
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Test Zonal Search based on Region Label (TZSR)
for Motion Estimation in HEVC

Iris Linck(1), Arthur Tórgo Gomez(2), Gita Alaghband(1)
(1)Dept. of Computer Science and Engineering - University of Colorado Denver - Denver, USA

(2)CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasilia, Brazil
iris.linck@ucdenver.edu, arthur.gomez@pq.cnpq.br, gita.alaghband@ucdenver.edu

Abstract – This paper presents a new complexity Reduction
method for the diamond search pattern called TZSR based on
region labels in HEVC/H.265 video coding. The solution
introduces a new image region structure developed from a
simplified version of blob coloring algorithm (image labeling) to
HEVC/H.265 video coding. Regions are either whole or part of
image objects and normally span several coding tree blocks that
are produced during HEVC encoding. Our method executes a
complete Diamond Search (DS) for the first block of each region
in order to identify the motion vector direction among eight
different directions in DS. The motion estimation (ME) for the
rest of the blocks in the region will perform a modified DS where
only one direction point for various distances will be tested in
order to reduce the code complexity. Experimental results
demonstrate that the speedup achieved in our solution surpasses
the time spent in our blob coloring algorithm. Furthermore,
TZSR achieves an average speedup of 42.61% for low delay (LD)
configuration and 52.13% for random access (RA) in the
encoding time compared to the original ME algorithm in HEVC
reference software (HM-16.7) with overall gains in PSNR and bit
rate around 18.67% and 0.1 under LD and 28.37% and 0.74
under RA respectively.

Keywords—HEVC, motion estimation, inter prediction,
diamond search, TZSearch, region label.

I. INTRODUCTION
The increasing demand in quality defined by Video coding

standards, such as High Efficiency Video Coding (HEVC) [1],
necessitate development of new algorithms and strategies to
reduce their overall computational complexity. While HEVC
provides improved compression ratios in comparison to
previous standards with the same subjective image quality, it
comes with an increased encoding computational complexity
which may compromise the encoder operation in portable
devices and in real-time systems especially for high-resolution
videos [2].

One of the most time consuming processes in video coding
is the motion estimation (ME) designed to exploit temporal
redundancies among frames within a sequence. HEVC provides
the square and the diamond search fast motion estimation
algorithms in TZSearch pattern [3]. These algorithms return the
best motion vector (MV) for the current block at a cost which is
comparable to the full search algorithm but still remain sub-
optimal in terms of motion estimation time. Research to
improve the motion estimation algorithm and to optimize the
test zonal search (TZSearch) in order to reduce its computing
complexity and thus reducing the encoding time while
preserving the quality and bit-rate is essential. Several fast
search methods for integer ME have recently been reported,

such as, TZSearch based on triangle and pentagon patterns [3],
complexity reduction methods for fast ME in HEVC [4], and
reducing the number of operations performed in the ME using
two-stage ME [5]. Our goal is to reduce the number of search
points in the diamond search (DS) in order to avoid calculating
Sum of Absolute Difference (SAD) for all 52 possible search
points per block (for a search range set to 64 pixels) as is
currently done in TZSearch in HEVC which is computationally
very time consuming.

In this paper we propose a Complexity Reduction Method
for TZSearch in HEVC video coding based on image regions
called TZSR. We introduce regions as a new and additional
structure in HEVC to describe part (or all) of an object, a set of
pixels such that no pixel belongs to the interior of more than
one region. We create image regions for reference frames only.
This takes place during encoding as soon as a frame is assigned
as a reference frame in HEVC. Each reference frame points to
its related image region. The image region is created based on a
simple region growing method called blob coloring or region
labeling algorithm [6]. During the motion estimation phase,
TZSR will use region image information from reference frames
to leverage the test zonal search for the diamond search pattern.
During this enhanced search, a complete diamond search (DS)
is performed only for the first block of the region in order to
identify the best direction point. After that, blocks belonging to
the same region start a DS in the same direction as the first
block and try different distances. The new approach reduces the
code complexity of the TZSearch significantly with gains in bit
rate and PSNR in most test-cases and negligible loss in few
cases. We tested TZSR in two different configurations in
HEVC, low delay (LD) and random access (RA). It achieves an
average speedup around 42.61% under LD and 52.13% under
RA configurations in the encoding time compared to HEVC
reference software HM-16.7 [7]. In both configurations the
proposed method achieves an overall improvement of bit rate
and PSNR of about 18.67% and 0.1 respectively under LD and
28.37% and 0.74 under RA.

The remaining of the paper is organized as follows: In
Section II, we present an overview of the motion estimation
process in HEVC CODEC; we describe details of our new
method called TZSR in Section III. In Section IV, we will
present our experiments, results, and analysis and finally,
conclusions are presented in section V.

II. MOTION ESTIMATION IN HEVC
HEVC starts the encoding process by reading a group of

pictures (GOP) from the input video. A GOP is a set of pictures
or frames with an associated “picture order count” (POC) value

used to identify a frame in codec. Frames are partitioned into
blocks and during ME process, attempt is made to predict
motion vectors for the blocks in order to reduce the amount of
information needed for video transfer. Frames of a GOP may
be divided into a set of slices composed of a number of blocks.
There are three types of slices: I, P or B. In I slices, blocks
cannot be used for ME, i.e., cannot be predicted. In P slices,
blocks can be predicted by unidirectional prediction (allow
reference frames in one direction, i.e., either before or after the
current frame); finally in B slices, blocks can be predicted by
bidirectional prediction (allow reference frames in two
directions, i.e. before and after the current frame). In order to
partition the frames into blocks, HEVC divides a frame into
square blocks of the same size (64x64 pixels). Each initial
square block serves as the root of a first block partitioning
quadtree structure, the coding tree, referred to as coding tree
blocks (CTBs). The CTBs can be further subdivided along the
coding tree structure into coding blocks (CBs) that may be
processed in ME. Figure 1 shows a quadtree structure for one
CTB.

Fig. 1. HEVC quadtree structure – CTB partitioned in CBs.

 Motion estimation (ME) in HEVC determines a best match
of the current block by searching the reference picture within
64x64 pixels search windows using fast search algorithms.
Result of this operation is a motion vector (MV). MVs
obtained from the ME process determine the relative location
of the best prediction block in the reference frame. The
matching metric used is the Sum of Absolute Difference
(SAD) that calculates the similarity between the current and
reference blocks and it is one of the main causes of the large
computational complexity in HEVC. The configuration of
reference frames is defined in the GOP structure table in the
configuration file used by HEVC encoder. The Figure 2 shows
how a block in the current frame can be predicted from blocks
in the reference frames from past and future.

Fig. 2. Reference frame prediction.

 In order to reduce search points for integer-pel ME, a
three-step motion search strategy is used as illustrated in
Figure 3.

Fig. 3. Three steps ME in HEVC.

 The three steps of the motion search (Figure 3) are
described as follow:

• Start postion selection: HEVC choses the best motion
vector prediction (MVP) available in order to use it as
the starting search point in the next step. The best MVP
is chosen by using SAD. The MVP corresponds to a
previous predictor MV of a neighboring prediction
block. In that case, the MVPs to be tested are the up,
median, left, right and upper right predictors.

• Fist Search: In this step, HEVC performs a TZSearch
using diamond or square patterns. These patterns are
showed in Figures 4-a and 4-b respectively. Currently,
diamond search is the default with search range set to 64
pixels in integer-pel accuracy. In this configuration,
there are 52 search points in DS, where, we have four
search points (or four direction) for distance 1, plus
eight search points for distances from 2 to 64 each.
Note that the distance grows in powers of two. Figure 4-
a shows an example of DS pattern in a range of
distances from 1 to 8. In this search, all the points in DS
pattern are tested and the one with minimum SAD will
be the best matched block. Additional raster search
(Figure 3-c) is performed when the difference between
the obtained MV and the start position is greater than 5
(iRaster = 5).

• Refinment Search: This step is a fine refinment of MV
obtained from the previous step and it is performed in
two rounds: The first round starts by performing a
square or diamond search pattern around the best MV
obtained from the previous step in order to obtain a
refinment MV. After that, a second round of diamond or
square search is perfomed by using the refinment MV
(from the first round) as a start position for the search.
The best MV from the second round is used as the best
integer-pel MV.

Fig. 4. Search patterns for TZSearch in HEVC: (a) diamond search, (b)

square search, (c) raster search with iRaster=5.

III. PROPOSED METHOD
Motion vectors of the current block are usually correlated

with the motion vectors of neighboring blocks in the current
picture or in the earlier coded pictures. This is because
neighboring blocks are likely to correspond to the same moving
object with similar motion and the motion of the object is not
likely to change abruptly over very small timeframes. Based on
that premise, we assume that blocks belongin to the same

region have high probability to move in the same direction.
This leads us to reducing the number of SAD calculation
performed in the diamond search (DS) and, as demonstrated by
our experiments, increasing the accuracy of the MV. Figure 5
shows all possible direction points within the DS. There are 8
directions numbered from 1 to 8; zero is the start position in
DS.

Fig. 5. Motion directions in the DS pattern for TZSearch.

The new TZSR architecture is shown in Figure 6. The
diagram is simplified to a great extend to make the proposed
architecture visible within HEVC. As described earlier, HEVC
works with a GOP at a time, where some of the frames are used
(and marked) as reference frames and maintained in the
Reference Picture Set (RPS). In our modified diamond search
enhanced with image regions model, a new module Parallel
Blob Coloring (PBC) is added to generate additional
information for each frame by identifying regions within
reference frames. As described in Algorithm I, it generates
image regions for reference pictures within each GOP. The
region frames are stored in a region frame list, associated with
the respective reference frame, to be used in the new ME. The
new ME will execute TZSR using a DS pattern described in
Algorithm II. The proposed complexity reduction method for
ME assigns a specific motion direction to each region in a
frame after performing a complete DS for the first block of
each region. The idea is to use the same direction for the
subsequent blocks belonging to a region in order to reduce the
code complexity of a complete DS/block strategy in HEVC.
Next we present the two new algorithms “Parallel Blob
Coloring” (PBC) and “TZSearch based on regions” (TZSR)
introduced in HEVC.

Fig. 6. Motion Estimation with TZSR in HEVC.

A. PBC - Parallel Blob Coloring Algorithm
Blob coloring is a region growing algorithm. The goal of

region growing is to use image features to map individual
pixels in an input image to sets of pixels called regions.
Although perfect regions and boundaries are inconvertible, the
processing to find them differ in applicability [6]. For our
purpose, perfect regions are not necessary. We employ a
simplified parallel blob coloring algorithm, PBC, which scans a
binary image to identify connected groups of pixels with the
same binary values and assigns them to a region. It is useful
since once they are individually labeled, the objects can be
separately manipulated.

The PBC algorithm introduced in HEVC is described in
Algorithm I. The PBC is performed when a GOP is read from
the input video and the frames marked as reference are put in
the reference picture set.

ALGORITHM I. PARALLEL BLOB COLORING (PBC)

Read reference frames in a parallel loop.
Parallel For (i = POCref_Initial to POCref_final) do

Let ML = matrix of reference frame (luminance-Y).
Let v = video resolution.
Let pb = 0 be the background pixel value;
Let po = 1 be the object pixel value.
Convert ML into binary image (MB)
If (v >= 1280x720) /*high resolution*/

AdaptiveThreshould (ML, MB,
adaptive_threshold_gaussian_c, 77, 3)

Else /*low resolution*/
AdaptiveThreshould (ML, MB,
adaptive_threshold_gaussian_c, 17, 3)

End-if
Let initial color k=1
In a loop, scan MB from left to right and top to bottom and
execute the following steps:

Let xc = value of a pixel in a coordinate (x,y) in the
scanned binary image MB.

If (xc ≠ pb)
Let xu = upper neighbor of xc.
Let xl = left neighbor of xc.
If ((xc is the first pixel in MB) or
(xl = po and xu = pb)) then

 color (xc = k)
 k = k + 1

End-if
If ((xu = po) and (xl = pb)) then color (xc = xu)
If ((xl = po) and (xu = pb)) then color (xc = xl)
If ((xl = po) and (xu = po)) then color (xc = xl)

End-if
End-Scan

End-Parallel
End

PBC reads the reference frames within a GOP in a parallel
loop (implemented using OpenMP). The next step is to convert
reference frames (luminance component-Y) into a binary image
using an OpenCV function “AdaptiveThreshould” based on
Gaussian threshold. In this method, threshold values are

weighted sum of neighborhood values where weights are a
Gaussian window. The “adaptive_threshold_gaussian_c”
function has two parameters, block size and a constant C, set
according to the video resolution. The block size is the size of
pixel neighborhood used to calculate a threshold value for the
pixel and C is a constant subtracted from the mean. For videos
in Table I with resolution greater or equal 1280x720 the block-
size is set to 77 while for lower resolutions, the block-size is set
to 17. For all resolutions C is set to 3 which produces
satisfactory distinction between background and objects in the
binary image. According to our observations, the block-size
should be greater for high resolution and smaller for low
resolution. It affects the number of regions created for each
reference frame. As the block size grows, the number of pixels
belonging to a region increases and the number of total regions
for a frame decreases, which is a good choice for high
resolution videos in terms of MV accuracy. The binary image is
scanned from left to right and top to bottom in order to identify
connected regions. Pixels with value 1 are identified as object
(po) while those with value 0 are background (pb). The
objective is identifying connected pixels (po) by using neighbor
pixels from up and left positions in order to form regions. Each
region will be assigned a different color k (also called label).

PBC is a revised version of the original Blob Coloring
algorithm. It is designed not to maintain a table of color
equivalences that assures each object has only one color. PBC
scans the binary image only once; it is possible to assign more
than one color or label for the same object, but not for the same
pixels inside the object. This property was changed in order to
create a region as part of an object and reduce complexity of
PBC. The straightforward parallelism helps improve the
resulting runtime and avoid penalizing HEVC encoding time.
According to the experiments the average runtime for PBC
algorithm is around 0.14s when encoding 150 frames. We
observed that PBC is sensitive to the threshold chosen in the
binary image conversion. It can influence the number of
regions generated and consequently the improvements obtained
later in the ME process. The PBC code was implemented using
C++/openMP/OpenCV.

B. TZSR - TZSearch based on regions
The new TZSR, described in Algorithm II, is introduced in the
TZSearch algorithm to leverage motion estimation in HEVC.
TZSR identifies directions for regions generated by PBC
described in Algorithm I, in order to use it for all blocks
belonging to the same region. For each picture frame, a new
data structure “labelList” will maintain best direction (Dirbest)
for each region, and it’s associated “picture order count”
information for the reference (POCref) and current (POCcur)
frames. It is important to note that the direction assigned to a
region label depends on both current and reference frames
since a reference frame can be used to predict several current
frames.

TZSR starts by finding the label of the first block in each
region in order to find the best motion direction. The image
region matrix (MB) generated for the reference frame by PBC
(Algorithm I) has all region label (L) information including
their embedded blocks. The spatial locality (xf) of a reference

block is used to find its corresponding label in MB. As
described in Algorithm II, if a direction (Dir) is found in the
labelList, we perform a unidirectional diamond search for the
specified direction (Dir) and various distances (Dis) specified
in the distance range. In this case, the unidirectional DS stops
when SADprevious < SADcurrent or we complete the search for
distance (Dis) range size defined in the HEVC configuration
file. This scenario for search to determine MV for a block
results in least number of search points: at least two (for
distance range of one) and at most seven (for largest distance
range of seven). If a direction (Dir) has not been established
for a region in the labelList (this is the initial case for each
new region) then we need to conduct a complete DS for all 52
search points evaluating SAD of neighbor MVs in order to
choose the best starting point for DS. The MV with minimum
SAD is chosen. Furthermore, for each search point, the
previous and current SADs are tested in order to save the
direction for the best SAD (Dirbest) for inclusion in the
labelList along with POCref, L, and POCcur. This is the scenario
performed for the first block of each region. The subsequent
blocks in the region, will find a best direction value (Dirbest) in
the corresponding labelList.

ALGORITHM II. TZSR - TEST ZONAL SEARCH BASED ON REGIONS

Evaluate neighbor MVs and choose the one with minimum
SAD to be the starting point of DS.
Let mvstart = best neighbor MV
Let xf = block starting position in reference frame
Let MB = matrix of region image for the reference frame
Let POCcur = Picture Order Count of current frame
Let POCref = POC of reference frame
Let L = region label of xf correlated to the region image MB
Find the direction Dir for region L in a list labelList where:

Dir = labelList (POCref, L, POCcur)
If (Dir is found)

For (Dist = 1; Dist <= SearchRange; Dist*=2)
 Execute DS using direction Dir varying Distance Dist
 If (SADprevious < SADcurrent)

Exit the loop
End-for

Else
For (Dir = 1; Dir <= 8; Dir++)
For (Dist = 1; Dist <= SearchRange; Dist*=2)

 Execute DS for all directions Dir varying distance Dist
 If (SADprevious > SADcurrent)
 Dirbest = Dir

End-for
End-for
labelList(POCref, L, POCcur)= Dirbest

End-if
End

It is important to note that raster search and refinement
search are not performed in the new method TZSR.
Furthermore, when a reference frame is removed from the
decoded picture buffer, occurrences belonging to that frame in

Scholarship CAPES - Brazil

the labelList are deleted which means that the reference frame
will no longer be used to predict any current frame. The new
TZSR algorithm is sequential and developed in C++.

IV. EXPERIMENTS
In order to guide tests of new developments for HEVC, the

Join Collaborative Team on Video Coding (JCT-VC) group
coordinated the development of a reference software encoder
and decoder, colloquially known as HM and published the
common test conditions (CTC) document [7]. CTC defines a
set of four temporal configurations to be used with the HM
reference software for tests and comparisons by researchers.
The four configurations differ in terms of temporal predication
from one another and they are: all intra (AI), low delay (LD),
low delay P (LP) and random access (RA). For our experiments
we use HEVC reference software HM-16.7 and two temporal
configurations: LD and RA. In the reference software, raster
search with iRaster = 5 and star refinement diamond search are
enable. On the other hand, our new method does not use these
additional searches. The goal of the experiments is to
demonstrate that our TZSR can achieve better results than the
reference software without using raster and refinement search.

A. Test Conditions

The two temporal configurations LD and RA of common
test conditions (CTC) are used in our experiments. In LD only
the first image in a GOP is encoded as instantaneous decoding
refresh (IDR) pictures. These are pictures that contain only I
slices; the remaining pictures are encoded as generalized P and
B pictures (GPB). In the RA configuration, the first picture in a
video sequence is encoded as an IDR while the remaining I
pictures are encoded as non-IDR characterizing an open GOP.
This means that frames outside the current GOP can be used as
references. Furthermore, frames between two intra frames are
encoded as B pictures. The video sequences used in our
experiments described in Table I represent six HEVC common
test sequences with different resolutions and frame rates. For
each test sequence, the first 150 frames are encoded. The
hardware platform used in these experiments is composed of an
Intel Xeon E5-2650v2 Eight-Core 2.60 GHz, and 65 GB of
system memory. The encoder has been compiled with GCC
4.9.0 and executed on CentOS Linux 7.2.

TABLE I. VIDEO CONFIGURATION

Video
ID

Video Features

Sequence resolution #frames Frame
rate (fps)

1 Racehorse (416 x 240) 150 30

2 BasketBallDrill (832x480) 150 50

3 BQMall (832x480) 150 60

4 SlideShow (1280x720) 150 20

5 BlueSky (1920x1080) 150 25

6 ParkScene (1920x1080) 150 24

B. Results and Analyses
TZSR was evaluated by measuring the encoding

computational complexity reduction under LD and RA

temporal configurations. The encoder performance was
evaluated using the gains achieved in bitrate and the peak sign-
to-noise (PSNR), a distortion metric used to evaluate the image
quality. The evaluation parameters are based on the following
equations:

∆𝑇 =
𝑇!" − 𝑇!"#!

𝑇!"
 𝑥 100 (1)

∆𝐵𝑅 =
𝐵𝑅!" − 𝐵𝑅!"#!

𝐵𝑅!"
 𝑥 100 (2)

∆𝑃𝑆𝑁𝑅 = 𝑃𝑆𝑁𝑅!"#! − 𝑃𝑆𝑁𝑅!" (3)

In Eq. (1), ∆𝑇 represents the percentage of encoding time
reduction achieved by TZSR, where 𝑇!" and 𝑇!"#! are the
encoding time of reference software and proposed method
respectively. In Eq. (2) ∆𝐵𝑅 represents the gains in bit rate.
Negative values indicate gains in compression while positive
values indicate an increase in bit rate and thus a loss in
compression. The 𝐵𝑅!" and 𝐵𝑅!"#! represent the bit rate of
reference software and proposed method respectively. In Eq.
(3) ∆𝑃𝑆𝑁𝑅 is the difference between the PSNR from the
proposed solution (𝑃𝑆𝑁𝑅!"#!) and the reference software
(𝑃𝑆𝑁𝑅!"). Positive values indicate improvement in the image
quality while negative values represents loss.

Table II presents results of all test cases corresponding to
LD configuration and Table III shows the results for RA
configuration.

TABLE II. SIMULATION RESULTS FOR TZSR COMPARED WITH HM-16.7
USING LOW_DELAY_MAIN CONFIGURATION

Video ID
Low_delay_main

ΔT(%) ΔBR(%)
[negative indicates gain]

Δ PSNR-YUV
[positive indicates
improved quality]

1 44.84 -9.45 0.06

2 47.21 -25.18 0.17

3 38.78 -13.28 0.07

4 44.41 2.32 -0.04

5 54.99 -59.51 0.43

6 25.43 -6.88 -0.08

Average 42.61 -18.67 0.10

According to Table II the new TZSR under LD
configuration, obtains average gains in encoding time, bitrate,
and PSNR around 42.61%, -18.67% and 0.10 respectively.
Table III shows that TZSR under RA achieves better results
than LD in all three evaluation parameters: average gain of
52.13% in the encoding time, average decrease in bitrate of -
28.37%, and average improvement in PSNR of 0.74. We
obtained the best results for Video 5 in both configurations
compared to other test sequences in the same configuration.
Video 5 has an encoding speedup time of 54.99% in LD and
74.89% in RA. Also, the bitrate and PSNR are improved by -
59.51% and 0.43 in LD and -60.48% and 1.92 under RA
configuration. Videos 4 and 6 have a negligible loss in the
PSNR under LD configuration -0.04 and -0.08 respectively,

while we obtain gains in their encoding time by 44.41% and
25.43%. On the other hand, videos 4 and 6 have a better
performance in RA with a decrease in encoding time of 51.70%
and 34.46% respectively, a reduction in their bitrate by -2.21%
and -33.65%, and a negligible loss in PSNR of -0.09 for video
4 and an improvement of 0.48 in video 6. Video 4 has an
increase in bitrate under LD by 2.32% while under RA we
observe a decrease bitrate of -2.21%.

TABLE III. SIMULATION RESULTS FOR TZSR COMPARED WITH HM-16.7
USING RANDOM_ACCES_MAIN CONFIGURATION

Video ID
Random_access_main

ΔT(%) ΔBR(%)
[negative indicates gain]

Δ PSNR-YUV
[positive indicates
improved quality]

1 54.39 -30.84 1.04

2 45.32 -15.91 0.28

3 52.05 -27.12 0.79

4 51.70 -2.21 -0.09

5 74.89 -60.48 1.92

6 34.46 -33.65 0.48

Average 52.13 -28.37 0.74

Results in Tables II and III show that we obtain better
results under RA configuration for all evaluation parameters
compared to the LD configuration. Under RA, TZSR shows
gain in bitrate for every case, and under LD we observe only
one loss in video 4. There are improvements in all PSNR in
RA, except for video 5, while under LD the new method
resulted in two negligible losses (video 4 and 6). Both
configurations achieve a significant decrease in the encoding
time.

The complexity reduction in HEVC is achieved by the fact
that associating a direction point to a region, represented as part
of an object, can lead to a significant reduction in SAD
operations and hence a significant reduction in computational
complexity as showed in the results. We observed that
associating a MV to a region or part of an object can further
improve bitrate and PSNR. Another fact that contributes to
decrease the encoding time in HEVC is that TZSR does not
perform raster search and refinement search in order to improve
MVs. It is important to note that as our experiments show, the
gains in the complexity reduction outweighs the added PBC
time. Furthermore, PBC time can be mitigated by the number
of reference frames arrivals and the number of cores available
for parallel processing. This further supports investigating the
possibility of adding hierarchical object structures to HEVC

encoding to reduce the motion prediction complexity when
applicable.

V. CONCLUSION

 This paper presents a new TZSearch based on region label
applied to ME in HEVC called TZSR. The purpose of the new
method is to use region labels in TZSearch in order to leverage
ME in HEVC. The method is developed in two parts, the first
part introduces a parallel blob coloring (PBC) algorithm for
reference frames in order to create region labels to be used in
ME process. The second part occurs in ME process, where our
new TZSR is executed using DS pattern for the first search and
achieves better results than the reference software without the
need to perform raster search and refinement search. TZSR can
be applied for square or other patterns although it has not been
the focus of our work. Experiments were conducted to compare
TZSR with the reference software HW-16.7 under LD and RA
configurations. The results show that the proposed algorithm
achieves significant decrease in computational complexity in
both configurations, LD and RA, for HEVC encoder. It was
observed that TZSR is sensitive to the quality of regions
generated in PBC. That is, if a region has a perfect number of
blocks of pixels to identify an entire part of an object, then the
motion direction for the region will be more accurate. This
directly impacts the accuracy of the MVs and improvement of
the encoding time, bitrate, and PSNR. Based on that, further
studies will be made in order to improve PBC. The important
factor is to do so balancing the gains without increase in
computational complexity in HEVC.

REFERENCES
[1] ITU-T, "Recommendation ITU-T H.265," ed: ITU-T, 2015.
[2] G. Correa, P. Assuncao, L. Agostini, and L. A. d. S. Cruz,

Complexity-Aware High Efficiency Video Coding: Springer
Publishing Company, Incorporated, 2015.

[3] E. Jaja, Z. Omar, A. A.-H. A. Rahman, and M. M. i. Zabidi,
"Efficient Motion Estimation Algorithms for HEVC/H.265 Video
Coding," in Information Science and Applications, J. K. Kim, Ed.,
ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 287-
294.

[4] P. Nalluri, L. N. Alves, and A. Navarro, "Complexity reduction
methods for fast motion estimation in HEVC," Image Commun.,
vol. 39, pp. 280-292, 2015.

[5] G. Cebrián-Márquez, C. C. Chi, J. é. L. Martínez, P. Cuenca, M, C.
l. M. x, et al., "Reducing HEVC encoding complexity using two-
stage motion estimation," in 2015 Visual Communications and
Image Processing (VCIP), 2015, pp. 1-4.

[6] D. H. Ballard and C. M. Brown, Computer Vision. Englewood
Cliffs NJ: Prentice-Hall, 1982.

[7] C. Rosewarne, M. N. B. Bross, K. Sharman, and G. Sullivan,
"High Efficiency Video Coding (HEVC) Test Model 16 (HM16)
Improved Encoder Description Update 3," JCT-VC, Warsaw -
Poland, June 2015.

