascending , ࡹ
(asc) or descending (dec) order. Ordering is determined by the 
rank, ,ࢿ of each sample as measured by a metric ݉ taken from 
Table 1. Formally, ࢙࢛࢈ࢇ࢟ࡿ = ( ,′࢙ ,′࢙ … , (ࡹ′࢙ is a 
computationally found ordered set such that ࢙ࢿᇱ ≤ ᇱ࢙ࢿ ≤… ≤ ࡹᇱ࢙ࢿ if ordering is asc and ࢙ࢿᇱ ≥ ᇱ࢙ࢿ ≥ … ≥ .if decࡹᇱ࢙ࢿ

Curriculum factory is built using a three-step processing 
depicted in Fig. 2. In stage I, all samples of a batch are assessed 
and ranked using a prespecified metric m (Table 1). In stage II, 
the batch is ordered according to the rank of each sample. The 
ordered batch, or syllabus, is then supplied to the network for 
training. In stage III, the effectiveness of the syllabus is 
determined using the network’s native loss function after 
training with a fixed number of batches. The number of batches 
used to control how often the syllabus is evaluated is a 
configurable hyperparameter. Below we discuss each stage in 
detail. The full recipe within an end-to-end training pipeline is 
presented in Table (Algorithm) 1.

A. Stage I: Assessing Content of Training Samples
CNNs learn patterns of features from training and use layer-

wise superposition of these features to generalize to unseen 
samples. To enable robust feature extraction and ease the 
pattern discovery, we are interested in generating curricula 
based on how samples are related to each other. We consider 
two types of metrics to measure these relationships; statistical
and information-theoretic measures. These measures are 
further categorized into standalone and distance depending on 
the input(s) to the measure. If a measure takes two samples as 
input and returns a single value that relates the two samples, 
then it is considered a distance measure. Otherwise, the 
measure is standalone and takes a single sample as input and 
returns a value that describes certain characteristics of the 
sample. 

1) Information Theoretic Measures 
In order to use information-theoretic measures, we model 

all images as 2D random variables where each pixel is an 
independent and identically distributed random variable (i.i.d)
realization. With this model, we utilize information theoretic 
measures such as Entropy to quantify information content of 

Input: ࢙ࢀ ࢚ࢋ࢙ ࢍࢇ࢘ࢀ, , ࢉ࢚࢘ࢋࡹ , ࢘ࢋࢊ࢘ࡻ β, π
Outputs: Trained model η (network weights)
1. Initialize iteration (training batch) counter iter and ࡿ→ࣁࢼ to 0 and ࡿࢌ

with continue
2. Draw training batch  of size  ࡹ from ࢙ࢀ
             For  =  ࢚ < ࡹ − 

1. ࢙ ࢚࢛ ࢚ࢉࢋࢋࡿ
2. ܑ࢙ࢿ ࢇ࢘ ࢋ࢚࢛

      End 
      Syllabus = Sorted batch according to ࢿ

3. Train network on  using Syllabus and increment iter
4. If iter is equal to π

Calculate syllabus-to-baseline loss ratio Ꞷ and set fitness signal ࡿࢌ
                      If ࡿࢌ is set to continue, go-to step 2

                   If ࡿࢌ is set to replace, go-to step 1
                        Otherwise Halt training

Fig. 2. Processing stages within sp-module. From left to right given batch B and hyperparameters read once at start: I. Rank each sample. II. Generate syllabus by 
ordering B according to rank of each sample which is then used to train a network. III. Evaluate syllabus using network loss.

Select training batch 

Train
with

Syllabus
Loss

Fitness signal(Update metric m If unfit syllabus) 

Hyperparameters:  Π, m, 
β

Training batch B of size 
M
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training samples. Below we discuss few information theoretic 
measures as well as statistical measures such as SSIM. A 
complete list is presented in Table IIs.

a) Entropy
Let X be a discrete random variable with alphabet ࣑ and a 
probability distribution function (࢞), ࢞ ∈ ࣑ . The Shannon 
entropy [4] of   ࣑ is defined as (ࢄ)ࡴ =   (࢞) ܗܔ ࣑∋࢞(࢞)                     (2)
where ܗܔ ∞ =  and the base of the logarithm determines 
the unit, e.g. if base 2 the measure is in bits [5]. The term −ࢍ (࢞) can be viewed as the amount of information gained 
by observing the outcome (࢞). Entropy is usually meant to 
measure the uncertainty of a continuous random variable. 
However, when applied to discrete images, this measures how 
much relevant information is contained within an image when 
representing the image as a discrete information source that is 
random [6]. Here, we construct probability distribution 
associated with each image by binning the pixel values into 
histograms. The normalized histogram can then be used as an 
estimate of the underlying probability of pixel intensities, i.e., () = ()࢙࢈ where ,ࡺ/()࢙࢈ denotes the histogram entry of 
intensity value  in ࢙, and ࡺ is the total number of pixels of ࢙.
With this representation the entropy of an image ࢙ can be 
computed as:(࢙)ࡱ =   ()࢙࢈ ܗܔ ࢙ࢀ∋࢙,࣑∋()࢙࢈ࡺ ,          (3)          

where  ࢙ࢀ (eqn. 1) is the training set and (࢙)࣑ represents the 
image as a vector of pixel values. While individual entropy is 
used to measure the standalone rank of a sample, we also used
metrics that relate training samples. These include joint entropy
(JE), kl-divergence (KL), mutual information (MI), information 
variation (IV), conditional entropy (CE) and their variants such 
as normalized mutual information (MIN). A complete list and 
implementation of the metrics are listed in Table 2. Readers are 
encouraged to refer to [6]–[8] for detailed treatment of these 
metrics and others.

b) Joint Entropy
By considering two random variables (ܺ, ܻ) as a single vector-
valued random variable, we can define the joint entropy ܧܬ(ܺ, ܻ) of pair of random variables with joint distribution ݔ), (ݕ as follows: ࢅ)ࡱࡶ, (ࢄ =  −   ,࢞) (࢟ ܗܔ ,࢞) ࢞࢟(࢟ .       (4)
When we model images as random variables, the joint entropy 
is computed by gathering joint histogram between the two 
images. For two training samples, ଵܵ, ܵଶ ∈ ௦ܶ the joint entropy 
is given by: ࡿ)ࡱࡶ, (ࡿ =   ()࢙࢈ ܗܔ ()࢙࢈ ,                     (5)
where ܾ௦(݅) is the ݅௧ value of joint histogram of the two 

samples. 
c) Mutual Information 

Mutual information (MI) is the measure of the statistical 
dependency between two or more random variables [16]. The 
mutual information of two samples  ଵܵ and ܵଶ can be defined 
in terms of the individual entropies of both  ଵܵ and  ܵଶ and the 
joint entropy of the two variables ܧܬ( ଵܵ, ܵଶ).ࡿ)ࡵࡹ, (ࡿ = (ࡿ)ࡱ  + (ࡿ)ࡱ − ,ࡿ)ࡱࡶ )           (6)ࡿ
As noted in [18], maximizing the mutual information between 
samples seems to try and find the most complex overlapping 
regions by maximizing the individual entropies such that they 
explain each other well by minimizing the joint entropy. As 
image similarity measure, MI has been found to be successful 
in many application domains [9].

2) Statistical Measures
Statistical metrics on the other had measure the similarity 

(dissimilarity) of samples and typically use statistical 
measurements such as mean μ and standard deviation ߪ.

a) Structural Similarity Index (SSIM) 
SSIM is often used for predicting image quality using a 

reference image. Given two samples ࢙ and ࢙ the SSIM index 
[8] is given by:࢙)ࡹࡵࡿࡿ, (࢙ = (μ࢙࢙ࣆ + ࢙࢙࣌)( + ࢙)(μ  + μ࢙  + ࢙࣌)(  + ࢙࣌  + ) (7)
where the terms μ and ࣌ are the mean and variances of the two 
vectors and ࢙࢙࣌ is the covariance of ࢙ and ࢙. The constant 
terms  and  are used to avoid a null denominator. 
We also use simple measures such as ࡸ norm to compare the 
pixel histograms of two samples. 

TABLE II. LIST OF MEASURES USED IN THIS STUDY

Metric Category Implementation - given samples ࢙, ࢙ ∈ ࢙ࢀ where ࢙࢈ is 
normalized histogram of pixel 
intensities and i is an index of a 
pixel value in a sample.

Entropy standalone Eqns. 2 and 3
Joint Entropy (JE) distance ࢙)ࡱࡶ, =(࢙   ()࢙࢈ ܗܔ ()࢙࢈ ,          
Mutual Information 
(MI)

distance ࢙)ࡵࡹ , =(࢙ ( ࢙)ࡱ  + (࢙)ࡱ − , ࢙)ࡱࡶ       (࢙
KL-Divergence distance ,࢙)ࡸ||ࡰ (࢙ =   ࢙ ܗܔ ()࢙࢈()࢙࢈  
Information Variation 
(IV) 

distance , ࢙)ࢂࡵ =(࢙ (࢙)ࡱ + (࢙)ࡱ − ࢙)ࡵࡹ , (࢙
Conditional Entropy 
(CE)

distance ࡱ(࢙ |࢙) = ,࢙)ࡱ (࢙ ,࢙)ࡱ  where ,(࢙)ࡱ− (࢙ is the sum 
entropies of ࢙and ࢙

L1 Norm (L1) distance ,࢙)ࡸ (࢙ = ห|࢙ − |ห࢙ = ∑ ห࢙ − ୀห࢙
L2 Norm (L2) distance ,࢙)ࡸ (࢙ = ห|࢙ − |ห࢙ = ට∑ ࢙) − ୀ(࢙
Max Norm (MN) distance This is like L1norm where, instead of 

every entry, the maximum entries’ 
magnitude is used to calculate the 

norm [10]
Peak-signal-to-noise 
ratio (PSNR)

standalone ࡾࡺࡿࡼ =  )ܗܔ (ࡿ,ࡿ)ࡱࡿࡹඥࢄࡹ where,  ࢇ)ࡱࡿࡹ, (࢈ = ࡺ ∑ ∑ ࢇ) − ࡺࡺ(࢈
Structural Similarity 
index (SSIM)

distance Eqn. 7
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B. Stage II: Sorting Batches
A batch of training samples  = ,ܛ}  ,ܛ … , {ۻܛ ⊂ ࢙ࢀ  is 

selected from the training set.  Each sample ࢙ ∈  is assigned 
a rank by analysing its pixel distribution using the specified 
metric  . We use two types of metrics; distance and 
standalone. If  is a distance metric, a reference sample ࢘ܛ ∋ is used to rank a moving sample ܛ ∈  . Initially, the 
reference sample is chosen at random. For instance, consider 
the following setup: let   be the mutual information (MI)
measure, the algorithm first selects an initial reference sample, ࢘ܛ = ܛ  and computes the MI-index or rank (ࢿ) of every other 
sample, ܛ, … , ,ۻܛ in the batch against ࢘ܛ.  If asc ordering is 
used, the sample with the smallest ࢿ value is promoted to 
become a reference sample. This is repeated until the last 
sample is analysed and a syllabus is proposed. Note here, the 
syllabus, ࡿ, is an ordering of the samples according to their 
mutual information index. Given a proposed syllabus ࡿ =൛࢙′, ,′࢙ ,,′࢙ ૡ′࢙ … , ൟࡹ′࢙ , the network first sees the initial 
reference sample, then the sample having the smallest ࢿ value 
is fed to the network. The overall behaviour is that adjacent 
samples are closer to each other than those that are not 
adjacent. Closeness in this context is measured by the metric in 
use. The smaller the value ࢿ the closer the two samples are. 
When using a standalone metric, each sample is ranked
independently. The entire batch is then sorted based on the 
specified ordering and the rank of each sample.  is pre-
specified as a learning parameter and can be updated during 
training if corresponding syllabus is deemed unfit. We 
experimented with several metrics to observe their impact on 
training. 

C. Stage III: Syllabus Evaluation
We use the network’s native loss function to determine the 

fitness of a given syllabus. The syllabus is evaluated after 
training for a fixed number of iterations. Fitness of a syllabus 
for a given network η and training set ࢙ࢀ is determined using 
two configurable hyperparameters; number of iterations (can 
also be number of batches) π and the baseline performance β of 
the network on  ࢙ࢀ averaged over π. β is the threshold by which 
the syllabuses’ s fitness is determined and is chosen to be the 
average baseline loss of the network over π number of 
iterations. Baseline performance of a network is the network’s 
training performance without curriculum. 

Syllabus Fitness Criteria. Once η is trained on ࢙ࢀ for π
number of iterations using a syllabus ࢙࢛࢈ࢇ࢟ࡿ, the losses are 
aggregated and the average loss,િ→࢙࢛࢈ࢇ࢟ࡿ =  ∑ సૈ()࢙࢙  ૈ ,                    (10)                              
where loss(i) is the ࢎ࢚ iteration training loss, of the network 
associated with S is computed. The syllabus-to-baseline loss 

ratio, Ꞷ = િ→࢙࢛࢈ࢇ࢟ࡿ ൘ , is then used as the sole criteria to 
determine the fitness of the syllabus. Depending on the value of 
Ꞷ, a fitness signal ࡿࢌ , that can take on one of three forms; 
continue, stop or replace, is propagated to the image analysis 
submodule. A syllabus is deemed fit if the ratio is less than or 

equal to 1 and ࡿࢌ is set to continue. Otherwise ࡿࢌ is set to stop
or replace and the syllabus is considered unfit and discarded. If 
replace is propagated, the curriculum factory adaptively 
proposes a new syllabus using a prespecified backup metric. 
Here, we make a naive assumption that the syllabus’s training 
performance is as good as the baseline if the ratio is close to 1. 

III. EXPERIMENTS S

To observe the training trends, we use curriculum settings 
with varying measure m, π = 10000, o = asc and β value that is 
unique to each network and training set. To capture the 
classification results each network is trained for 500,000 
iterations or until the learning curve is stable and the loss 
converges. Batch sizes of 8 and 16 were used for these 
experiments.

A. Training
We present training and classification results obtained by 

training state-of-the-art image classification networks using 
different curriculum strategies on CIFAR10 [11], CIFAR100 
[11] and ILSVRC-2015 ImageNet [12] datasets. Specifically, 
given the moderate cost of time associated with training a 
network using CIFAR10, CIFAR10 was used to perform an in-
depth study of the proposed method using several network 
architectures. Based on the training trends on CIFAR10, we 
then perform repeatability study using CIFAR100. Finally, a 
syllabus that exhibits exceptional performance on those 
datasets is selected and compared with baseline performance on 
ImageNet. The networks include GoogleNet (Inception)
versions 1 [13] and 4 [14], and VGG [15].  

Each network is first evaluated on the corresponding 
datasets to create baseline reference performance metrics for 
comparison. For each network we used stochastic gradient 
descent optimizer with cross-entropy loss, fixed momentum of 
0.9, batch size of 8, and an exponentially decaying learning rate 
with factor 0.94 starting at 0.01. For the rest of training, we used 
recommended configurations by respective authors. We report 
empirical results gathered by training each network for at least 
100 thousand iterations. We ensure all learning parameters and 
environment are identical, with varying networks and learning 
methods, to rule out other factors of influence.

IV. RESULTS AND ANALYSIS  

A. Training Trends
We use the total loss, which is the sum of cross-entropy and 

regularization losses as implemented in TensorFlow [16]
framework as the primary evaluation criteria of the impact of 
the proposed method. The training loss of a select metrics and 
that of the baseline (blue) are depicted in Fig. 3. Clear trends 
can be observed from the plots. First, in all cases, curriculum-
based training performs remarkably well in reducing training 
loss. For instance, when training GoogleNet using JE-based 
curriculum, it achieves a loss of 0.163 compared to 1.494 after 
training for only 100K iterations. This is a loss reduction by a 
factor of 9 compared to baselines. Similarly, MobileNet’s loss 
is reduced by factor of 4. The second and most impressive 
observation that highlights the effectiveness of the proposed 
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technique is that the baseline performance is almost always 
inferior to any curriculum strategy throughout training. Only 
in few cases do we see a strategy produce higher loss. We argue 
this is partly because our method removes variability of sample 
characteristics due to random shuffling by enforcing consistent 
input path with each batch as measured by the metric in use.
Whilst these results are interesting, to ensure repeatability and 
confirm the efficacy of the best models, we performed 
additional experiments on CIFAR100. The bottom two plots of 
Figure 3 show the training trends of GoogleNet and VGG on 
CIFAR100 using Entropy-based curriculum syllabus.

B. Classification Results 
Due to the lack of directly comparable techniques for 

curriculum-based training, we contrasted our techniques 
against the baseline generalization capabilities of a network on 
a given dataset. More specifically, we first trained the network 
to establish its baseline performance on the dataset. The same 
network is then trained using the proposed technique. The best 

performing weights are then chosen for performance 
comparison. The results on CIFAR10 and CIFAR100 datasets 
are presented below. 

TABLE III. COMPARISON OF GOOGLENET (INCEPTION V1) NETWORK ON 
CIFAR10 AND CIFAR100. REPORTED IS THE TEST ACCURACY IN PERCENT OF 
CLASSIFICATION FOR NETWORK WITH AND WITHOUT THE PROPOSED TRAINING 
APPROACH. BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE BASELINE 
PERFORMANCE IS THE FIRST ENTRY IN THE TABLE.

Network CIFAR10 
(test acc. 

%)

CIFAR100 
(test acc. %)

Curriculum 

GoogleNet 0.528 0.433
GoogleNet-MI 0.615 0.358 MI
GoogleNet-MIN 0.456 0.146 MIN
GoogleNet-IV 0.671 0.456 IV
GoogleNet-JE 0.586 0.489 JE

TABLE IV. COMPARISON OF RESNET_V1_50 NETWORK ON CIFAR10 AND
CIFAR100.

Network CIFAR10 (test 
acc. %) 

CIFAR100 (test 
acc. %)

Curriculum 

Fig. 3. Training loss of training MobileNet (top-right), GoogleNet V1 (top-left) on CIFAR10 using all metrics listed in Table 1, and GoogleNet V4 (bottom-
left) and VGG (bottom-right) on CIFAR100 using the Entropy measure – which comparatively had better results on CIFAR10. 
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ResNet 0.954 0.791
ResNet-MI 0.945 0.842 MI
ResNet-MIN 0.973 0.789 MIN
ResNet-IV 0.943 0.849 IV
ResNet-JE 0.924 0.851 JE

TABLE V. COMPARISON OF RESNET_16 NETWORK ON CIFAR10 AND 
CIFAR100.

Network CIFAR10 (test 
acc. %) 

CIFAR100 (test 
acc. %)

Curriculum 

VGG 0.922 0.645
VGG-MI 0.945 0.512 MI
ssVGG-MIN 0.904 0.602 MIN
VGG-IV 0.897 0.698 IV
VGG-JE 0.943 0.631 JE

With most curriculum setups, the network’s generalization 
capability is uncompromised and is within range of the baseline 
performance. However, depending on the dataset, several 
curriculum metrics produce networks that generalize better than 
the baseline.  For instance, training GoogleNet (Table 3) using 
MI and IV based curriculum strategies perform better on
CIFAR10, while IV and JE-based syllabus perform better on 
CIFAR100.

C. Experiments on ImageNet-1K  
Here, we conduct training experiments on the 1000-class 

ImageNet Classification task [17] using JE based curriculum 
training and the VGG architecture.  Since training the networks 
on this dataset can take several weeks of computation on our 
system, we did not aim for best performance, but rather 
performed a proof of concept experiment to see if our 
techniques exhibit similar behaviour on larger datasets. We 
trained VGG_A with and without JE-based curriculum for 
100,000 iterations with a batch size of 16 samples. The training 
trends are depicted in Figure 4. Although the drops in loss are 
not as dramatic as those in CIFAR10 or CIFAR100, one can 
clearly observe JE-based curriculum training has favourable 
trend compare to baseline. At this stage, Top-1 validation 
accuracy of the curriculum trained model, when evaluating on 
the centre 224x224 patch of the validation samples, is at 26.8% 
which is in par with 32.3% TOP-1 accuracy of the baseline 
model. The training trends are clearly reflective of the impact 
of proposed technique, which corroborate the trends observed 
with the smaller datasets.

V. CONCLUSION  

We have introduced a system for training CNNs using 
curriculum strategies. Our approach combines content 
measures taken from information theory with curriculum 
learning and alleviates the need to determine the presumed 
difficulty of training samples. Unlike previous works, we 
exploit information-theoretic and statistical relationship 
between training samples to propose a syllabus to guide 
training; we have shown that this improves training 
performance of CNNs. The results indicate that curriculum 
strategies reduce training loss faster without necessarily 
increasing the generalize performance compared to 
conventional training. Our intuition is that the proposed 
technique enables faster convergence by discovering optimal 

path that take to local minima. However, further analysis is 
required to fully test and prove our hypothesis that the proposed 
method combined with SGD optimization expedites a search for 
local minima by creating an optimal path in input space. 

Fig. 4. Training loss of training VGG (VGG_A) on ILSVRC-2015 ImageNet 
dataset, with (red) and without (blue) JE-based curriculum syllabus.
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