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Abstract. We develop a novel human trajectory prediction system that
incorporates the scene information (Scene-LSTM) as well as individual
pedestrian movement (Pedestrian-LSTM) trained simultaneously within
static crowded scenes. We superimpose a two-level grid structure (grid
cells and subgrids) on the scene to encode spatial granularity plus com-
mon human movements. The Scene-LSTM captures the commonly trav-
eled paths that can be used to significantly influence the accuracy of
human trajectory prediction in local areas (i.e. grid cells). We further
design scene data filters, consisting of a hard filter and a soft filter, to
select the relevant scene information in a local region when necessary and
combine it with Pedestrian-LSTM for forecasting a pedestrian’s future
locations. The experimental results on several publicly available datasets
demonstrate that our method outperforms related works and can pro-
duce more accurate predicted trajectories in different scene contexts.
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1 Introduction

Human movement trajectory prediction is an essential task in computer vision
with applications in autonomous driving cars [11], robotic navigation systems
[14,19], and intelligent human tracking systems [9,12]. Given the past movement
trajectories of pedestrians in a video sequence, the goal is to predict their near
future trajectories (lists of continuous two-dimensional locations) (Fig.1). For
the most part, predicting future human trajectories is challenging due to: (i)
existence of many possible future trajectories, especially in open areas where
people move and change directions freely at any time (multi-modal problem);
(ii) social interactions (e.g. grouping, avoiding, etc.) can impact decisions of the
next movements; (iii) structures within scenes can impose certain paths.

To deal with these challenges, several social-interaction methods [1,7,14—
16,18,20] have been proposed. The traditional methods [14,16,22] use hand-
crafted features to characterize the social interactions. Recently, several social-
interaction methods [1,7,18,20] leverage the power of LSTM (Long Short-Term
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Memory) networks for modeling the individual movement behaviors and social
interactions. Although social interaction has been shown to be effective in pre-
dicting future human locations in some scenarios, it does not perform well in
multi-modal environments. For example, to avoid collisions with other people
while walking, one can choose to go left or right.

To partially handle this multi- [

modal problem, the contexts of a scene
can be used. Several proposed methods . =
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that people will choose different paths.

is filtered and used in combination with
individual movement (Pedestrian-LSTM)
to predict a pedestrian’s future locations.

Furthermore, generating similar visual

features for similar scene contexts is difficult due to camera positions, angles,
etc. Thus, these visual features are often used in combination with the social-
interaction features to achieve the desired accuracy.

In this paper, we propose and develop a novel scene model, called Scene-
LSTM, to learn common human movement features in each grid cell (and at
finer subgrid level when necessary) as shown in Fig. 1, which can be used in
combination with individual movement (Pedestrian-LSTM) to predict a pedes-
trian’s future locations. A Scene Data Filter (SDF) is further designed to select
the relevant scene information to predict the pedestrians’ next locations, based
on their current locations and walking behaviors. The key components of the
SDF are a “hard filter” and a “soft filter.” The hard filter makes decisions on
whether the scene information should be used in predicting pedestrians’ future
trajectories based on their current locations on the two-level grid structures (grid
cells and subgrids). The filtered scene information from the hard filter is used
by the soft filter for further processing. The soft filter selects the relevant scene
information for each pedestrian, based on their movement behaviors, to predict
future locations.

In summary, the contributions of this paper are threefold: (1) A new Scene-
LSTM model is learned simultaneously with a LSTM-based human walking
model; (2) a SDF selects relevant scene information to predict pedestrians’ tra-
jectories with the help of hard filer and soft filter; (3) Evaluations on public
datasets show that Scene-LSTM outperforms several related methods in terms
of human trajectory prediction accuracy. Ablation studies are conducted to show
the relevance and impact of each system component.
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2 Related Works

Research in predicting future human trajectories has been focused on modeling
human-human interactions [1,7,14-16,18,20]. There have been very few studies
related to human-scene interactions [2,3,17,21].

Human-Human Methods. To model human-to-human interactions, some
researchers [14,16,22] characterize their social interactions as features and calcu-
late the next locations of each pedestrian by minimizing some function of these
features. For example, Pellegrini et al. [14] calculates the desired velocities of
each pedestrian by minimizing the energy function of collision avoidance, speed,
and direction towards the pedestrians’ final destinations. Yamaguchi et al. [22]
broadens the model [14] with social group behaviors such as attractions and
groupings using energy functions which are minimized using gradient descent
[8]. Trautman et al. [16] characterizes human movements and collision potentials
using Gaussian processes with multiple particles and apply maximum a posteri-
ori (MAP) to minimize the collision potentials to yield the best next locations.
Although utilizing these social-interaction features helps predict future human
movements, they are built upon specific social-interaction rules; thus, they do
not apply well to all possible scenarios.

Recently, several LSTM based methods [1,7,18,20] have been proposed to
learn individual human movement behaviors and social interactions by leverag-
ing the memorizing power of LSTM. For example, Social-LSTM [1] uses a social
pooling layer to learn the social interactions of the main target and nearby pedes-
trians. Other methods [7,18,20] model the social interactions in the entire scene,
where people far-away from the main target may also have social impacts on this
target’s movements. These methods use different types of network architectures
such as structural recurrent neural network [18], generative neural network [6],
and deep neural network [20].

Human-Scene Methods. A relatively small body of recent work have stud-
ied the impact of scene structures (e.g. buildings, static obstacles, etc.) on
human trajectory prediction. These methods [2,3,17,21] combine scene features
with social interactions to predict human movement trajectories. Some methods
[17,21] extract feature of the scene layouts using Convolutional Neural Network.
Ballan et al. [2] utilizes several techniques (e.g. color histograms, scale-invariant
feature transform (SIFT), etc.) to calculate scene visual descriptors in local
(patch) and global (image) context. Bartoli et al. [3] measures the distances
between the targets and obstacles in the scene and combines them with Social-
LSTM [1]. These human-scene methods have made gains in improving prediction
accuracy. However, the limitation is that the low-level scene visual features can-
not fully capture the high-level scene contexts (e.g. common human movements),
which can significantly improve the accuracy of human trajectory prediction as
we will present in this paper.
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3 System Design

Problem Definition: The problem under consideration is prediction of human
movement trajectories in static crowded scenes. Let’s define X! = (z!,y!) as
the spatial location of target i at time t, and N as the number of pedestrians
in the number of observed frames, T,,s. The problem is stated as: given the
trajectories of all pedestrians in observed frames (z!,y!), where t = 1,..., Tpps
and ¢ = 1,..., N, predict the next locations for each pedestrian in the predicted
frames Tpyed- [Time t corresponds to frame number.]

(c) Scene Data Filter (SD)

, — J
| . 0 o

] grid cell subgrid ' hi i | (b) Scene Data (SD)
! of (x,y) 4 linear i =
i

e
+ sigmoid | ”one-hot =z
iR
! I concatenation |
] .-
,,,,,,,,,,,, I\ ) ——* -~
LY = —— — e S o -
a) Pedestrian Movement (PM|
B observed trajectory ef2lPedestrian Movement (EM) N == =P predicted trajectory
location fan- 1 ) update H predicted ===p
"= common human movement| . L ) LSTM i — " location
R >

Fig. 2. The system consists of three main modules: Pedestrian Movement (PM), Scene
Data (SD) and Scene Data Filter (SDF). PM models the individual movement of
pedestrians. SD encodes common human movements in each grid cell. SDF selects
relevant scene data to update the Pedestrian-LSTM, which is used to predict the future
locations. ® denotes elementwise multiplication. @ denotes vector addition. h; and hs
are the hidden states of Pedestrian-LSTM and Scene-LSTM, respectively.

Our system design, depicted in Fig. 2, consists of three main modules: Pedes-
trian Movement (PM), Scene Data (SD), and Scene Data Filter. The description
of each module is explained below:

(a) Pedestrian Movements (PM) module models the individual pedestrian’s
movement behavior using a LSTM (Pedestrian-LSTM) (one LSTM /pedestrian).
Pedestrian-LSTM utilizes its memory cell to remember the past movements of a
pedestrian. For better adaptability across scenes, pedestrian’s relative locations
with respect to the previous locations are used as inputs to the Pedestrian-LSTM
network at each training step.

(b) Although the PM is responsible for modeling the individual pedestrian’s
movement behavior, there will be scenarios where the pedestrian model alone
does not have adequate information to predict trajectories. In such cases, data
from scene can help steer the prediction trajectories the right way. The Scene
Data (SD) module models all human movements within the entire scene iden-
tifying commonly travelled paths at various movement granularities. The scene
is superimposed with a two-level grid structure: grid cells which are further
divided into subgrids. The SD uses a LSTM (Scene-LSTM) (one/grid cell) to
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Fig. 3. Illustrations of the hard filter, which determines whether the scene data should
be applied in predicting the future locations of a pedestrian. (a) the frame image is first
divided into n x n grid cells (n = 4 in this example) to capture all human movements
in each grid cell; (b) & (c) only non-linear grid cells are selected for further processing
at the subgrid level; the scene data is not applied for pedestrians in the linear grid
cell; (d) a non-linear grid cell is further divided into m X m subgrids (m = 4) and each
trajectory is parsed into subgrid paths; (e) the common subgrids, occupied by common
subgrid paths; () at prediction time, the decision of use/not use scene data depends
on the current location of each pedestrian. If the pedestrian’s current location is in
the common subgrids, the scene data is used (red pedestrian); otherwise, it is not used
(green pedestrian). (Color figure online)

encode the pedestrians’ movements in each grid cell. The absolute location (z, y)
of each pedestrian is used to locate them in the scene at the subgrid level. This
is represented in the form of a one-hot vector described in the next section. The
combination (i.e. concatenation) of the one-hot vector and the hidden state h of
Pedestrian-LSTM is used as an input to Scene-LSTM. Although Scene-LSTMs
are able to encode all human movements in each grid cell of a scene during the
training process, we must recognize that using the combined scene and pedes-
trian data will not work well for all cases. The following two scenarios describe
when the scene data should not be used to influence next prediction: (1) The
scene data is not needed for predicting the future locations of the pedestrians
whose movements are linear and therefore not impacted by the scene structures.
For example, the pedestrians in open areas (e.g. grid cell 9, Fig. 3a) mostly walk
linearly without any scene structure constraints. The scene information has no
effect on the pedestrians’ movements in these areas. (2) The scene information
in the grid cells where various past trajectories coincide may be unhelpful in
predicting the human future locations. This is because the memories of these
grid cells, encoding all different types of trajectories, do not learn any specific
common movements and worsen the prediction accuracy.

(c) To handle the aforementioned challenges, we propose the Scene Data Filter
(SDF) which consists of two filters: a hard filter (HF) and a soft filter (SF). The
HF helps us decide whether the scene data of a grid cell should be applied to
predict a given pedestrian’s next location based on this pedestrian’s current grid
cell and subgrid locations. This is done based on whether the grid cell is labeled
as linear or non-linear during training/observation period; Fig. 3b shows.



Trajectory Prediction by Coupling Scene-LSTM 249

. Scene- { Pedestrian- )
A grid-cell LSTM LSTM

l» A sub-grid

B

. walking| 0 3

behavior| memor t

J ~ e e J

| L walking ! filtered |_, /= &
behavior| U @ memory O j

/7N |

B common subgrid - ‘predicted trajectories @ element-wise multiplication
[] uncommon subgrid ‘ observed trajectories @ element-wise addition common path

Fig. 4. Illustrations of the soft filter. The relevant information of scene data (i.e. Scene-
LSTM) is selected using each pedestrians’ walking behavior. The filtered grid-cell
memory of each pedestrian is then used in combination with pedestrian movements
(Pedestrian-LSTM) to predict the future trajectories. (Color figure online)

A grid cell is characterized as “linear” if all human trajectories in this grid
cell are linear. In other words, people always make linear movements in this cell.
Prediction of future trajectory of a pedestrian that travels in a linear grid cell is
simple and can rely on Pedestrian-LSTM only. However, pedestrians travelling
in a non-linear grid cell which contains non-linear trajectories, may have varying
paths caused by social interactions and/or scene structures. This scenario can
be captured by the subgrid structure of the non-linear grid cells. The HF' in this
case is used to enforce the coupling of the scene data with the pedestrian model
to predict a pedestrian’s next location based on this person’s current subgrid
location and common path.

The intuition of the HF at the subgrid level granularity is based on the
observation that if pedestrians walk in the common subgrid paths, there is a
high probability that they tend to follow the same path. In this case, the scene
data will be used in conjunction with the pedestrian data. A common subgrid
path, as shown in Fig.3d, is a path between two subgrids commonly travelled
by a number of pedestrians greater than a pre-defined threshold p = 3. The
subgrids travelled by common paths are called common subgrids (Fig. 3e). If
the pedestrian’s current location is in a common subgrid, the scene information
will be applied; otherwise, only the PM is used (Fig.3f). It is important to
note that once the common subgrids are selected, the HF not only will capture
the common movements caused by the scene constraints or social interactions,
but also implicitly excludes all uncommon movements that can degrade the
prediction. The selections of non-linear/linear grid cells and common paths is
done by processing the training data only once at the pre-processing step, while
the hidden states h and memory cells ¢ in Pedestrians-LSTMs and Scene-LSTMs
are updated at every training step.

Lastly, the soft filter (SF) processes the scene data (obtained from HF) for
each pedestrian based on their movement behaviors. As shown in Fig. 4, although
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two pedestrians (red and green) step on the same common subgrids at the same
time, they travel in different paths in the future. Thus, the relevant scene data
should be selected for each pedestrian depending on their past movements. The
relevant scene data is then used to update the hidden state h of Pedestrian-LSTM
and predict the next locations. The updated hidden state h of a pedestrian is
also used to update the scene data of the non-linear grid cell where this person
walks in.

4 Implementation Detalils

Pedestrian Movement Module (PM). In this paper, we adopt a LSTM
network similar to the one proposed in Social-LSTM [1] to model each pedes-
trian’s movement behavior. Given the relative location (Az!, Ay!) = (z!,y!) —
(zf71 i) of person i at time ¢, we embed it to get a fixed length vector ef and
use it as an input to learn this person’s LSTM state (hf,ct):

65 = ¢(Wie7 [AJ??“ Ayf]) (1)
(L, ef) = LSTM((h, et 1), e W) 2)

(2R 7 P2

where ¢(-) is embedding function with ReLU non-linearity. W;. denotes embed-
ding weights. W, denotes LSTM weights and are shared among all pedestrians.

Scene Data Module (SD). The Scene-LSTM (R}, c}) of grid cell g at time ¢
is updated as:

Vi = O(xi, ;) (3)
(h,ch) = LSTM((hY ", 7 h), [ViE, hi); W) (4)

where Wy denotes LSTM weight matrices, O(-) is a function to convert the abso-
lute location (zf,y!) of pedestrian i to a one-hot vector V;!. The one-hot vector
V! represents the relative location of this person corresponding to a subgrid
within the grid cell g. In order to calculate V}!, each grid cell is further divided
into m x m subgrids; thus, V;' has size m x m with values [0, ... 1, ... 0], where 1
indicates the subgrid that this target occupies. The concatenation of V;' and hf,
([V, ht]), represents the current walking behavior and location of pedestrian i
in grid cell g. Thus, the grid cell’s memory, encoding this information, captures
all human movements, which can be used to predict the human future locations.

Hard Filter. The illustrations of the hard filter (HF) at the grid cell and the
subgrid level for various scenarios are shown in Fig. 3. The trajectories in each
grid cell of a scene are collected at pre-processing step for training data (Fig. 3a).
Each grid cell is classified as “linear” or “non-linear” (Fig.3b). The linear grid
cell indicates that the scene data will not be applied to predict human future
locations in this grid cell while the non-linear grid cells are selected (Fig.3c)
to be processed at the subgrid level. At the subgrid level, each trajectory in
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a non-linear grid cell is parsed into subgrid paths, which are then classified as
common and uncommon subgrid paths (Fig.3d). The common subgrid paths
define the common subgrids (Fig. 3e). At prediction time, if a pedestrian steps
in the common subgrids (e.g. red pedestrian, Fig. 3f), the scene data will be
applied to predict this person’s next location; otherwise, no scene data will be
used ( pedestrian).

Soft Filter (SF). The final filtered scene data F} for pedestrian i at time ¢ is
calculated as:

S; = o(linear([V{, hi])) (5)
Fit =5,0 htg (6)

where hl, and hj are the hidden states of the Scene-LSTM of the non-linear grid
cell and Pedestrian-LSTM, respectively. .S;, the soft-filter vector of pedestrian
i, is calculated by first concatenating one-hot vector V! and hl. It is further
processed using a linear layer, followed by a sigmoid function to convert S;
within range [0,1]. The final filtered scene data F! is a result of element-wise
multiplication (®) between S; and the scene data from hard filter hf.

Finally, F} is used to update hidden state h! (obtained from the Pedestrian-
LSTM) of pedestrian i. hf is then used to predict the next location of this person:

ht = ht + F! (7)

(i o T pi ) = Woshg (8)
(AZT AGETY) ~ Rt o pi 9)
(@ g = (@ + A g7+ Agi ) (10)

where W, is a weight matrix. Similar as [1], the bivariate Gaussian distribution
N(/fé“pf“,pﬁ“) is used to predict the next locations. model is trained by

minimizing the negative log-likelihood loss L [8]:
L(W) = =2, X log(P(x}, y;|ui, of 7)) (11)

where W is the set of weight matrices. IV is number of targets, T' = Tops +Tpreq is
the number of frames used for training. (zf,y!) is the true location of target i at
time ¢. By minimizing L(W), the likelihood that the predicted location (zf,g?)
is closer to the true location (zf,y!) is maximized.

5 Evaluation

Datasets: As with the related prior research [1,7,18,21], we first evaluate our
model on two publicly available datasets: ETH [10] and UCY [14]. These datasets
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contain 5 video sequences (ETH-Hotel, ETH-Univ, UCY-Univ, ZARA-01, and
ZARA-02) consisting of 1536 pedestrians in total with different movement pat-
terns and social interactions: people crossing each other, avoiding collisions, or
moving in groups. These sequences are recorded in 25 frames/second (fps) and
contain 4 different scene backgrounds. To present the generalizability of our
method on other datasets, we further evaluate on: Town Center [4] (1 video)
and PETS09S2 [5] (3 videos), and Grand Central [23] (1 video). The Town Cen-
ter and the PETS09S2 datasets consist of short-duration videos, originally used
for human tracking, and consist of considerable amounts of social interactions
(e.g. collision avoidings and group walkings). We also test our model on a long-
duration video (33:20 mins) of Grand Central dataset, which consists of densely
social interactions and was originally used for crowd behavior analysis.

Metrics: we evaluate our system using three metrics, introduced by Pellegrini
et al. [14]:

(a) Average displacement error (ADE): The mean square error (MSE)
(Euclidean distance) over all locations of predicted trajectories and the true
trajectories.

(b) Average non-linear displacement error (NDE): The MSE over all locations
of non-linear predicted trajectories and true trajectories.

(¢) Average final displacement error (FDE): The mean square error at the final
predicted location and the final true location of all human trajectories.

Comparison with Existing Methods: We compare our results with two base-
lines (Linear [1,7], LSTM [1]) and two state-of-the-art methods (Social-LSTM
(1], SGAN [7]):

— Linear model Linear [1,7] (non-LSTM) uses a linear regressor to estimate
the linear parameters, minimizes the mean square error; assumes pedestrians
move linearly.

— LSTM [1] models a LSTM for each pedestrian without considering social
interactions or scene information.

— Social-LSTM [1] models the human social interactions using “social” pooling
layers. We use the publicly available code given by the authors.

— SGAN [7] models social interactions by using GAN. We use two models
SGAN-20V-1 and SGAN-20VP-1, where 20 V denotes that models are trained
using variety loss with 20 predicted trajectories, P denotes social pooling
layer. Both models generate one predicted trajectory for each pedestrian in
testing phase. We used released code given in SGAN [7] to report their results.

Since the goal is to generate the best predicted trajectory, closest in Ly norm
with the ground truth trajectory, we do not compare with the model SGAN-
20VP-20 because this model generates 20 predicted trajectories for each pedes-
trian in testing phase and selects the best predicted one (the lowest ADE score
compared to ground truth trajectory) which is not feasible under the problem
constrains. Hence, SGAN-20VP-20 is out-of-context for our comparisons.
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Implementation Details: The implementation is done using the PyTorch
framework [13]. The size of all memory cells and hidden state vectors is set to
128. The network is trained with Adam optimizer [8], an extension to stochastic
gradient descent, to update network weights during the training process. The
learning rate is 0.003, and the dropout value is 0.2. The value of the global norm
of gradients is clipped at 10 to ensure stable training. The model is trained on
GPU Tesla P100-SXM2.

Training. The training is conducted in two stages:

Stage 1: A similar “leave-one-out” approach used in [1,7] is adopted. In details,
indexing the five video sequences (ETH-Univ, UCY-Univ, UCY-Zara0l, and
UCY-Zara02) as (i,4,k,l,m), we train (100 epochs) and validate four video
sequences (V;,V;, Vi, V1), select the best trained model to be used in stage 2 for
the remaining (unseen) video sequence V;,. This process is repeated for each
permutation. The data ratio for training/validation is 80/20.

Stage 2: Since the scene information of each video scene is needed, the best
model is further trained (in 10 epochs) on the 50% video frames of the fifth
video V,,,. The remaining video frames are used for testing.

Testing: The scene data of each grid cell in a scene and the trained network
weights are fixed. We use the best trained model (weights from stage 2) and
observe trajectory of each person for 8 time-steps and predict the next 12 time-
steps.

We note that the social-interaction methods only use the stage-1 training (as
reported in original papers [1,7]) to learn the social interactions. However, for
reasonable comparisons we apply the same training and testing procedures for
all methods. The implementation of our method will be made available.

5.1 Quantitative Results

We compare our model (Scene-LSTM) with the five models described above in
Table 1. The results confirm that our method significantly outperforms all other
methods on the three metrics: ADE, NDE, and FDE. Especially, our method
predicts the final destinations (FDE) with much higher accuracy (by 0.5 m) than
the state-of-the-art SGAN-20V-1. We notice that the two models SGAN-20V-1
and SGAN-20VP-1 perform slightly better than our method in predicting non-
linear trajectories (NDE) on the two video sequences ETH-Univ, UCY-Zara02.
This is because our method does not capture the uncommon social interactions
as they do not form common paths in these video scenes. However, the overall
results validate the importance of our common human movement features in
predicting future trajectories.
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Table 1. Quantitive results on ETH and UCY datasets (5 video sequences). All meth-
ods predict human trajectories in 12 frames using 8 observed frames. Error metrics are
reported in meters (lower is better).

Metrics | Sequences Linear | LSTM | Social-LSTM | SGAN-20V-1 | SGAN-20VP-1 | Scene-LSTM
ADE ETH-Hotel 1.49 1.35 1.14 0.76 0.75 0.36
ETH-Univ 2.04 1.97 2.28 1.26 1.18 0.95
UCY-Univ 1.68 1.83 2.02 0.79 1.08 0.63
UCY-Zara01l | 2.60 2.30 3.14 0.61 0.62 0.45
UCY-Zara02 | 1.11 1.23 2.05 0.52 0.57 0.40
Average 1.78 1.74 2.13 0.79 0.84 0.56
NDE ETH-Hotel 3.30 1.71 2.01 1.66 1.48 0.76
ETH-Univ 3.45 3.16 3.64 1.55 1.57 1.88
UCY-Univ 2.22 2.08 2.36 1.00 1.21 0.92
UCY-Zara01l | 2.40 1.75 2.75 0.71 0.78 0.65
UCY-Zara02 | 2.67 2.40 2.87 0.88 0.81 0.93
Average 2.81 2.22 2.73 1.36 1.17 1.00
FDE ETH-Hotel 2.67 2.45 2.11 1.64 1.58 0.67
ETH-Univ 3.41 3.60 4.03 2.44 2.42 1.77
UCY-Univ 3.03 3.49 3.78 1.73 2.21 1.41
UCY-Zara01 | 4.77 3.98 5.69 1.32 1.36 1.00
UCY-Zara02 | 2.05 2.34 4.14 1.14 1.20 0.90
Average 3.19 3.17 3.95 1.65 1.75 1.15

5.2 Ablation Study

In this section, we present the impact of several system components (Table 2):
Pedestrian Movement module using absolute locations (PM,ps) vs. relative loca-
tions (PM,e1), Scene Data module (SD), hard filter at the grid level (HF gyiq) and
the subgrid level (HFgybgria), and soft filter (SF).

Impact of Using Relative Locations. PM,. produces significantly lower
errors compared to PM,ps. This is because PM,} is strongly biased to a specific
scene layout, while PM,.] models individual target’s relative movement behavior
regardless of the scene layouts; thus, PM,, allows for better transfer learning to
new scenes.

Impact of Scene Data (SD). As expected, using SD without the filters (the
third row) worsens most of individual movement predictions.

Impact of Hard Filter at the Grid Cell Level (HF,;4). At this level
(without subgrid), the hard filter allows the Scene-LSTMs of the non-linear grid
cells learn all human movements, which significantly helpful to predict the non-
linear movements (lower NDE) in these cells. We also observed that the ADE
is slightly increased because the scene data has a negative impact on predicting
linear trajectories in the non-linear grid cells.

Impact of Hard Filter at the Subgrid Level (HFsubgria). The HFgubgria
resolves the issue of predicting linear trajectories in HF g9 and further reduces
the prediction errors in all three metrics. This demonstrates the effectiveness of
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Fig. 5. The impact of (a) training data amount at stage-2 and (b) finding grid /subgrid
sizes to optimize prediction accuracy. The results (ADE and FDE) are calculated on
average of 5 videos. (Color figure online)

Table 2. Ablation study. PM,ps and PM;e: PM module with absolute and relative
locations, respectively. SD: Scene Data module. HFg,iq: hard filter at the grid level.
HFsubgria: hard filter at the subgrid level. SF: soft filter. The results (in meters) are
averaged on ETH and UCY datasets (5 videos) (lower is better).

Components used ADE | NDE | FDE
PMabs 1.89 |2.72 |3.53
PM;e 0.66 |1.11 |1.36
PM;e1, SD 0.69 [1.34 |1.41
PM;c1, SD, HF g1id 0.72 10.91 |1.41
PM,1, SD, HF gia, HFsubgria 0.57 10.90 1.19
PM,., SD, HF 14, SF 0.62 | 0.86 1.30
PM,1, SD, HF gia, HFgubgria, SF | 0.56 | 1.00 | 1.15

using the subgrid common paths as it removes uncommon paths caused by the
social interactions and implicitly captures the common paths, caused by either
social interactions or scene structures.

Impact of Soft Filter (SF). Using SF at the grid cell level (the sixth row)
produces more accurate non-linear trajectory predictions (lower NDE) than at
the subgrid level (the last row). This is because predicting the non-linear trajec-
tories requires more scene data obtained at grid cell level. However, considering

different trajectory types (e.g. linear and non-linear) and long-term predictions,
the full model (last row) still achieves the best ADE/FDE results.

Impact of Training Data Amount in Stage 2. To see the impact of stage 2
training data in learning common movement patterns of a new scene, an exper-
iment is conducted by ranging the training data amounts in stage 2 from 0% to
50% of video frames and using the remaining 50% data for testing (Fig.5a). As
expected, both ADE and FDE continue to decrease when more training data is
used and reach the best results at 50% video frames training.
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Fig. 6. Qualitative comparison between our method with SGAN-20VP-1 in different
scenarios: (a) pedestrians are standing still and waiting for trains, (b) a pedestrian is
entering the door, (c) a pedestrian is finding a path between obstacle and trees, (d)
a pedestrian makes a left-turn to the alley, (e) a pedestrian turns right to enter the
building, (f) a couple turn right from the alley.

Impact of Grid and Sub-grid Sizes. The grid and subgrid sizes should be
selected to best capture common human movements in each video scene. The
experiment is done in two steps: (1) we first train our model on ETH and UCY
datasets (5 videos) with a fixed grid size 8 x 8 and different subgrid sizes: 1 x 1,
2x2, 4x4, 8x8, 16 x 16, and 32 x 32. The best selected subgrid size is 8 x 8
(red line, Fig. 5b) (2) We run the model again by fixing the subgrid size to 8 x 8
while varying grid sizes. The result, as shown in blue line, confirms that the
best selected grid and subgrid sizes are 8 x 8. The size 8 x 8 indicates that the
grid/subgrid size should not be too big or small; otherwise, it would not capture
common human movements impacted by the scene layouts.

5.3 Qualitative Results

We present qualitative comparisons with the social model SGAN-20VP-1
(Fig.6). SGAN-20VP-1 considers the social interactions that are meaningful
and socially acceptable while SGAN-20V-1 does not consider social interactions.
The visualizations show that our method generates more accurate trajectories
(closer to ground truth trajectory) compared to SGAN-20VP-1 in different scene-
contexts. This demonstrates the importance of learning common movements and
using them to predict human movements in highly structural constrained areas.
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Table 3. The quantitative results (ADE/FDE in meters) on Town Center (1 short
video sequence) and PETS09S2 (3 short videos) and Grand Central (1 long video)
datasets.

Datasets | Tpred (s) | SGAN-20V-1 [7] | SGAN-20VP-1 [7] | Scene-LSTM
Town | 4.8 0.22/0.46 0.21/0.42 0.09/0.18
Center |6.4 0.37/0.80 0.38/0.81 0.14/0.27
PETS09 | 4.8 0.23/0.51 0.30,/0.66 0.06/0.15
2 6.4 0.43/0.93 0.53/1.21 0.11/0.23
Grand 4.8 0.21/0.45 0.40/0.74 0.11/0.17
Central | 6.4 0.32/0.62 0.79/1.50 0.14/0.25

5.4 Generalization: Evaluations on Town Center, PETS09,
and Grand Central

To present the generalizability, we further conduct experiments on new (unseen)
datasets: Town Center [4], PETS09S2 [5], and Grand Central [23]. Setup. We
use the pre-trained network on ETH and UCY datasets from the previous section
and further train it on 50% of frame data of each video in this experiment (this
process is similar as training stage 2 in previous experiment). The remaining
frames of each video is used for testing. We generate trajectory predictions for
Tpreda = 4.8 and 6.4s. Results. We compare our method with two variants
of SGAN [7] as shown in Table3. We confirm that our method outperforms
them on three datasets in ADE and FDE. For Town Center and PETS0952
datasets, where the scenes are crowded but people mostly move linearly, the
SGAN [7] method often over-predicts by considering all interactions among all
pedestrians, thus fails to predict the linearity. The Grand Central dataset consists
of lots of complex local social interactions, however, the common movements
are paths from one train station to another, thus our method performs better
by capturing these common motions. The results indicate our method can be
applied to achieve the state-of-the-art results in new video sequences.

6 Conclusion

The novel Scene-LSTM model presented in this paper enables us to consider
common human movements in localities within the scene. We have demonstrated
substantial improvement in predicting trajectories using the resulting scene infor-
mation, outperforming related methods. We plan to investigate fusing the scene
model with social model to improve prediction quality and further explore the
social interactions not only among humans but also between human and other
static or moving objects.
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