
Optimizing Training using Information Theory-
Based Curriculum Learning Factory

Abstract— We present a new system that can automatically
generate input paths (syllabus) for a convolutional neural network
to follow through a curriculum learning to improve training
performance. Our system utilizes information-theoretic content
measures of training samples to form syllabus at training time. We
treat every sample as 2D random variable where a data point
contained in the sample (such as a pixel) is modelled as an
independent and identically distributed random variable (i.i.d)
realization. We use several information theory methods to rank
and determine when a sample is fed to a network by measuring its
pixel composition and its relationship to other samples in the
training set. Comparative evaluation of multiple state-of-the-art
networks, including, GoogleNet, and VGG, on benchmark
datasets demonstrate a syllabus that ranks samples using
measures such as Joint Entropy between adjacent samples, can
improve learning and significantly reduce the amount of training
steps required to achieve desirable training accuracy. We present
results that indicate our approach can reduce training loss by as
much as a factor of 9 compared to conventional training.

Keywords—Deep Learning, Curriculum Learning,
Convolutional Neural Network. Information Theory, Curriculum
Factory

I. INTRODUCTION

When used in supervised machine learning, curriculum-
based training (Figure 1) exposes samples to the learning
system in predetermined order. The basic idea is to present
samples that have low complexity at the start of training and
gradually increase complexity of samples fed to the network
over the course of training. Hence, at core of this approach lies
ranking (weighting) training samples based on their level of
presumed difficulty.

Many techniques described in the literature consider
difficulty level of a sample to be proportional to a chosen
distance metric between the output label and the actual truth

label of the sample [3],[5]. The distance metric is often
provided by the loss function used by the learning algorithm,
since it already attempts to minimize the distance between the
expected and truth sample labels. In order to use this approach,
one must employ two training passes: the first to measure the
difference between the true label and predicted label value of
each sample to get the presumed difficulty (or rank) of the
sample. The training set is then ordered according to rank of
each sample to form a curriculum used to train the network in
the second training pass.

In contrast to the existing class of curriculum algorithms,
our proposed method combines information theory tools (ITT)
with curriculum learning to assess and adaptively order training
samples (Figure 1). We utilize ITT-based image analysis
techniques to assess each sample and its relationship with other
samples to determine the time the sample is fed to the network.
A unique feature of our approach is that the syllabus is
generated, enforced and evaluated at training time using a
node, curriculum factory, integrated into training pipeline. The
node is designed to handle both online and batch training
modes. When training using batches, a random subset (batch)
of samples of size M from the training set is processed and the
weights are updated based on the cumulative error. With online
training, one sample is fed to the network at every iteration and
weights are updated based on error corresponding to that
sample. During batch training, the samples in a batch are
ordered to form a syllabus corresponding to that batch. The
primary means of ordering is a metric m that ranks a sample by
measuring its content. The syllabus and batch are then supplied
to the network to train via curriculum learning.

To summarize, this paper makes the following
contributions. Currently there exists no methods in the literature
that take characteristics of training data into account to expedite
non-convex optimization via curriculum learning or other

Henok Ghebrechristos
Department of Engineering and Computer Science

University of Colorado-Denver
Denver, USA

henok.ghebrechristos@ucdenver.edu

Gita Alaghband,PhD
Department of Engineering and Computer Science

University of Colorado-Denver
Denver, USA

gita.alaghband@ucdenver.edu

Fig. 1. Curriculum Learning with and without the proposed system

Network loss

(Training without Curriculum - Shuffled Batch, Train)

Batch B

 Train with B using syllabus

Update

1465

2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/19/$31.00 ©2019 IEEE
DOI 10.1109/ICTAI.2019.00206

means. As the first contribution, we present a curriculum
learning algorithm that reduces training loss at each iteration by
ordering batches to form a syllabus. When used in stochastic
gradient descent (SGD)-based training, our algorithm expedites
training and reduces the overall loss by as much as a factor of 9
without compromising generalization performance. Second, we
present results that showcase improved generalization
performance of popular CNN models on benchmark datasets in
comparison to baseline, state-of-the-art performance.

II. PROPOSED METHOD

The goal of training CNNs is to try and determine optimal
network weights to approximate target mapping ࢍ: ࢞ → ࢟ [3]
where ࢞ is the input vector and ࢟ is the corresponding desired
output taken from a training set, ࢙ࢀ = ,࢞)} :(࢟ ≤ ≤ (1) ,{ࡺ
consisting of ࡺ samples. If we consider a ࢎ࢚ training batch ⊂ ࢙ࢀ containing ࡹ samples, a curriculum training
syllabus, ࢙࢛࢈ࢇ࢟ࡿ of is generated by ranking and
ordering every sample in the batch based on some measure m.
The syllabus is then applied to train the network. Note here, ࡹ = corresponds to online training where samples (not
batches) are fed one by one. In our system, ܯ = 1 is a special
case where the syllabus corresponds to ordering of the entire
training set.

TABLE I. CURRICULUM TRAINING OF A CNN NETWORK . HERE, AT LEAST TWO
M VALUES, A PRIMARY MEASURE AND BACKUP MEASURES, FROM TABLE 2 ARE
PRE-SPECIFIED. IF NO M IS PRESPECIFIED, SP-MODULE PICKS A PRIMARY AND
BACKUP MEASURES RANDOMLY FROM THE SET OF MEASURES LISTED IN TABLE
2.

Curriculum factory, an original feature of our proposal, is a
system that generates ordering of samples of a selected batch
during training. It comprises a syllabus proposal submodule
(curriculum factory) that takes a batch of randomly ordered
samples as input and returns an ordering of the samples that
serves as a syllabus. Given ࢙ࢀ we denote the ݆௧ mini batch
containing ࡹ ≪ ࡺ samples by = ,࢙} ,࢙ … , {ࡹ࢙ . A
training syllabus, is defined as an ordering of ࢙࢛࢈ࢇ࢟ࡿ
every sample, ࢙ = ,࢞) (࢟ ∈ for ≤ ≤ in ascending , ࡹ
(asc) or descending (dec) order. Ordering is determined by the
rank, ,ࢿ of each sample as measured by a metric ݉ taken from
Table 1. Formally, ࢙࢛࢈ࢇ࢟ࡿ = (,′࢙ ,′࢙ … , (ࡹ′࢙ is a
computationally found ordered set such that ࢙ࢿᇱ ≤ ᇱ࢙ࢿ ≤… ≤ ࡹᇱ࢙ࢿ if ordering is asc and ࢙ࢿᇱ ≥ ᇱ࢙ࢿ ≥ … ≥ .if decࡹᇱ࢙ࢿ

Curriculum factory is built using a three-step processing
depicted in Fig. 2. In stage I, all samples of a batch are assessed
and ranked using a prespecified metric m (Table 1). In stage II,
the batch is ordered according to the rank of each sample. The
ordered batch, or syllabus, is then supplied to the network for
training. In stage III, the effectiveness of the syllabus is
determined using the network’s native loss function after
training with a fixed number of batches. The number of batches
used to control how often the syllabus is evaluated is a
configurable hyperparameter. Below we discuss each stage in
detail. The full recipe within an end-to-end training pipeline is
presented in Table (Algorithm) 1.

A. Stage I: Assessing Content of Training Samples
CNNs learn patterns of features from training and use layer-

wise superposition of these features to generalize to unseen
samples. To enable robust feature extraction and ease the
pattern discovery, we are interested in generating curricula
based on how samples are related to each other. We consider
two types of metrics to measure these relationships; statistical
and information-theoretic measures. These measures are
further categorized into standalone and distance depending on
the input(s) to the measure. If a measure takes two samples as
input and returns a single value that relates the two samples,
then it is considered a distance measure. Otherwise, the
measure is standalone and takes a single sample as input and
returns a value that describes certain characteristics of the
sample.

1) Information Theoretic Measures
In order to use information-theoretic measures, we model

all images as 2D random variables where each pixel is an
independent and identically distributed random variable (i.i.d)
realization. With this model, we utilize information theoretic
measures such as Entropy to quantify information content of

Input: ࢙ࢀ ࢚ࢋ࢙ ࢍࢇ࢘ࢀ, , ࢉ࢚࢘ࢋࡹ , ࢘ࢋࢊ࢘ࡻ β, π
Outputs: Trained model η (network weights)
1. Initialize iteration (training batch) counter iter and ࡿ→ࣁࢼ to 0 and ࡿࢌ

with continue
2. Draw training batch of size ࡹ from ࢙ࢀ
 For = ࢚ < ࡹ −

1. ࢙ ࢚࢛ ࢚ࢉࢋࢋࡿ
2. ܑ࢙ࢿ ࢇ࢘ ࢋ࢚࢛

 End
 Syllabus = Sorted batch according to ࢿ

3. Train network on using Syllabus and increment iter
4. If iter is equal to π

Calculate syllabus-to-baseline loss ratio Ꞷ and set fitness signal ࡿࢌ
 If ࡿࢌ is set to continue, go-to step 2

 If ࡿࢌ is set to replace, go-to step 1
 Otherwise Halt training

Fig. 2. Processing stages within sp-module. From left to right given batch B and hyperparameters read once at start: I. Rank each sample. II. Generate syllabus by
ordering B according to rank of each sample which is then used to train a network. III. Evaluate syllabus using network loss.

Select training batch

Train
with

Syllabus
Loss

Fitness signal(Update metric m If unfit syllabus)

Hyperparameters: Π, m,
β

Training batch B of size
M

1466

training samples. Below we discuss few information theoretic
measures as well as statistical measures such as SSIM. A
complete list is presented in Table IIs.

a) Entropy
Let X be a discrete random variable with alphabet ࣑ and a
probability distribution function (࢞), ࢞ ∈ ࣑ . The Shannon
entropy [4] of ࣑ is defined as (ࢄ)ࡴ = (࢞) ܗܔ ࣑∋࢞(࢞) (2)
where ܗܔ ∞ = and the base of the logarithm determines
the unit, e.g. if base 2 the measure is in bits [5]. The term −ࢍ (࢞) can be viewed as the amount of information gained
by observing the outcome (࢞). Entropy is usually meant to
measure the uncertainty of a continuous random variable.
However, when applied to discrete images, this measures how
much relevant information is contained within an image when
representing the image as a discrete information source that is
random [6]. Here, we construct probability distribution
associated with each image by binning the pixel values into
histograms. The normalized histogram can then be used as an
estimate of the underlying probability of pixel intensities, i.e., () = ()࢙࢈ where ,ࡺ/()࢙࢈ denotes the histogram entry of
intensity value in ࢙, and ࡺ is the total number of pixels of ࢙.
With this representation the entropy of an image ࢙ can be
computed as:(࢙)ࡱ = ()࢙࢈ ܗܔ ࢙ࢀ∋࢙,࣑∋()࢙࢈ࡺ , (3)

where ࢙ࢀ (eqn. 1) is the training set and (࢙)࣑ represents the
image as a vector of pixel values. While individual entropy is
used to measure the standalone rank of a sample, we also used
metrics that relate training samples. These include joint entropy
(JE), kl-divergence (KL), mutual information (MI), information
variation (IV), conditional entropy (CE) and their variants such
as normalized mutual information (MIN). A complete list and
implementation of the metrics are listed in Table 2. Readers are
encouraged to refer to [6]–[8] for detailed treatment of these
metrics and others.

b) Joint Entropy
By considering two random variables (ܺ, ܻ) as a single vector-
valued random variable, we can define the joint entropy ܧܬ(ܺ, ܻ) of pair of random variables with joint distribution ݔ), (ݕ as follows: ࢅ)ࡱࡶ, (ࢄ = − ,࢞) (࢟ ܗܔ ,࢞) ࢞࢟(࢟ . (4)
When we model images as random variables, the joint entropy
is computed by gathering joint histogram between the two
images. For two training samples, ଵܵ, ܵଶ ∈ ௦ܶ the joint entropy
is given by: ࡿ)ࡱࡶ, (ࡿ = ()࢙࢈ ܗܔ ()࢙࢈ , (5)
where ܾ௦(݅) is the ݅௧ value of joint histogram of the two

samples.
c) Mutual Information

Mutual information (MI) is the measure of the statistical
dependency between two or more random variables [16]. The
mutual information of two samples ଵܵ and ܵଶ can be defined
in terms of the individual entropies of both ଵܵ and ܵଶ and the
joint entropy of the two variables ܧܬ(ଵܵ, ܵଶ).ࡿ)ࡵࡹ, (ࡿ = (ࡿ)ࡱ + (ࡿ)ࡱ − ,ࡿ)ࡱࡶ) (6)ࡿ
As noted in [18], maximizing the mutual information between
samples seems to try and find the most complex overlapping
regions by maximizing the individual entropies such that they
explain each other well by minimizing the joint entropy. As
image similarity measure, MI has been found to be successful
in many application domains [9].

2) Statistical Measures
Statistical metrics on the other had measure the similarity

(dissimilarity) of samples and typically use statistical
measurements such as mean μ and standard deviation ߪ.

a) Structural Similarity Index (SSIM)
SSIM is often used for predicting image quality using a

reference image. Given two samples ࢙ and ࢙ the SSIM index
[8] is given by:࢙)ࡹࡵࡿࡿ, (࢙ = (μ࢙࢙ࣆ + ࢙࢙࣌)(+ ࢙)(μ + μ࢙ + ࢙࣌)(+ ࢙࣌ +) (7)
where the terms μ and ࣌ are the mean and variances of the two
vectors and ࢙࢙࣌ is the covariance of ࢙ and ࢙. The constant
terms and are used to avoid a null denominator.
We also use simple measures such as ࡸ norm to compare the
pixel histograms of two samples.

TABLE II. LIST OF MEASURES USED IN THIS STUDY

Metric Category Implementation - given samples ࢙, ࢙ ∈ ࢙ࢀ where ࢙࢈ is
normalized histogram of pixel
intensities and i is an index of a
pixel value in a sample.

Entropy standalone Eqns. 2 and 3
Joint Entropy (JE) distance ࢙)ࡱࡶ, =(࢙ ()࢙࢈ ܗܔ ()࢙࢈ ,
Mutual Information
(MI)

distance ࢙)ࡵࡹ , =(࢙ (࢙)ࡱ + (࢙)ࡱ − , ࢙)ࡱࡶ (࢙
KL-Divergence distance ,࢙)ࡸ||ࡰ (࢙ = ࢙ ܗܔ ()࢙࢈()࢙࢈
Information Variation
(IV)

distance , ࢙)ࢂࡵ =(࢙ (࢙)ࡱ + (࢙)ࡱ − ࢙)ࡵࡹ , (࢙
Conditional Entropy
(CE)

distance ࡱ(࢙ |࢙) = ,࢙)ࡱ (࢙ ,࢙)ࡱ where ,(࢙)ࡱ− (࢙ is the sum
entropies of ࢙and ࢙

L1 Norm (L1) distance ,࢙)ࡸ (࢙ = ห|࢙ − |ห࢙ = ∑ ห࢙ − ୀห࢙
L2 Norm (L2) distance ,࢙)ࡸ (࢙ = ห|࢙ − |ห࢙ = ට∑ ࢙) − ୀ(࢙
Max Norm (MN) distance This is like L1norm where, instead of

every entry, the maximum entries’
magnitude is used to calculate the

norm [10]
Peak-signal-to-noise
ratio (PSNR)

standalone ࡾࡺࡿࡼ =)ܗܔ (ࡿ,ࡿ)ࡱࡿࡹඥࢄࡹ where, ࢇ)ࡱࡿࡹ, (࢈ = ࡺ ∑ ∑ ࢇ) − ࡺࡺ(࢈
Structural Similarity
index (SSIM)

distance Eqn. 7

1467

B. Stage II: Sorting Batches
A batch of training samples = ,ܛ} ,ܛ … , {ۻܛ ⊂ ࢙ࢀ is

selected from the training set. Each sample ࢙ ∈ is assigned
a rank by analysing its pixel distribution using the specified
metric . We use two types of metrics; distance and
standalone. If is a distance metric, a reference sample ࢘ܛ ∋ is used to rank a moving sample ܛ ∈ . Initially, the
reference sample is chosen at random. For instance, consider
the following setup: let be the mutual information (MI)
measure, the algorithm first selects an initial reference sample, ࢘ܛ = ܛ and computes the MI-index or rank (ࢿ) of every other
sample, ܛ, … , ,ۻܛ in the batch against ࢘ܛ. If asc ordering is
used, the sample with the smallest ࢿ value is promoted to
become a reference sample. This is repeated until the last
sample is analysed and a syllabus is proposed. Note here, the
syllabus, ࡿ, is an ordering of the samples according to their
mutual information index. Given a proposed syllabus ࡿ =൛࢙′, ,′࢙ ,,′࢙ ૡ′࢙ … , ൟࡹ′࢙ , the network first sees the initial
reference sample, then the sample having the smallest ࢿ value
is fed to the network. The overall behaviour is that adjacent
samples are closer to each other than those that are not
adjacent. Closeness in this context is measured by the metric in
use. The smaller the value ࢿ the closer the two samples are.
When using a standalone metric, each sample is ranked
independently. The entire batch is then sorted based on the
specified ordering and the rank of each sample. is pre-
specified as a learning parameter and can be updated during
training if corresponding syllabus is deemed unfit. We
experimented with several metrics to observe their impact on
training.

C. Stage III: Syllabus Evaluation
We use the network’s native loss function to determine the

fitness of a given syllabus. The syllabus is evaluated after
training for a fixed number of iterations. Fitness of a syllabus
for a given network η and training set ࢙ࢀ is determined using
two configurable hyperparameters; number of iterations (can
also be number of batches) π and the baseline performance β of
the network on ࢙ࢀ averaged over π. β is the threshold by which
the syllabuses’ s fitness is determined and is chosen to be the
average baseline loss of the network over π number of
iterations. Baseline performance of a network is the network’s
training performance without curriculum.

Syllabus Fitness Criteria. Once η is trained on ࢙ࢀ for π
number of iterations using a syllabus ࢙࢛࢈ࢇ࢟ࡿ, the losses are
aggregated and the average loss,િ→࢙࢛࢈ࢇ࢟ࡿ = ∑ సૈ()࢙࢙ ૈ , (10)
where loss(i) is the ࢎ࢚ iteration training loss, of the network
associated with S is computed. The syllabus-to-baseline loss

ratio, Ꞷ = િ→࢙࢛࢈ࢇ࢟ࡿ ൘ , is then used as the sole criteria to
determine the fitness of the syllabus. Depending on the value of
Ꞷ, a fitness signal ࡿࢌ , that can take on one of three forms;
continue, stop or replace, is propagated to the image analysis
submodule. A syllabus is deemed fit if the ratio is less than or

equal to 1 and ࡿࢌ is set to continue. Otherwise ࡿࢌ is set to stop
or replace and the syllabus is considered unfit and discarded. If
replace is propagated, the curriculum factory adaptively
proposes a new syllabus using a prespecified backup metric.
Here, we make a naive assumption that the syllabus’s training
performance is as good as the baseline if the ratio is close to 1.

III. EXPERIMENTS S

To observe the training trends, we use curriculum settings
with varying measure m, π = 10000, o = asc and β value that is
unique to each network and training set. To capture the
classification results each network is trained for 500,000
iterations or until the learning curve is stable and the loss
converges. Batch sizes of 8 and 16 were used for these
experiments.

A. Training
We present training and classification results obtained by

training state-of-the-art image classification networks using
different curriculum strategies on CIFAR10 [11], CIFAR100
[11] and ILSVRC-2015 ImageNet [12] datasets. Specifically,
given the moderate cost of time associated with training a
network using CIFAR10, CIFAR10 was used to perform an in-
depth study of the proposed method using several network
architectures. Based on the training trends on CIFAR10, we
then perform repeatability study using CIFAR100. Finally, a
syllabus that exhibits exceptional performance on those
datasets is selected and compared with baseline performance on
ImageNet. The networks include GoogleNet (Inception)
versions 1 [13] and 4 [14], and VGG [15].

Each network is first evaluated on the corresponding
datasets to create baseline reference performance metrics for
comparison. For each network we used stochastic gradient
descent optimizer with cross-entropy loss, fixed momentum of
0.9, batch size of 8, and an exponentially decaying learning rate
with factor 0.94 starting at 0.01. For the rest of training, we used
recommended configurations by respective authors. We report
empirical results gathered by training each network for at least
100 thousand iterations. We ensure all learning parameters and
environment are identical, with varying networks and learning
methods, to rule out other factors of influence.

IV. RESULTS AND ANALYSIS

A. Training Trends
We use the total loss, which is the sum of cross-entropy and

regularization losses as implemented in TensorFlow [16]
framework as the primary evaluation criteria of the impact of
the proposed method. The training loss of a select metrics and
that of the baseline (blue) are depicted in Fig. 3. Clear trends
can be observed from the plots. First, in all cases, curriculum-
based training performs remarkably well in reducing training
loss. For instance, when training GoogleNet using JE-based
curriculum, it achieves a loss of 0.163 compared to 1.494 after
training for only 100K iterations. This is a loss reduction by a
factor of 9 compared to baselines. Similarly, MobileNet’s loss
is reduced by factor of 4. The second and most impressive
observation that highlights the effectiveness of the proposed

1468

technique is that the baseline performance is almost always
inferior to any curriculum strategy throughout training. Only
in few cases do we see a strategy produce higher loss. We argue
this is partly because our method removes variability of sample
characteristics due to random shuffling by enforcing consistent
input path with each batch as measured by the metric in use.
Whilst these results are interesting, to ensure repeatability and
confirm the efficacy of the best models, we performed
additional experiments on CIFAR100. The bottom two plots of
Figure 3 show the training trends of GoogleNet and VGG on
CIFAR100 using Entropy-based curriculum syllabus.

B. Classification Results
Due to the lack of directly comparable techniques for

curriculum-based training, we contrasted our techniques
against the baseline generalization capabilities of a network on
a given dataset. More specifically, we first trained the network
to establish its baseline performance on the dataset. The same
network is then trained using the proposed technique. The best

performing weights are then chosen for performance
comparison. The results on CIFAR10 and CIFAR100 datasets
are presented below.

TABLE III. COMPARISON OF GOOGLENET (INCEPTION V1) NETWORK ON
CIFAR10 AND CIFAR100. REPORTED IS THE TEST ACCURACY IN PERCENT OF
CLASSIFICATION FOR NETWORK WITH AND WITHOUT THE PROPOSED TRAINING
APPROACH. BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE BASELINE
PERFORMANCE IS THE FIRST ENTRY IN THE TABLE.

Network CIFAR10
(test acc.

%)

CIFAR100
(test acc. %)

Curriculum

GoogleNet 0.528 0.433
GoogleNet-MI 0.615 0.358 MI
GoogleNet-MIN 0.456 0.146 MIN
GoogleNet-IV 0.671 0.456 IV
GoogleNet-JE 0.586 0.489 JE

TABLE IV. COMPARISON OF RESNET_V1_50 NETWORK ON CIFAR10 AND
CIFAR100.

Network CIFAR10 (test
acc. %)

CIFAR100 (test
acc. %)

Curriculum

Fig. 3. Training loss of training MobileNet (top-right), GoogleNet V1 (top-left) on CIFAR10 using all metrics listed in Table 1, and GoogleNet V4 (bottom-
left) and VGG (bottom-right) on CIFAR100 using the Entropy measure – which comparatively had better results on CIFAR10.

1469

ResNet 0.954 0.791
ResNet-MI 0.945 0.842 MI
ResNet-MIN 0.973 0.789 MIN
ResNet-IV 0.943 0.849 IV
ResNet-JE 0.924 0.851 JE

TABLE V. COMPARISON OF RESNET_16 NETWORK ON CIFAR10 AND
CIFAR100.

Network CIFAR10 (test
acc. %)

CIFAR100 (test
acc. %)

Curriculum

VGG 0.922 0.645
VGG-MI 0.945 0.512 MI
ssVGG-MIN 0.904 0.602 MIN
VGG-IV 0.897 0.698 IV
VGG-JE 0.943 0.631 JE

With most curriculum setups, the network’s generalization
capability is uncompromised and is within range of the baseline
performance. However, depending on the dataset, several
curriculum metrics produce networks that generalize better than
the baseline. For instance, training GoogleNet (Table 3) using
MI and IV based curriculum strategies perform better on
CIFAR10, while IV and JE-based syllabus perform better on
CIFAR100.

C. Experiments on ImageNet-1K
Here, we conduct training experiments on the 1000-class

ImageNet Classification task [17] using JE based curriculum
training and the VGG architecture. Since training the networks
on this dataset can take several weeks of computation on our
system, we did not aim for best performance, but rather
performed a proof of concept experiment to see if our
techniques exhibit similar behaviour on larger datasets. We
trained VGG_A with and without JE-based curriculum for
100,000 iterations with a batch size of 16 samples. The training
trends are depicted in Figure 4. Although the drops in loss are
not as dramatic as those in CIFAR10 or CIFAR100, one can
clearly observe JE-based curriculum training has favourable
trend compare to baseline. At this stage, Top-1 validation
accuracy of the curriculum trained model, when evaluating on
the centre 224x224 patch of the validation samples, is at 26.8%
which is in par with 32.3% TOP-1 accuracy of the baseline
model. The training trends are clearly reflective of the impact
of proposed technique, which corroborate the trends observed
with the smaller datasets.

V. CONCLUSION

We have introduced a system for training CNNs using
curriculum strategies. Our approach combines content
measures taken from information theory with curriculum
learning and alleviates the need to determine the presumed
difficulty of training samples. Unlike previous works, we
exploit information-theoretic and statistical relationship
between training samples to propose a syllabus to guide
training; we have shown that this improves training
performance of CNNs. The results indicate that curriculum
strategies reduce training loss faster without necessarily
increasing the generalize performance compared to
conventional training. Our intuition is that the proposed
technique enables faster convergence by discovering optimal

path that take to local minima. However, further analysis is
required to fully test and prove our hypothesis that the proposed
method combined with SGD optimization expedites a search for
local minima by creating an optimal path in input space.

Fig. 4. Training loss of training VGG (VGG_A) on ILSVRC-2015 ImageNet
dataset, with (red) and without (blue) JE-based curriculum syllabus.

VI. REFERENCES

[1] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K.
Kavukcuoglu, “Automated Curriculum Learning for Neural
Networks,” p. 10.

[2] T.-H. Kim and J. Choi, “ScreenerNet: Learning Self-Paced Curriculum
for Deep Neural Networks,” ArXiv180100904 Cs, Jan. 2018.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[4] C. E. Shannon, “A Mathematical Theory of Communication,” p. 55,
1948.

[5] B. I. Bonev, “Feature Selection Based on Information Theory,” p. 200,
2010.

[6] M. Feixas, A. Bardera, J. Rigau, Q. Xu, and M. Sbert, “Information
theory tools for image processing,” Synth. Lect. Comput. Graph.
Animat., vol. 6, no. 1, pp. 1–164, 2014.

[7] T. M. Cover and J. A. Thomas, “Elements of Information Theory,” p.
774, 2006.

[8] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” 2010,
pp. 2366–2369.

[9] D. B. Russakoff, C. Tomasi, T. Rohlfing, C. R. Maurer, and Jr., “Image
Similarity Using Mutual Information of Torsten Rohlfing,” in 8th
European Conference on Computer Vision (ECCV, 2004, pp. 596–607.

[10] W. E. Deming and S. L. Morgan, The Elements of Statistical Learning.
Elsevier, 1993.

[11] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” p. 60.

[12] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” ArXiv14090575 Cs, Sep. 2014.

[13] C. Szegedy et al., “Going Deeper with Convolutions,” ArXiv14094842
Cs, Sep. 2014.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,”
ArXiv151200567 Cs, Dec. 2015.

[15] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” ArXiv14091556 Cs, Sep. 2014.

[16] “TensorFlow,” TensorFlow. [Online]. Available:
https://www.tensorflow.org/. [Accessed: 14-Mar-2019].

[17] “ImageNet Large Scale Visual Recognition Competition (ILSVRC).”
[Online]. Available: http://image-net.org/challenges/LSVRC/.
[Accessed: 29-Apr-2017].

1470

