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Determining effective control strategies and solutions for high-degree-of-
freedom humanoid characters has been a difficult, ongoing problem. A
controller is only valid for a subset of the states of the character, known as
the domain of attraction (DOA). This article shows how many states that
are initially outside the DOA can be brought inside it. Our first contribution
is to show how DOA expansion can be performed for a high-dimensional
simulated character. Our second contribution is to present an algorithm
that efficiently increases the DOA using random trees that provide denser
coverage than the trees produced by typical sampling-based motion-planning
algorithms. The trees are constructed offline but can be queried fast enough
for near-real-time control. We show the effect of DOA expansion on getting
up, crouch-to-stand, jumping, and standing-twist controllers. We also show
how DOA expansion can be used to connect controllers together.
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1. INTRODUCTION

It is difficult to find control solutions for the motions of high-
degree-of-freedom humanoid characters, as they form small, elusive
manifolds within a highly nonlinear motion domain. What is worse
is that they often lack robustness, for example, the motions may fail
with the smallest push, and they can be difficult to sequence into
composite motions. As such, many potential control solutions are
not feasible or practical when applied to human motion synthesis.
Given a character with skills, for example, balancing, jumping,
rising, and so on, a certain set of initial states can achieve the
desired motion that we assume is described in terms of goal states.
We refer to the set of initial states as the domain of attraction (DOA)
and the set of desirable states as the goal set. Skills that are invoked
from states outside the DOA do not achieve a desirable outcome.
This article deals with the following question: How can skills be
successfully invoked from a much larger set of initial states? In
other words, how can we expand the DOA?

Inspired by Tedrake [2009], we present an algorithm to do this
using random trees. One contribution of this article is to show how
DOA expansion can be performed for a 25-degrees-of-freedom
(underactuated) character, in contrast to previous work on fully
actuated systems with fewer degrees of freedom. Second, we iden-
tify a major source of inefficiency in performing DOA expansion
with typical sampling-based motion-planning algorithms such as
Rapidly Exploring Random Trees (RRTs) [LaValle 1998]. In this
work, we advocate for a new motion-planning algorithm that can
broadly be characterized as a combination of random sampling
and iterative deepening. The algorithm biases the trees to grow
in breadth before depth, while RRTs are biased in the converse
direction. The key intuition is that dense random trees make it
easier to steer states inside the DOA.

The goal of DOA expansion is to cover as large a portion as
possible of a given domain of interest, that is, to enlarge as much
as is required the set of states that can be brought to the goal
set. As in Tedrake’s work, we trade the aim of finding optimal
policies, which would be intractable, for the aim of finding policies
that are good enough, that is, locally optimal. We perform DOA
expansion on a number of dynamic motions: getting up, crouch-
to-stand, jumping, and standing-twist. Our controllers are obtained
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by optimizing a time-indexed spline that provides proportional-
derivative (PD) target angles to achieve a final target state. The
method could equivalently be applied to perform DOA expansion
on other types of initial controllers, for example, Coros et al. [2010]
and Abe et al. [2007]. The trees are constructed offline but can
be queried quickly enough for near real-time control. The queries
use the character’s state to find the appropriate time-indexed target
PD-reference trajectory for control.

2. RELATED WORK

Physics-based motion can be synthesized by optimizing a trajec-
tory, for example, Witkin and Kass [1988], Mordatch et al. [2012],
and Al Borno et al. [2013] or by designing control laws for specific
movements, for example, Yin et al. [2007], Hodgins et al. [1995],
and Al Borno et al. [2014]. In both of these categories, data-driven
methods have been explored to improve the realism of the synthe-
sized motions, for example, Lee et al. [2010] and Liu et al. [2010].
Open-loop controllers usually have small or negligble DOAs, while
closed-loop controllers such as SIMBICON [Yin et al. 2007] can
have large DOAs. Corresponding to these categories are two general
approaches for character control. One is model predictive control
(MPC), which re-plans a new trajectory at each timestep from the
current state. The other is to pre-compute a control policy. The latter
requires examining a domain in state space and preparing actions for
every state that could be encountered. The former does not, making
it attractive because the domain can be very large. This comes at
the cost of more easily falling into local minima.

Recent work by Tassa et al. [2012] and Hamalainen et al. [2014,
2015] are examples of MPC methods. The iterative Linear-
Quadratic-Gaussian (iLQG) method of Tassa et al. can have the
character get up to a standing position from arbitrary lying posi-
tions on the ground. However, the character gets up with a single
bounce, implying that large torques are at play. In our own exper-
iments, the character fails to get up with the iLQG method when
more conservative torques limits are used, for example, 300 Nm.
The multimodal sampling method of Hamalainen et al. [2014] can
have the character balance and get up from a wide variety of scenar-
ios. In Hamalainen et al. [2015], multimodal sampling is combined
with a Markov Random Field factorization to enable the character to
balance on a ball and recover from disturbances in real time. These
MPC-based methods fail to have the character get up or balance in
some cases. It is for such failure cases that offline pre-computation
is necessary. We discuss our results in relation to MPC methods in
further detail in Section 7.

Our work falls in the category of control policies that leverage
offline pre-computation. Wang et al. [2010] optimize the parame-
ters of single controller given a distribution of initial states, but the
method does not generalize well to states that are far away from
the motions for which the original controller was designed. Sok
et al. [2007] construct a control policy from optimized trajectories
that track motion capture data but does not tackle the case of the
optimization falling in local minima. Our work shows how trajec-
tories can be connected together to avoid local minima, without
the use of prior motion data. Atkeson et al. [2008] demonstrate on
low-dimensional problems how to approximate the globally opti-
mal policy with local estimates of the value function. To make the
problem more tractable, Tedrake [2009] foregos the goal of find-
ing globally optimal policies for the goal of finding good-enough
policies instead. The principal idea is to use RRTs and feedback
controllers to cover a desired domain in state space. Trajectory op-
timization (TOPT) is used to connect two states together. Mordatch
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et al. [2012] and Al Borno et al. [2013] present TOPT methods for
offline motion synthesis.

Our work is inspired by Tedrake’s approach. The LQR-trees al-
gorithm uses direct collocation to synthesize open-loop trajectories,
for example, Felis and Mombaur [2016], linear quadratic regulators
(LQR) for feedback control around these trajectories, and Lyapunov
functions for estimating the DOA. Our work uses the model-free
shooting method of Al Borno et al. [2013] to synthesize trajectories,
stabilizes motions using PD controllers indexed by time and em-
ploys forward dynamics to evaluate the DOA. The method provides
an approach that fundamentally differs from the single-optimized-
trajectory that results from MPC; it develops a tree of reference
trajectories that is computed offline and then exploits this tree on-
line. While previous character animation articles have produced
workable DOAs for given scenarios, they do not provide practical
mechanisms for significantly growing the DOA. Our work does not
currently use motion capture data, but their use is not precluded;
they could be used to guide our trajectory optimization towards
realistic solutions, for example, Ju et al. [2013].

An important and under-studied problem in character animation
and robotics is that of how to sequence controllers over time, that
is, how can a character chain skills such as getting up followed by a
standing-twist and a jump? Getting up motions are synthesized by
Lin et al. [2012], where motion capture data of the character getting
up from a given initial state is extended to new lying postures by
using physics simulation, producing a final motion that has both
physics-based and motion-capture-based segments. In contrast, the
motions resulting from the sequencing of the controllers that we
develop are entirely physically based, requiring no motion capture
stitching. In related work, Liu et al. [2012] and Ha et al. [2014]
use policy search to optimize for linear feedback matrices and con-
troller parameters to achieve very specific motion transitions. Firmin
et al. [2015] provide a control language for skill authoring, where
the resulting DOA depends on the skill of the designer. Faloutsos
et al. [2001] solve a binary classification problem with support vec-
tor machines to predict if controllers can be sequenced together.
These approaches are less generic in several respects than the one
we develop in this article, wherein DOA expansion can be used to
achieve controller sequencing, among other capabilities.

3. DOMAIN OF ATTRACTION EXPANSION

Our goal is to perform DOA expansion on a given initial controller
in order to make it suitable for a larger set of initial states. The
main idea in the expansion process is to sample a state outside
the DOA, connect it with the current DOA using TOPT, apply
feedback control on the trajectory so a nearby region is now also
inside the DOA, and repeat this process by sampling again. In this
section, we present algorithms to construct random trees offline that
cover as much as possible of a domain of interest in state space.
In Section 4, we describe the techniques developed to implement the
various operations in the algorithms such as how to perform TOPT,
obtain a feedback controller, and so on. We also show how the trees
can be used in near real-time for character control. In Section 5
and Section 6, we analyze the performance of the algorithms on a
low-dimensional canonical sytem (a pendulum) and on a simulated
character.

We now begin to outline the DOA expansion algorithms. Let I'
be a tree of tuples (x, C, p, T'), where X is a state, C is a feedback
controller, p is a pointer to the parent node, and 7 is the duration
of the edge. Let x and 2 denote the current and desired DOAs.
We use the term x'“8¢" to refer to a state inside the DOA of an
initial controller Cy. A state is inside the DOA of a controller if,
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Fig. 1. DOA expansion with an RRT. An RRT starts by sampling a random
state in the domain x"*'¢ and finds its closest node x"°* in the tree. It
then attempts to connect to X"““” (green arrow) starting from a state that is
close and in the direction of x"*¢, The intuition behind the Dense Feedback
Coverage algorithm is that attempting to connect to the dense parts of the
tree is more likely to be successful (orange arrow) even if it is slightly further
away according to the distance metric. The red and purple circles are the
target and goal states, and the arrow in between is the initial controller Cy.
The blue background is the domain covered by the tree.

when using the controller from that state, the character’s end state
is inside a given goal set, that is, within an epsilon distance of a goal
state x4°“/. We specify a single goal state for our controllers, but it
is possible to handle multiple goal states simply by checking if an
end state is within an epsilon distance of any one of a given list of
goal states. Let T denote the duration required to bring x'“$¢' to
the goal set using Cy.

ALGORITHM 1: RRTFC Algorithm

1: T.add_node(x2°*, NULL, NULL, 0)

2: p < pointer to the root

3: T'.add_node(x'"¢¢', Cy, p, To)

4: fork=0,...,K do

5 Randomly sample a state x"*"¢ inside
6:  if X! ¢ x then
7:
8

Find the nearest neighbor x"*“ in I" to x""
: Obtain state x"** by extending x""¢ towards x
9: Solve a TOPT to steer X" to X"*"

near

10: X1, Xo, . .., X7 < full trajectory from the TOPT
11: if x; € x then
12: Obtain a feedback controller C
13: p < pointer to the node that has X in its DOA
14: I'.add_node(x;, C, p, T)
15: I'.add_node(x,, C, p, T — 1)
16: -
17: I'.add_node(xr_, C, p, 1)
return [’

3.1 RRTFC Algorithm

We begin by presenting the main algorithm in Tedrake’s work,
which we call the RRT Feedback Coverage (RRTFC) algorithm (see
Algorithm 1). The main property of RRTs is to bias the trees towards
the unexplored regions in the domain. This is achieved by sampling
arandom state x"*"? inside 2, finding its closest state in the tree and
obtaining state X"“ by interpolation, as illustrated in Figure 1. A
naive random tree algorithm would have directly sampled a random
state near the tree. As shown in Lavalle et al. [2001], the RRT is

Fig. 2. Examples of trajectory optimization in a sparse and dense tree. The
blue tubes illustrate the domain covered by edges of the tree. The orange
circle is a random state that we attempt to connect to its nearest state in
the tree with trajectory optimization. The dotted curves are the trajectories
followed when attempting the connection. The figures show that the attempt
is more likely to be successful in a dense tree (right figure) than in a sparse
tree (left figure).

remarkably more efficient at finding a path to a target than the naive
random tree.

A TOPT problem is then solved to steer x"“" towards its clos-
est state X"*" in the tree. For high-dimensional, highly nonlinear
problems, the TOPT often fails to steer x"*" close enough to X"
to be inside the DOA. In our experience, this is a major source of
inefficiency in performing DOA expansion because solving TOPT
problems is time-consuming. Note that the connection is successful
if the state at the end of the trajectory x7 is inside the DOA of
any controller in the tree, not necessarily the DOA of the controller
associated with x"*“" (see Figure 2). We do not test if the states
at all previous timesteps are inside the DOA because it would be
too expensive. If the connection is successful, then the states at all
timesteps are added to the tree, even if they are not inside 2. This
increases the likelihood of x7 of a future attempt to land inside the
DOA.

3.2 Dense Feedback Coverage Algorithm

RRTs have the property of growing long branches quickly to ef-
ficiently explore the domain and to find a path to a given state.
This property is less relevant in the context of DOA expansion,
where the objective is to find a path to every state in the domain
as opposed to a single state. This suggests that we can design a
motion-planning algorithm specifically to improve the efficiency of
the DOA expansion process. The algorithm should aim to construct
a dense tree since this increases the likelihood of x; being inside
the DOA, thereby reducing the number of failed connections (see
Figure 1). We now present our approach to do this, which we call
the Dense Feedback Coverage (DFC) algorithm (see Algorithm 2).

The idea is to cover the domain around x’*$¢ with progressively
larger subsets 2y C 2, C ... C 2, where 2, denotes the DOA
of the initial controller (see Figure 3 (left) and Section 4.3 for an
example of how to define the subsets). For each domain €2;, the
nearest neighbor is constrained to be in a subset Q,, h < i. A
connection is successful as long as the state at the end of the TOPT
lands in a region €2, that is covered by the tree. This is why it
is much easier to steer the character inside the DOA of a region
occupied with many nodes as opposed to a region occupied with
very few nodes. In DFC, each subsequent subset effectively sees a
larger target area to perform new connections. This is similar to the
growth of the solution region in dynamic programming methods.
To solve the problem of bringing a state in a given domain inside
the DOA, we use the solutions of subproblems found for smaller
subsets of the domain that lie closer to the goal state.
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Fig. 3. (Left) DOA coverage with DFC. The DFC algorithm progressively
covers the domain around the target state (the red circle). Increasingly larger
subsets are illustrated in the figure. The orange circle is a random state
sampled on the largest subset. TOPT is used to steer the state to its closest
state in a smaller subset. (Right) Determining if a state is inside the DOA.
To determine whether a state X" (the orange circle) is inside the DOA, we
perform simulation rollouts, starting from the controllers associated with
the closest states in the tree (the orange arrows illustrate the sequence of
controllers used for one closest state). We use PD controllers with targets
provided by time-indexed splines. A rollout consists of moving up the nodes
of a branch, until the root (the goal state) is reached.

ALGORITHM 2: Dense Feedback Coverage Algorithm

1: T.add_node(x%*“, NULL, NULL, 0)

. p < pointer to the root

: [.add_node(x'"¢*', Cy, p, Ty)

: Divide the domain in sets ) C Q1 C 2, C ... C Qu, where
Q N — Q

LN

5: fori=1,...,Ndo

6: fork=0,...,K; do

7: Randomly sample a state x”*"¢ inside Q;

8: if x4 & y then

9: Find the nearest neighbor x"*" in I' N 2, to x'and
where h < i

10: Solve a TOPT to steer x"*"? to x"¢"

11: X1, X2, ..., Xr < full trajectory from the TOPT

12: if x; € x then

13: Obtain a feedback controller C

14: p < pointer to the node that has x7 in its DOA

15: I'.add_node(x;, C, p, T)

16: I'.add_node(x,, C, p, T — 1)

17: L.

18: I'.add_node(x7_;, C, p, 1)

" return T

The optimal number of subsets €2, will depend on the problem.
Generally, choosing more subsets yields more samples that are
already inside the DOA, while choosing to have fewer yields more
samples that fail to connect. We choose the maximum number of
iterations K; to be roughly proportional to the fraction of the domain
that is covered by the subset. The choice of the nearest-neighbor
subset (line 9) will also depend on the problem. To some extent,
the smaller the subset, the more likely it is for the final state of
the TOPT to land inside the DOA. However, a subset that is too
small, that is, too far away from X" will increase the likelihood
of a failed connection. One strategy is to choose the smallest subset
such that the distance between x""¢ and x"“" is within a specified
value. We typically simply choose the nearest neighbor to be inside
subset €2;,_; when expanding subset €2;.

If the DOA of the initial controller is particularly small, then it
may be inefficient to attempt to steer all the nearby states inside it.
In other words, when the current DOA is very small, it could be even
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harder to steer the nearby states inside a subset of the DOA, which is
the strategy employed by DFC. In this case, we first perform a DOA
expansion on a subset of the desired domain using other methods,
for example, by using RRTFC on €2;. We then continue the DOA
expansion process on the entire domain with DFC. This strategy
is used for the pendulum. For the simulated character, we directly
employ DFC on the entire domain.

A sample that fails to connect to the tree at a given subset can
successfully connect when resampled at the same or larger subset.
The difference would result from having a new nearest neighbor or
from the end state after a TOPT to be inside a region now covered
by the tree. This is why we sample from €2; and not from €2;\2;_;,
that is, we do not exclude €2;_;. However, it is possible to sample
as a function of the domain covered by the tree. For example, if the
tree covers 95% of 2;_, then we can have 5% of the samples in
Q,;_; and 95% in ;. Section 4.8 describes how we can estimate the
domain coverage.

4. TECHNIQUES

We now describe our implementations of the operations in the
RRTFC and DFC algorithms.

4.1 Trajectory Optimization and Feedback Control

We build on the method of Al Borno et al. [2013], which optimizes a
reference trajectory ;.7 represented by a cubic B-spline. The output
motion X;.7 = (qy.7, q.7) is computed by forward dynamics. The
torque u, for a joint is determined by PD control:

Uy = kp(gr —q:) — kaq, (D

where ¢, and g, are the current and reference values of the joint
angle. All joints have PD gain values of k, = 700Nm/rad and
k; = 1Nms/rad.

We use this TOPT method to steer the character to a desired state
x? = (q, q¢) in T timesteps, while minimizing a measure of effort.
The optimization problem is given by:

T
s* = arg min w; dist(x7, x¢) + szHllin, 2)
* i=1

where s is the vector of spline knots, the distance metric dist is
defined in Section 4.4, u is the vector of joint torques, and w,
and w, are weights. The optimization is performed with covariance
matrix adaptation (CMA) [Hansen 2006] and is initialized with a
kinematic interpolation between the start and desired poses. The
spline knots are spaced every 0.1s.

Note that this method returns both the trajectory and the closed-
loop controller (Equation (1)) in the RRTFC (lines 9 and 12) and
DFC (lines 10 and 13) algorithms. Although our joint-local PD
controllers are weak, that is, have small DOAs, we can build robust
controllers by combining many weak ones together. Alternatively,
one could optimize these controllers to make them more robust, for
example, as in Liu et al. [2012]. In general, there exists a tradeoff
between learning a small number of robust controllers or to instead
develop a control policy using many weak controllers.

A simple extension to the method of Al Borno et al. [2013]
can also allow for the optimization of the motion duration. We
add a time variable to the optimization and a time-cost objective
that penalizes excessively slow movements. Specifically, we add a
cost term w37 to Equation (2). However, optimizing the movement
duration every time the algorithm attempts to connect two states
would be prohibitively slow. For this reason, whenever the distance
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between the initial and desired state is less then a chosen threshold,
we use a constant movement duration, for example, 0.2s.

4.2 DOA Modeling

We now describe how we determine if a state x” is inside the DOA
after a TOPT, which corresponds to line 11 in RRTFC and line 12 in
DFC. We model the DOA in an implicit fashion by using multiple
forward dynamics simulations rather than an explicit model as used
in previous work [Tedrake 2009] and that does not currently scale
to high dimensions. We begin by finding the V closest states to x".
We then perform V' simulation rollouts starting from x", using the
controllers that were optimized in Section 4.1. The rollouts proceed
until the root of the tree is reached (see Figure 3 (right)). We then
compare the V final states with the goal state. If at least one of the
states is within an epsilon ball of the goal state, then we consider
x" to be inside the DOA. Pseudo-code is given in Algorithm 3.
We consider the V closest states instead of the closest state alone
because the distance metric is in general imperfect. We often find
x" to be inside the DOA of a different node than the “closest” node.
We typically choose V' € [50, 250]. With a larger value, it is more
likely to find a path that leads to the goal set, but the DOA expansion
process is also more time-consuming.

4.2.1 Minimal Time. Note that Algorithm 3 halts with the first
rollout that leads to the goal set. One could continue performing
the remaining rollouts to not only find a path to the goal set, but a
path that minimizes some objective (time, energy, etc). Algorithm 4
minimizes a time objective. While this slows the DOA expansion
process, it noticeably improves the quality of the motions, as shown
in the accompanying video.

4.2.2 Using the Tree Online. Once the tree is constructed, Algo-
rithm 3 can be used online to control the character. When searching
for the nearest nodes in the tree, we only take those at timestep 1
(line 15 in Algorithm 2) into consideration because we know that
they are inside the desired domain €2. This is also how we determine
if a randomly sampled state is inside the DOA in the tree construc-
tion process, which corresponds to line 6 in RRTFC and line 8 in
DFC. On a single core, Algorithm 3 runs in real time on average
because only a few rollouts are usually required before finding a
solution. The rollouts should not be long for this method to achieve
interactive rates, for example, 4s. We have tried learning a nearest-
neighbor classifier that maps a state to a controller, that is, a branch
in the tree, to bypass the need to perform the rollouts. This required

ALGORITHM 3: [IsInside, Parent] = FindStartState(x")

1: IsInside <« false

2: Parent <~ NULL

3: Find the V closest nodes to x"

4: fori =1,...,Vdo

5 n < pointer to the ith closest node
6: x/ «—x
7.
8

while n # ROOT do
Do a rollout from x/ with the n¢ controller

9: x/ < state at the end of the rollout
10: n < n, (pointer to the parent node)
11: if dist(x/, x¢°') < € then
12: IsInside <« true
13: Parent < pointer to the ith closest node
14: break

ALGORITHM 4: [IsInside, Parent] = FindBestStartState(x")
1: IsInside <« false
2: Parent < NULL
3: 5§ <00
4: Find the V closest nodes to x"
5: fori =1,...,Vdo

6: t <0

7 n < pointer to the ith closest node to X"

8: x/ «x

9: while n # ROOT do
10: Do a rollout from x/ with the n¢ controller
11: x/ < state at the end of the rollout
12: n<n,
13: t<t+ny

14: if dist(x/, x8°?) < € then

15: IsInside <« true

16: if 1 < 5 then
17: s <t

18: Parent <— pointer to the ith closest node

an excessively high number of samples for a small domain, making
it poorly scalable.

4.3 Sampling States

The DFC algorithm samples states in the progressively larger do-
mains 21, ..., Qy. This is performed as follows for the getting
up motions of the simulated character. We parameterize each ac-
tuated joint in Euler angles and treat each axis independently for
multi-dimensional joints. For joint j with pose r; in the target state,
the pose of the generated state is sampled uniformly in the interval
[max(r;—a;/m;, 1), max(r;+a;/m;, u;)], where ; is a scalar that
parameterizes $2;, m; is the mass of the associated body link, and /;
and u; are lower and upper joint limits. For instance, @ = 5 creates
angle ranges of 27° for the hips, 46° for the knees, and 90° for the
shoulders, subject to joint limits. The Euler angle parametrization
can lead to a non-uniform sampling of rotations due to the singular
configurations [Kuffner 2004]. Our joint limits, however, avoid this
issue. The root orientation of the character is parameterized with
a quaternion. The orientation of the sampled state is determined
by spherical linear interpolation of a random orientation and the
target state orientation, where the interpolation parameter is a func-
tion of ¢;. We then drop the character from the air and wait for a
short time duration. The state of the character lying on the ground
is our random sample. For the other controllers (crouch-to-stand,
jumping, etc.), the states are sampled as follows to increase the
robustness to external disturbances. Starting from the target state,
we apply an external force in a random direction on the character
for a duration of 0.1s. The random sample is taken as the state
occurring immediately after the external force is applied. The mag-
nitude of the force is chosen randomly on the interval [0, «;], where
the scalar k; parameterizes €2;. The values of «; and k; increase
with i (see Figure 8).

4.4 State Distance Metric

Given a random state x"“*¢, the DOA expansion algorithms need to
find the nearest state in the tree. The metric used to measure the
distance between states x and x’ can have an important impact on
the efficiency of the algorithms, but it plays an even more critical
role in RRTFC because DFC is designed to reduce the importance
of the nearest neighbor. For simplicity, we use the weighted joint
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angles metric,

dist(x, X') = > " w;(r; — ) + (i — ), 3)
J

where the sum is over the joint angles and the root angle, w; is set
to the mass of the associated body link, and @; = 0.1w;.

4.5 Optimality Heuristic

After sampling a random state, the choice of its nearest neighbor
has an important effect on the quality of the motion. One possible
heuristic for yielding improved motions is to choose N nearest
neighbors instead of one, and solve for N TOPTs. Of the successful
connections, we then select the one with the minimal duration to
the target. This approach slows down the DOA expansion process
proportionally to N. In the supplemental video, we compare the
results achieved for N = 1 and N = 10.

4.6 Connecting Controllers

An important application of DOA expansion is its ability to se-
quence different controllers. If the terminal state of a controller is
close to the DOA of the second controller, then DOA expansion can
be directly applied on the second controller for the connection. The
only difference in Algorithm 2 is that the samples are now chosen
randomly from the distribution of the states at the end of the first
controller. If the first state is too far from the DOA, then we start by
synthesizing a transition controller (see Section 4.1) that steers it as
close as possible to the DOA. We then perform DOA expansion on
the transition controller, again with the random samples taken from
the distribution of states at the end of the first controller.

4.7 Hybrid of Offline and Online Optimization

The method described thus far requires pre-specifying a controller
for every possible state that could be encountered in the desired do-
main, which is generally very large due to the dimensionality of the
character. MPC methods, on the other hand, do not require this pre-
computation but more easily fall into local minima. We now present
ahybrid approach that attempts to get the best of both worlds, that is,
combine MPC methods with some offline pre-computation to avoid
both the curse of dimensionality and the local minima. The core idea
is to do offline construction of a small tree that sketches the general
path to arrive at the goal state. Online optimization is then used to
track a branch in the tree. This hybrid approach is slower than the
pure offline optimization approach because it requires some online
optimization.

To determine if a state x” is inside the DOA in the hybrid of
offline and online optimization (lines 8 and 12 in Algorithm 2),
we first find its nearest state in the tree x"““". We then perform an
online trajectory optimization to steer X towards x¢°“/, instead of
performing rollouts with the controllers of the closest nodes (line 10
in Algorithm 4). For the simulated character, we perform 100 CMA
iterations of 30 short rollouts (e.g., 0.7s) in the method described
in Section 4.1, which runs at about 5% real time on a machine
with eight logical cores. Fewer iterations would be required for
longer rollouts or different methods could be used, for example,
Hamalainen et al. [2014]. The cost function used is Equation (2),
withx? = x8°¢ At each timestep ¢, the control torque in the rollouts
is determined by u, = u/* 4+ u}, where u;* is the control torque
determined from the PD controllers associated with the branch from
X" 10 x4°% and u is the newly optimized portion of the control
torque (i.e., determined from Equation (1) with the new reference
trajectory). We found that this technique returns a better solution
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(measured in terms of the cost function) than to simply initialize the
new trajectory optimization with its nearest neighbor’s solution. In
one experiment, this approach returns a better solution 9 times of
10 when X" is sampled near x"**" using the approach described in
Section 4.3 with ¥ = 0.5. When x" is sampled further away from
X" (e.g., by using k = 2.5), both approaches have comparable
performances.

4.8 DOA Volume

To estimate the proportion of the domain that is covered by the tree,
we sample a large number of states inside the domain and determine
if they are inside the DOA by using the tree online (Section 4.2.2).
The proportion of samples inside the domain provides the estimate
of domain coverage.

5. PLANAR PENDULUM

We first perform DOA expansion on a simple system to compare the
efficiency of RRTFC and DFC. The system is a planar pendulum
in the vertical plane with state x = [0, 6], where 6 is the joint
position. The mass of the pendulum is 3.10kg and the torque limits
are +=200Nm. The goal is to stabilize the pendulum to its unstable
equilibrium [, 0], that is, the upright position, from all the initial
states in the domain Q = [0, 0] x [27m, 0]. We consider that the
pendulum has reached the equilibrium if x € €2, where Qy =
{Vx : ||x — [, 0]|]» < 0.01}. We solve the TOPT with the method
of Section 4.1, where we limit the number of CMA iterations to
20 and the number of samples to 12. For the DFC algorithm, we
divide the domain into four subsets €2;, defined as follows: ; =
[7r(1 —ay), 0] x [7(1 + ), 0], where oy = k/4,andk =1, ..., 4.
When using the DFC algorithm, we perform a DOA expansion on
2, using RRTFC because € is too small to be used as a target for
all the nearby states.

We compare RRTFC (on the entire domain) and DFC for an
average of 10 runs, where the entire domain is probabilistically
covered, that is, 200 consecutive random samples are inside the
DOA. Given that determining if a state is inside the DOA is much
less expensive than a TOPT, the main factors that will affect the
efficiency of the algorithms are the number of samples that fail to be
added to the tree, n ¢, and the number of samples that are successfully
added, n,. RRTFC has n/ = 38 and n* = 13, while DFC has
n/ = 13 and n* = 16. In this case, DFC reduces the number of
failed connections by about 65% but requires 23% more nodes to
cover the domain. Overall, DFC is more efficient since it reduces
the total number of TOPTs by 44%. We obtain similar results when
dividing the domain into 8 or 16 subsets. Similarly, we compared
the algorithms on a double pendulum with state x = [0, 6,, 6, 61],
where each link has mass 3.10kg. For the TOPT, we limit the number
of CMA iterations to 50 and the number of samples to 25. Covering
the domain Q =[x — 0.2, 7 —0.2,0,0] x [x +0.2, 7 +0.2,0, 0]
required RRTFC n/ = 950 and n* = 25 and DFC n/ = 132 and
n® = 25, which corresponds to an 84% difference in efficiency.

6. SIMULATED CHARACTER

We perform DOA expansion on getting up, crouch-to-stand, jump-
ing, and standing-twist controllers for a simulated character. The
getting up controllers express different strategies (see Figure 6).
Our initial controllers are synthesized by manually specifying be-
tween one and three key-frames as targets in a TOPT problem
(Section 4.1) with the last key-frame corresponding to the desired
end state and by specifying the durations between poses. The goal
of DOA expansion is to increase the set of initial states from which
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Fig.4. Full branch rollouts. In this figure, we attempt to connect the orange
node to its nearest node in the tree. The typical approach when performing
a TOPT is to steer the node as close as possible to the nearest node (the
dotted orange arrow) to enter its DOA. In some problems (crouch-to-stand,
jumping, standing-twist), we were not able to make any successful connec-
tion this way. We modify the TOPT by including the controllers associated
with the closest branch in the rollouts of the TOPT (orange arrows). The
objective of the TOPT is to steer the character as close as possible to the
goal state. This optimization is less expensive and more likely to succeed
than searching for a direct path to the goal state (green arrow).

the controllers can be used. We also regulate the final global orien-
tation of the character, that is, it must get up, twist, and so on, with
a given facing direction, which makes the problem harder.

6.1 Full Branch Rollouts

Performing DOA expansion on the crouch-to-stand, jumping, and
standing-twist controllers proved to be more challenging than the
getting up controllers, likely because momentum effects are more
present. The initial controllers have very small DOAs, making it
difficult to steer any state inside them. For this reason, we modify
the TOPT method as follows. Let C denote an arbitrary controller
that steers the character from state x; to x$°. When performing
a TOPT to connect a randomly sampled state to the DOA of C,
we previously attempted to minimize the distance of the state at
the end of the rollout to x;. For the modified case, our TOPTs will
minimize the distance to x2°“, using C after a short time interval of
0.2s elapses in the rollouts. In other words, the TOPT optimizes the
torques used in the preliminary time interval; the following torques
are specified by C. This significantly slows down the TOPT since
we are now performing rollouts for the entire duration of the branch
of the tree instead of the edge only (see Figure 4). Once the DOA of
the tree grows sufficiently large, it is no longer necessary to perform
the full branch rollouts.

6.2 Facing Direction Invariance

The task of our getting up controllers is to have the character reach
standing balance with a desired facing direction. Removing the
facing direction constraint simplifies the problem. One way to build
a rising controller with a large DOA is to supply a single prone or
supine target pose for the character to achieve, which should not be
difficult because of the facing direction invariance, and wait until the
motion comes largely to rest. The target pose provides a convenient
repeatable starting state from which to then apply a fixed, known
rising strategy, thus avoiding the need for DOA expansion. In the
accompanying video, we illustrate that this heuristic method does
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Fig. 5. The size of the tree. The figure plots the size of the tree in log
scale required to cover a subset for the “Getting Up 17 and the “Getting
Up 27 controllers. The subsets are parametrized by «, which is defined in
Section 4.3. In the plot, the value of « is shown in the subset axis.

not work with our controllers. The character never exactly reaches
the designated target pose and the resulting errors typically make
the controllers fail. Our experiments show that a small tree, for
example, 80 nodes, is sufficient to obtain a robust rising controller
that is invariant with respect to the facing direction.

6.3 Implementation Details

In the TOPT step of the DFC algorithm (line 10), we use a maximum
of 600 CMA iterations and 150 samples. For our simulations, we
use the MuJoCo physics engine [Todorov et al. 2012] with a 0.01s
timestep, a coefficient of friction of 1, and torque limits of =150Nm.
Our simulated character has a mass of 40.5kg, a height of 1.61m,
and 25 degrees-of-freedom.

7. RESULTS

DOA expansion on the getting up, crouch-to-stand, and standing-
twist controllers were performed offline. The offline-online ap-
proach (Section 4.7) was used for the jumping controller. A standing
controller with a similar approach to Hamalainen et al. [2014] is
used when the character is near the last standing pose. Performing
DOA expansion on an initial motion effectively extends it to new
initial states. If the goal is to get up from an arbitrary lying position,
then the method does not attempt to discover how to get up from
scratch. Instead, it attempts to find a path to a state where a getting up
strategy is available. In the accompanying video, we show that the
character can get up with the desired facing direction from a large
set of initial states (see Figure 6). The strategies employed show the
character moving from prone to supine (and vice versa), and rotat-
ing itself on the ground to regulate its global orientation. Similarly,
it is shown how the character can successfully perform crouch-to-
stand, jumping and standing-twist motions when force impulses on
the order of 7.5Ns, 10Ns, and 12.5Ns are applied in random direc-
tions on the character (see Figure 7). The results are compared to
controllers without DOA expansion. The accompanying and sup-
plemental videos contain examples of how DOA expansion can be
used to connect controllers together. We show how a crouch-to-
stand controller can be connected to a jumping controller, using a
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Fig. 6. Getting up controllers. The figure is divided into three pairs of sequences. For each pair, the top sequence illustrates an initial getting up controller,
and the bottom sequence illustrates how DOA expansion steers the character to the target (the state in the first frame of the top sequence). The yellow arrow
points to the desired facing direction for the final pose of the character. The red character is the pose of the currently active node.

Fig. 7. Crouch-to-stand controller. The top sequence consists of key-frames of the crouch-to-stand controller. The bottom sequence illustrates how DOA
expansion steers the character to the target (the state in the first frame of the top sequence). The blue line on the first frame is an external force applied on the
head. The red character is the pose of the currently active node.
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Fig. 8. Exploration regions. The sequence shows typical states (orange character) in progressively larger subsets for the target states (the red character)
associated with the “Getting Up 1 and the crouch-to-stand controllers. The subsets are @« = 1, « = 5, and « = 10 for the first three figures and x = 100Nm,

k = 400Nm, and x = 1000Nm for the last three figures.

Fig. 9. Visualizing the nodes in the Tree. The first three figures shows the DOA Tree with 1, 10, and 40 nodes for the “Getting Up 2” controller. The last
three figures shows the DOA Tree with 1, 10, and 40 nodes for the crouch-to-stand controller. These nodes are sampled from 2. The difference in velocities

between the nodes cannot be visualized.

Table I. Tree Statistics

Controller Size Height Depth Subset
Getting Up 1 1,377 14 7.3 a=28
Getting Up 2 751 12 5.4 a=28.5
Getting Up 3 277 41 19.3 o =10
Crouch-to-stand 193 4 2.1 Kk =T5N
Standing-Twist 177 4 2.1 Kk = 125N
Jumping 489 4 1.9 k = 100N

The table provides information on the trees for our controllers. The “Size” field
gives the number of nodes in the tree, the “Height” field gives the height of the
tree, the “Depth” field gives the average depth of the nodes, and the “Subset” field
gives the largest subset parameter reached during the DOA expansion process.

standing-twist transition controller. We also show how jumping and
stand-crouch controllers can be used repeatedly in a sequence.

The number of nodes required to cover a given subset depends
on the controller. This can be seen in Figure 5, where we plot
the total number of nodes required to cover progressively larger
subsets for some of our controllers. Intuitively, we would expect the
rate of growth of the tree to increase with larger subsets. The plot
suggests that the trees grow exponentially with the subset parameter
(the vertical axis is in log scale). In Figure 9, we plot some of the
nodes in the trees for the “Getting Up 3" and the crouch-to-stand
controllers to help visualize the expansion process. Table I provides
some statistics on the trees constructed for our controllers. The trees
are constructed by increasing « and « by increments of 0.25-1 and
25Nm, respectively. The values are chosen so the distance between
two states in subsequent subsets would not be too difficult for the
TOPT. The trees required between 1 and 3 days of computation on
a desktop computer.

8. COMPARISONS

The discovered solutions with DOA expansion include the character
taking a step or leaning on its knee to maintain balance and perform
the motion. In contrast, the Sequential Monte Carlo (SMC) method
of Hamalainen et al. [2014] fails to have the character get up under
certain prone and supine postures. The same comment applies to the
method of Tassa et al. [2012] when more realistic torque limits are
used. In the supplemental video, we show how the iLQG provided in
MuJoCo and our implementation of the SMC method fall into local
minima when attempting to steer the character inside the DOA of

Table II. RRTFC vs DFC

Number of Samples 500 1,000 | 2,500 | 5,000 | 30,000
# TOPTs RRTFC 57 32 29 24 19

# TOPTs DFC 22 18 19 19 13
Reduction 61% | 44% 35% 21% 32%

The table compares the efficiency of RRTFC and DFC when performing DOA
expansion on the domain o« = 0.5 for one of our getting up controllers. We give
the number of TOPTSs necessary to cover the domain, averaged over three runs.
We use increasingly better trajectory optimizers that are obtained by increasing
the total number of samples in CMA. The “Reduction” field gives the percentage
of fewer TOPTs when using DFC over RRTFC.

the standing-twist controller. More extensive searches allow offline
methods to avoid some of these local minima. In one experiment,
we use the SMC method to steer randomly sampled initial states to
the DOA of a getting up controller. The method succeeds 9, 4, and
2 times of 10 trials when the sampled states are inside the subsets
o = 2,6, 8, respectively. After performing DOA expansion, we
succeed 10, 10, and 9 times for the same subsets. The failure case in
the DOA method is due to not performing enough iterations offline
or failing to find the node that leads the state inside the DOA online
(Section 4.2.2). For the SMC method, we implemented Algorithm 1
in Hamalainen et al. [2014] since our problem does not have a
dynamically changing environment, and we compute the torques
by PD control instead of their actuation approach, which is specific
to the Open Dynamics Engine physics simulator. DOA expansion
can be used to steer the “failure” states inside the DOA of these
MPC methods.

The quality of the trajectory optimizer, that is, how closely it can
steer the character towards the target, has an important impact on the
efficiency of DOA expansion. Intuitively, we expect that the less ac-
curate the optimizer is, the more beneficial it will be to have a dense
tree. We perform the following experiment to test this hypothesis.
We construct five CMA optimizers of increasing quality that are ob-
tained by increasing the total number of samples in the rollouts. The
optimizers are then used to perform DOA expansion on the domain
o = 0.5 for one of our getting up controllers (Getting Up 2). Ta-
ble II provides the number of TOPTSs (n, +n ; in Section 5) required
to cover the domain as averaged over three runs. The duration of
the rollouts is set to 0.2s so the TOPTs are equally costly. The data
indicates that DFC is more computationally efficient than RRTFC,
particularly when it is difficult to connect two states together with
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TOPT. We also compared RRTFC and DFC when covering a larger
domain, namely o« = 10, using the CMA optimizer with 500
samples. The DFC method required 562 TOPTs, as opposed to
4,763 for RRTFC, which constitutes an 88% reduction in the com-
putational cost of DOA expansion. For this problem, we found that
only 5 of 40 successful TOPTs actually connect the random sample
x"" to the target node x"*" (see Section 3.1); the rest connect to
other nodes in the tree.

9. DISCUSSION

RRTs have the property to first grow towards the unexplored regions
of the domain and then to fill the regions in between branches. It is
in the first stage that DOA expansion with an RRT is particularly
inefficient. Once the exploration stage is over, the RRT progres-
sively becomes more dense and, consequently, more effective. For
instance, using the tree constructed for one of the getting up con-
trollers, we note that only 1 of 10 TOPTs succeed when the tree
has only 2 nodes, while 7 of 10 TOs succeed when the tree has 80
nodes. The difference between the DFC and the RRTFC becomes
more pronounced with larger domains because they imply a longer
exploration stage.

In this work, we use a shooting method for the TOPT and PD
control for feedback, but other methods could have been employed.
As pointed out by Tedrake [2009], the core DOA expansion algo-
rithms are compatible with a number of methods, some of which
will be better suited for certain applications than others. It would be
valuable to compare the efficiency of the expansion process when
using different methods, for example, LQR control instead of PD
control.

Our synthesized motions do not always look natural. Nonethe-
less, DOA expansion is a computationally tractable way to bring
states inside the DOA when they were previously outside. We now
discuss current avenues of research to achieve more natural results.
The first is to use a motion capture database to guide the TOPTs to
more human-like solutions. The second is to perform DOA expan-
sion on a set of controllers instead of a single controller. Humans
do not have a single way to perform a motion, yet it is the assump-
tion made when performing DOA expansion on a single controller.
The last avenue is to better determine movement duration in TOPT,
that is, how long should it take for the character to move from one
state to another? In this work, we use a constant movement duration
whenever the distance between the states is within a threshold. It
would be valuable to develop a method that either efficiently opti-
mizes for a cost of time objective term or estimates the movement
duration from prior data.

It is possible to modify the DFC algorithm to perform DOA
expansion on states that are more likely to occur in practice by
changing the sampling distribution we describe in Section 4.3. It
may, however, be useful to sample states that are unlikely to occur
to then bring other states inside the DOA. One possible approach
is to sample states that are unlikely to occur if they are in the di-
rection of further, but more likely, states. As was pointed out by
Glassman et al. [2010], metrics such as dist (Section 4.4) can be
very inefficient, because they do not take the dynamics and con-
straints of the system into account. Investigating alternative met-
rics remains a topic for future work. It would also be valuable
to thoroughly experiment more advanced density estimation tech-
niques and different sampling strategies in Section 4.3, for example,
quasi-random or Markov chain Monte Carlo, as was pointed out in
Branicky et al. [2001]. The controllers in this article are all time
indexed, which are known to lack robustness. It would be valuable
to develop a method that efficiently transforms our time-indexed
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controllers into robust state-based controllers (e.g., Grizzle et al.
[2010] and Kolter et al. [2008]).

DOA expansion could play an important role in having simulated
characters perform skills from a large number of situations and
transition between different skills. While previous work in this area
was limited to low-dimensional problems, we have shown how
it can be performed efficiently for a high-dimensional simulated
character. We hope that our work will stimulate future research on
DOA expansion so it becomes a common tool in control design.
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