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Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic
human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the
physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using
a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a
novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The
approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the
physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy
to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment,
successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using
a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their
actions are robust to perturbations.

CCS Concepts
•Computing methodologies → Animation; Physical simulation;

1. Introduction

We all move differently. How we perform an action depends on
our body shape. The motions of a tall heavy man and a small slim
woman balancing on one foot, hopping and bending are distinct.
Much of this is due to the specific distribution of mass over the
body. Physical differences result in movement differences. Our goal
is to model this efficiently and, given motion capture data from one
subject, realistically animate humans with different body shapes
doing the same movement. The result will be motions that differ in
ways that are tailored to the body of the individual preforming the
action.

Motion capture data is one of the main sources of animated be-
havior in graphics, due to its ground-truth realism. While high-end
commercial animation can afford to record reference motions with
actors that closely resemble the physique of their animated coun-
terparts, this is typically not available in crowd simulations, and
in many games having, for example, interchangeable characters. In
these scenarios, it is not uncommon to apply mocap data to char-
acters whose bodies do not match the physical characteristics of
the original actors. This mismatch results in well documented arti-
facts like footskating [KSG02], shape interpenetration, or simply a

perceived lack of realism. We would like to adapt a given motion
capture sequence to any possible human shape in a fully automated,
realistic manner.

To a large extent, the lack of realism in traditional mocap results
from physical implausibility of the motion when applied to dif-
ferent target bodies. A natural solution to that problem is to en-
force physical constraints on the retargeted mocap data. The classic
spacetime optimization framework [WK88] has been used for that
purpose [LHP05], by imposing physical constraints on optimiza-
tion problems that minimize the deviation with respect to refer-
ence motions. However, such systems have been traditionally con-
strained to restrictive, expert-designed constraints like foot place-
ments [LHP05], or are dedicated to very specific cyclic motions
like walking, running or cycling [HP97].

Moreover, most of the previous work considers unrealistic,
mannequin-like body proportions (with the notable exception
of [HP97]), or retargets mocap data to non-human embodiments,
like animals, imaginary creatures, robots or characters with human
kinematic structure but implausible body proportions [LYG15].

Our approach is different: Rather than retargeting motion despite
large shape differences, we would like to exploit common, natu-
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ral shape differences among people to generate natural variations
of human motion given a single source mocap sequence. Due to
differences in body shape (limb lengths, proportions, fat distribu-
tion, etc.) each target subject will require different foot placements
and will execute different motions while attempting to replicate the
source motion. Some of these subjects will also struggle to imitate
the action exactly, having to adapt it to their own bodies. In this
paper, we explore how natural motion, including natural tracking
“failures”, can emerge from a simple optimization objective. By us-
ing physical models derived from real 3D scans, we show how our
optimized physical motions have certain characteristics present in
real sequences, like heavier subjects raising their arms to improve
balance or tripping when the motion is too difficult to follow. This
is different from previous work, which showcases motion mapped
to imaginary creatures for which we have less intuition about how
a natural motion should look.

Given a mocap sequence, we estimate how the sequence would be
performed by actors of different body shapes. To that end, we use
a realistic, parametric, 3D model of the human body [LMR∗15].
Given any body shape, we approximate it with a set of “capsules”
that capture the coarse shape of the body, yet are simple enough
to enable practical physics simulation. We then generate plausible
motions for these bodies that try to replicate the mocap but take
into account that body shape influences what we can do and how
we do it.

Another factor that makes motion unique for a particular shape,
and varied in different situations, is their way of reacting to unex-
pected events. We would like to generate motions that are robust
to external perturbations. To achieve this, we combine recent work
on LQR-trees [Ted09] and domain of attraction expansion [AB-
vdPF17] to adapt existing controllers to new observed states in an
efficient manner. This approach provides significant robustness to
external perturbations that might be expected in an interactive game
environment.

Summarizing, our overall goal is to make mocap more useful by
adapting it to new characters and external forces in a physically
plausible way. That is, we wish to make mocap data generalize
more naturally and more robustly to new shapes and new situations.
Our approach is based on physical simulation of the motion and has
several components. First, we generate more varied and realistic
motions than previous methods by removing hard constraints on the
retargeting objective and using real but diverse target body shapes.
Second, we make the physical simulation of different body shapes
tractable by approximating their shape with “capsules”. Third, we
develop a new efficient algorithm for creating a tree of robust LQR
controllers that can sustain disturbances. This represents another
step toward realistic animated characters that behave realistically
in a wide range of scenarios.

2. Related work

There is significant prior work on modeling human body shape ac-
curately and on retargeting mocap data to new characters, but there
is little work combining these threads. We argue that as human
body models become more pervasive, it will become more impor-
tant for realistic avatars to move realistically.

Motion capture is often used to directly animate a character given
a mapping from the mocap skeletal motion to the character rig.
Although the problem has received significant attention from the
graphics community, today there is an enormous amount of man-
ual labor in the process of mapping and refining these motions.
A typical solution for this involves solving the pose for the tar-
get character through inverse kinematics [Gle98]. Since this prob-
lem is under-constrained, some approaches have limited the fre-
quency of the motion and minimized the amount of induced pose
change [Gle98]. Similar constraints can be applied to simplified
skeletons [MBBT00] in order to deal with both geometric and topo-
logical differences between skeletons. Molla et al. [MDB17] intro-
duce a kinematic approach to transfer the semantics of postures
with self-body contacts to characters with different body shapes.
Even contacts between multiple retargeted skeletons can be main-
tained through pure kinematic retargeting [HKT10]. Some kine-
matic methods attempt to encode some physical plausibility, such
as the balance optimization in Lyard et al. [LMT08]. In contrast,
our physics-based approach does not rely on heuritiscs and is not
limited to specific movements. Note that physics-based and kine-
matic approaches can be combined, e.g., a physics-based motion
retargeting can be performed after an initial kinematic motion retar-
geting phase that could incorporate animator needs, such as desir-
able self-contact constraints. Our work can incorporate kinematic
constraints as soft constraints in the trajectory optimization.

An alternative approach is to learn a statistical motion model from
several example mocap sequencess [LBJK09, FLFM15]. This al-
lows for the animation of characters with natural variability. These
models typically do not take into account the dynamics of the mo-
tion, so directly applying this procedural motion to new characters
can produce unrealistic results. Moreover, the creation of some of
these models requires motion recordings that are varied and aligned
in time (e.g. cyclic motion). This limits their applicability.

Exploiting physics for processing and editing motion capture data
has a long history in graphics. Zordan et al. [ZVDH03] proposed
a physics prior to estimate joint trajectories from 3D marker posi-
tion data. The approach does not reconstruct the control torques to
replicate the mocap motion, which is a challenging problem. Some
researchers have imposed strict physical plausibility on either mo-
tion captured data [LHP05] or human-edited animations [PW99,
SHP04]. Spacetime optimization methods [MTP12, WK88] have
been particularly popular for motion tracking [SP05,PW99]. These
methods require manually pre-specifying the contacts to allow
for gradient-based optimization methods, and they have yet to be
demonstrated on a wide variety of movements.

In recent work, Han et al. [HENN16] show how to enable mo-
cap data tracking in near real-time by using smoothed contact dy-
namics. The main limitations are on the physical accuracy of the
contact dynamics, which causes visible ground penetrations and
on the realism of the control torques used (the torque limits are
not mentioned, but similar methods [TET12] require unrealistically
large torques to avoid local minima). Other researchers have in-
vestigated stochastic global optimization and derivative-free meth-
ods. For instance, Liu et al. [LYvdP∗10] show how a sampling-
based approach can be used for the reconstruction of contact-rich
movements. The method is improved in [LYG15] to synthesize dy-
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namic movements and to reduce motion wobbliness. This is accom-
plished by computing multiple solutions and averaging them. Our
work uses a sampling-based optimization method first introduced
in [ABDLH13] to synthesize movements from high-level objec-
tives, without prior data. Here, we show that the method can be
used for motion tracking. It produces good quality motions without
requiring an optimization for multiple solutions as in [LYG15]. We
also show how motion retargeting can be performed with realistic
body shapes and produce plausible motion variations, which was
not demonstrated in previous work.

Physical controllers inferred from mocap can be used to gener-
ate new motions with a wide range of variability in response to
external disturbances. We can categorize methods that increase
controller robustness depending on whether their optimization is
online or offline. Recent online optimization methods such as
[HET∗14, HRL15, HENN16] have proved to be quite robust by
planning over a time horizon in the future. However, due to their
online nature, they can easily fall into local optima. Recent offline
methods [DLvdPY15, LvdPY16] optimize linear feedback policies
for motion tracking under disturbances. To move beyond linear
policies, Tedrake [Ted09] introduces a method to develop a non-
linear feedback policy that covers a domain of interest in state
space by combining local linear quadratic regulators (LQR) con-
trollers [dSAP08, MRS14] in a random tree. The method is only
demonstrated on a low-dimensional problem (in their case, one
degree-of-freedom). As follow-up work, [ABvdPF17] has shown
how to scale the approach to a 25 degrees-of-freedom character.
[MLPP09] introduces a nonlinear quadratic regulator for motion
tracking that outperforms LQR but that is limited to simulators that
rely on linear complementarity problems. Nevertheless, it should
be possible to combine such a controller with [Ted09] to efficiently
synthesize a more robust controller. Other approaches have stud-
ied how to build robust controllers by continuously modulating and
synchronizing reference trajectories [LKL10], by tracking multiple
reference trajectories in parallel [MPP11] or by combining existing
controllers for new tasks [DSDP09]. An interesting alternative ex-
plored by [YL10] consists in learning from data how real subjects
react to external forces. However, it is challenging to record reac-
tions from a sufficiently varied set of people, motions and distur-
bances. Our work is closely related to [Ted09] and [ABvdPF17].
In place of the PD controllers used in [ABvdPF17], we use LQR
controllers, which explicitly take into account the coupling among
all the degrees of freedom, therefore enlarging the region of stabil-
ity of the controllers. We also show how our method can be used
to track a motion sequence by systematically building robust non-
linear feedback policies, whereas previous methods are linear or do
not show how to expand their region of stability.

There has been significant work on learning realistic human body
shapes from 3D scans; we focus on these rather than hand-
constructed models. Most such human shape models can be posed
using a skeleton [LMR∗15] or per-part rotations [ASK∗05], allow-
ing animation from mocap data. The retargeting of mocap to a new
body shape in [LMB14] is purely kinematic and ignores the body
shape in the process.

There is previous work on modeling how realistic body shape in-
fluences the dynamics of soft tissue [PMRMB15,LMR∗15]. These

methods predict soft-tissue deformations as a function of the mo-
tion of the body over time. They do not, however, do the opposite;
that is, the body shape never influences the articulated motion.

In addition to shape affecting how a body moves, it also influences
the space through which it can move. Specifically in retargeting
mocap from one shape to another, one must take care to avoid inter-
penetrations. To that end we need an efficient method to detect and
avoid self penetration. We enable this by using an approximation to
the shape that enables efficient intersection testing in the physics
engine. Mesh approximation from different types of geometric
primitives is a well studied subject [LWH∗07, ZYH∗15]. These
methods, however, do not focus on re-posable simplifications. Re-
posable sphere-based hand models are automatically constructed
in [SMOT15] and [TPT16], but are more appropriate for computer
vision than simulation because they do not define spheres with
hard collisions. The sphere-mesh representations from [TGB13]
achieves good and re-posable approximations of the shape, at the
cost of using a large number of interpolated spheres. Our simple, re-
posable representation, which uses a single capsule per body part,
models efficiently the variation of human shape and can be easily
optimized to fit a large number of subjects.

Hodgins and Pollard [HP97] takes a physical controller and adapts
the masses and dimensions of the body to apply the controller to a
new body shape. They describe this for a limited number of body
shapes and focus only on existing controllers for cyclic motions.
Here, we combine the above lines of research and explore how body
shape influences motion as captured in a mocap setup.

3. Optimization for Motion Re-Targeting

The motion retargeting problem involves transforming a motion
performed by one character to a similar motion performed by a
character with a different shape. Typically this motion cannot be
performed exactly because of the different physical characteristics.

Let q̄ j,t be the observed angular value of joint j at time t, q̄t =

[q̄1,t , . . . , q̄N,t ]
T be a vector of all joints at time t, and q̄1:T =

{q̄1, . . . , q̄T } be the sequence of all joint angles over time.

Our goal is to estimate the torques necessary to reproduce the ob-
served motion subject to physical constraints. This is a hard opti-
mization problem that cannot be solved directly. Our approach uses
a trajectory optimization (or spacetime optimization) method for
physically-based retargeting. In particular, we build on the method
of Al Borno et al. [ABDLH13], and optimize a physical model to
approximate an observed trajectory of kinematics.

As in [ABDLH13], to simplify optimization, we introduce a ficti-
tious “control” trajectory q̂1:T−1 represented by a cubic B-spline.
Optimizing the kinematics is achieved by indirect optimization of
this control trajectory. The optimization below is over the spline
knots, which correspond to the angles of the actuated joints. For
clarity, however, we omit the knots below and simply write the tra-
jectories.

Given a control trajectory, q̂1:T−1, the torques, ut , at each timestep
t are determined by proportional-derivative (PD) control:

ut = kp(q̂t −qt)− kd q̇t , (1)
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where qt and q̂t are the current and control values of a joint an-
gle and q̇t is the angular joint velocity at time t. This is done
independently for each joint so we have dropped the subscript
j. Running this simulation using a particular control trajectory,
q̂1:T−1, gives both the torques and the output motion we desire
x1:T = [q1:T , q̇1:T ]. Here, all joints have PD gain values of kp =
700 Nm/rad and kd = 1 Nms/rad. The joint torques are limited to
100 Nm for all joints.

A good q̂1:T−1 is one that produces motions x1:T by forward sim-
ulation that match the observed mocap states x̄1:T = [q̄1:T , ˙̄q1:T ],
where ˙̄q1:T is evaluated with finite differences. We search for these
using a sampling-based approach (described below). Given a sam-
ple q̂1:T−1, we run the simulation to get x1:T and evaluate it given
a cost function.

3.1. Cost Function

The cost function E(x1:T ; x̄1:T ) encourages the physics simulation
motion to be as close as possible to the mocap motion. We use a
weighted sum of objectives Ei, with weights wi:

E(x1:T ; x̄1:T ) = ∑
i

wiEi(x1:T ; x̄1:T ). (2)

We now define and discuss the objectives.

The ECOM objective encourages agreement between the character’s
simulated center-of-mass and the corresponding character’s center-
of-mass in the mocap data:

ECOM = ∑
t
‖ct − c̄t‖2. (3)

Likewise, we use the ECOMv objective for the velocity of the center-
of-mass:

ECOMv = ∑
t
‖ċt − ˙̄ct‖2. (4)

We always use the 2-norm in this paper. Note that the center of
mass can be computed from the pose of the body and its shape.

The EtrackingPoses and EtrackingVel encourages the simulation to have
similar poses and velocities as the mocap:

EtrackingPoses = ∑
j,t

β j(q j,t − q̄ j,t)
2, (5)

EtrackingVel = ∑
j,t

β j(q̇ j,t − ˙̄q j,t)
2, (6)

where j indexes the character’s joints, excluding the root, and β j
is a weight. We use β = 1 for all joints, except for the hips and
the shoulders, where we use β = 10 and β = 3 because of their
importance on end-effector position. We do not have an objective
to minimize the differences in end-effector positions directly, but it
can be included if it is required for some application.

The EROOT term penalizes the difference between the unit quater-
nions parametrizing the root orientations:

EROOT = ∑
t

arccos(|〈qroot , q̄root〉|), (7)

where 〈·〉 denotes the inner product and |·| the absolute value.

Lastly, the Ejerk term is used to reduce motion jitteriness:

Ejerk = ∑
t
‖

...q t‖2. (8)

We found the jerk term to produce better looking motions than the
commonly used torque term, which is not used in our objective:

Etorque = ∑
j,t

τ
2
j,t . (9)

The weights used are wCOM = 15, wCOMv = 0.5, wtrackingPoses =

0.5, wtrackingVel = 0.0005, wROOT = 4, and w jerk = 1e−10.

3.2. Optimization

Optimization involves sampling control trajectories (i.e., knots),
q̂1:T−1, running the forward simulation to get a motion, x1:T , and
then evaluating the cost using E(x1:T ; x̄1:T ). The optimization is
performed with Covariance Matrix Adaption (CMA) [Han06], us-
ing 200 samples and 2000 iterations; that is, 400,000 simulations.
The method is initialized with the 0 vector, which corresponds to a
standing pose.

We use the MuJoCo [MuJ16] physics simulator with a 0.01 s
timestep and a coefficient of friction of 1. The simulator computes
the dynamic consequences of torques applied to our body repre-
sentation based on geometric primitives (see Sec. 3.3), and their
interaction with floor geometry, self-intersection and external dis-
turbances. As a result, torques applied to different body shapes re-
sult in different, physically plausible poses.

To make the optimization tractable, we perform it within tempo-
ral windows. We divide the optimization for the entire motion in
sequentially overlapping pairs of windows. As in [ABDLH13],
we optimize using two adjacent 0.4s windows with 6 knots each,
spaced at equal time intervals. Using two windows provides tempo-
ral continuity during optimization and we discard the results of the
second window. The optimization time is about 25 minutes per pair
of windows on a 4Gz Intel Core i7 machine with 4 cores. Our mo-
tion capture clips are recorded at 60 fps and have a typical length
around 5 seconds, meaning that there are 12 window pairs per clip
on average.

Note that varying the window length varies the results. A longer
window lets the optimization look further in time, helping it find
good solutions. In the results section we show the effect of this.

When retargeting the input motion, the vertical position of the de-
sired position of the center-of-mass in (3) is adjusted based on
the difference between the target and source bodies center-of-mass
given a standing balance pose. Furthermore, the input motion is
translated horizontally at the start of each optimization at timestep
i based on the state of the simulated character (i.e., c̄xz

t − c̄xz
i + cxz

i ),
where xz denotes the horizontal components. This helps the simu-
lated character not fall behind the input motion.

3.3. Mesh To Geometric Primitives

Given a realistic human shape, our goal is to retarget motion to
this shape realistically. Differences across human bodies are more
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a b c d

Figure 1: From scans to capsules. Each row depicts two differ-
ent Dyna subjects, the first one is 1.69 meters tall and 62.2 kg,
while the second one is 1.80 meters tall and 155.4 kg. From left to
right, we show a) scans of the subjects, b) the unposed template as
a triangulated mesh, c) the optimized capsule representation, and
d) the adapted geometric primitives representation. In the first row,
two last columns we represent joints color-coded according to their
dimensionality: red, green and blue circles represent 3, 2 and 1 de-
grees of freedom respectively. The root joint is represented in white
since it is represented with a 4D quaternion.

subtle than the ones in classic retargeting experiments, like asym-
metric limb proportions [LYG15, Gle98]. To capture those realis-
tic shapes we use data from the Dyna dataset [PMRMB15], which
registers real body scans (Fig. 1(a)) and normalizes their pose
(Fig. 1(b), data provided by the authors). Those pose-normalized
meshes are pre-segmented into parts as defined by the SMPL body
model [LMR∗15].

To that end, given a mesh representing a human body in a canoni-
cal T-pose, we approximate the body shape in terms of simple ge-
ometric primitives. Here we use a capsule (i.e. extruded sphere)
representation as illustrated in Fig. 1 (c), which approximates the
volume of the original mesh. Capsules are one of the most common
representations in game engines due to their efficiency for collision
detection. Our representation consists of one capsule per body part
in the SMPL template, excluding the finger segments. The position
of each capsule in the zero pose is determined by the joint loca-
tion of the corresponding part in the Skinned Multi-Person Linear
Model (SMPL); see Eq. (10) in [LMR∗15]. By having a one-to-one
relationship between capsules and body parts, the kinematic struc-
ture in the SMPL body model is directly applicable to our capsules.
The orientation of the capsules is set according to the principal di-
rection of variation in the template body part. Furthermore, we op-
timize the radius and length of each capsule so that it adapts to the
individual physique of each body shape.

Given a triangulated mesh template defined in terms of vertices T,
which generate a continuous surface mesh T , our task is to compute
the radius r and length l of all capsules to minimize an energy

E(r, l) =

∑
vt∈T

min
pc∈C(r,l)

‖vt−pc‖+λ ∑
vc∈C(r,l)

min
pt∈T
‖vc−pt‖. (10)

The vectors of radii and lengths, r and l, generate a set of 3D ver-
tices, C, that form a union of capsules, corresponding to a contin-
uous surface C. This objective penalizes the distance from every
template vertex vt to the capsule’s surface C, and the distance from
every capsule vertex vc to the template surface T . The contribu-
tion of each distance is weighted by a parameter λ that is empiri-
cally set to 0.5. The optimal capsule radii and lengths are obtained
through dogleg gradient-based optimization. Hands and feet are
poorly approximated by capsules. Therefore, we model feet with
parallelepipeds and hands with ellipsoids.

After this optimization, our capsule model resembles the original
body template (see Fig. 1(c)) and can be kinematically animated
using the same pose representation as in SMPL, since they share
joint locations and kinematic structure. However, the parameteriza-
tion of an SMPL pose (a total of 66 degrees of freedom from 21
three-dimensional joints plus translation), is inefficient for physi-
cal simulation. We reduce the articulation of the knees and toes to
1D joints, and the elbows to 2D joints as it is common in other
systems [LYvdP∗10, ABDLH13], resulting in a total of 57 param-
eters (root rotation is represented with a quaternion). In order to
use poses with the SMPL parameterization as observed motion q̄,
the poses are converted into Euler angles and adapted to this re-
duced parameterization. Since both representations can be easily
transformed into per-part global transformation matrices (see Eq. 4
in [LMR∗15]) we compute the (reduced) Euler angle representa-
tion whose global transformations are closest (in terms of Frobe-
nius norm) to the global per-part transformations from the original
axis-angle representation.

One of the benefits of using a body representation based on ge-
ometric primitives is the efficiency of collision computation. Our
capsule shape optimization does not prevent collisions, which is
beneficial in order to obtain a better approximation of the shape
(see for example capsules in the torso or thighs). Therefore, colli-
sion detection is disabled in the body parts that are colliding in the
rest pose.

Assuming that the human body is composed by a single material of
homogeneous density, we assign a weight to each capsule propor-
tional to its volume minus the volumetric intersection with all its
parents (so that volume is not double counted).

4. Robust Motion Tracking

We have seen how to optimize a controller that tracks input mocap
data. The controller is not robust to disturbances such as external
forces, which is necessary for interactive settings. Intuitively, we
would like to learn ways of steering disturbed motions back to the
stable control model.

More specifically, we build a random tree of LQR controllers across
our control solution. The method is inspired by [Ted09] and [AB-
vdPF17]. The Lyapunov functions approach in [Ted09] currently
does not scale to high-dimensional problems. Instead of the PD
controllers used in [ABvdPF17], we use LQR controllers, which
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provide locally optimal feedback gains that take into account the
coupling between all the degrees of freedom, therefore enlarging
the region of stability of the controllers. We also show how trees of
LQR controllers can be used to robustly track a motion sequence,
which is a problem that was not previously tackled.

4.1. LQR Feedback

Let x = [q, q̇] and let u denote the vector of joint torques; given
x we want to solve for the u that produce the motion. Using the
discrete time-system dynamics form, we have

xt+1 = f (xt ,ut). (11)

Given an initial trajectory x0
1:T and u0

1:T−1, let x̃t = xt−x0
t and ũt =

ut −u0
t . We linearize Eq. (11) around x̃1:T and ũ1:T−1 to obtain a

time-varying linear system

x̃t+1 = At x̃t +Bt ũt , (12)

where At =
∂ f
∂x (x

0
t ,u0

t ) and Bt =
∂ f
∂u (x

0
t ,u0

t ). These terms are eval-
uated with numerical differentiation; see Mason et al. [MRS14] for
a discussion on differentiating the orientation of the root, which is
an element of SO(3). Let Jt refer to the cost-to-go function, which
accumulates current and future quadratic costs in our state and con-
trol variables

JT (x̃T ) = x̃T
T QT x̃T , (13)

Jt(x̃t , ũt) = x̃T
t Qt x̃t + ũT

t Rt ũt + Jt+1(At x̃t +Bt ũt), (14)

where QT , Qt and Rt are given. The QT matrix determines the cost
for being at the terminal state x̃T , and the Qt and Rt matrices deter-
mine the costs for being at state x̃t and using control ũt at timestep
t. It can be shown, e.g., [Ber95, Chapter 4], that the optimal feed-
back law is given by

ũ∗t = Lt x̃t , (15)

or in terms of Eq. (11),

u∗t = u0
t +Lt(xt −x0

t ). (16)

The feedback term Lt is given by

Lt =−(BT
t Kt+1Bt +Rt)

−1BT
t Kt+1At , (17)

where Kt is the solution of the discrete time algebraic Riccati equa-
tion:

KT = QT (18)

and

Kt =AT
t (Kt+1−Kt+1BT

t (B
T
t Kt+1Bt +Rt)

−1 (19)

BT
t Kt+1)At +Qt . (20)

We linearize the dynamics at each timestep since computing the
feedback terms takes less than a minute for all our motions. If com-
putation or memory requirements become too cumbersome, it is
possible to linearize less often, e.g., at contact changes. We use
the same cost-to-go function for all our motions. For simplicity,
we choose (for all timesteps) Q to be the identity matrix, and R
to be a diagonal matrix with entries 1, except for the torso joints
that have entries 15. This means that our state cost penalizes errors

across joints equally. The same comment applies for our control
cost, except that we penalize errors in the torso more because unre-
alistically large torques were being used there. It would be valuable
to investigate better cost functions, so that state errors in the more
important joints for the task incur a larger cost. For example, in
a walking motion, errors in the hips are more critical than in the
wrists.

4.2. Trajectory-Tracking-LQR-Trees

In Sec. 3, we showed how to synthesize a trajectory x0
1:T and u0

1:T−1
that tracks mocap data. Our goal is to stay close to this trajectory
when unexpected disturbances occur. Offline, we provide examples
of disturbances. Each time a perturbed state fails to stay close to
x0

1:T , we attempt to steer it using trajectory optimization towards
a region where it will succeed (a region covered by an LQR con-
troller). If the connection is successful, LQR control is used on the
newly optimized trajectory, hence making it more likely that we
will be prepared for other disturbances. The LQR-Tree is a random
tree of LQR controllers that attempts to cover as much as possible
of a domain of interest in state space. The tree is constructed of-
fline, but it can then be used for control in near real-time. Let Γ be
a tree of tuples (x,u,L, p), where x is a state, u is a feedforward
controller, L is a feedback controller, and p is a pointer to the par-
ent node. We refer to the node with state x as node x for brevity.
We start by stabilizing the trajectory x0

1:T and u0
1:T−1 with LQR,

and then add the corresponding nodes to Γ, where the parent of
node x0

k is x0
k+1. We construct random subtrees at regular intervals

h across the sequence x0
1:T . A smaller interval makes a more robust

controller, but is more computationally expensive. It is possible to
perform a first pass with interval h, and then a second pass with
h/2, and so on.

Let χk denote the set of states from which we can track x0
k:T ac-

curately enough, i.e., according to a user-chosen threshold ζ and
distance metric dist (e.g., based on the terms inside the summation
in Eq. (3), (4), (5) and (7)). Let L measure the difference between
two kinematic trajectories x1

1:d and x2
1:d :

L(x1
1:d ,x

2
1:d) =

d−1

∑
i=1

dist(x1
i ,x

2
i )/(d−1)+wldist(x1

d ,x
2
d), (21)

where wl is used to emphasize errors in the last state (e.g.,
wl = 10/(d − 1)). We consider that state x1 is inside χk if we
have a control solution with simulated trajectory x1:M such that
L(xM+k−T :M ,x0

k:T ) < ζ. M denotes the number of timesteps re-
quired to reach the root x0

T when passing through node x0
k , therefore

T − k+1≤M.

The Trajectory-Tracking-LQR-Tree method systematically steers
states originally outside χk inside it. The method samples ran-
dom states as follows. For a state x0

k in the sequence, we ap-
ply an external force in a random direction, location and magni-
tude on the character for a given duration. Let F refer to a list
that specifies the maximum magnitude of the external force, e.g.,
F = [100 N,200 N,300 N, . . .]. We make the controller progres-
sively more robust by first sampling states with F(1), then F(2),
etc. We currently manually choose the set of forces, where the dif-
ference between successive forces is usually 50 or 100 N. It would
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be valuable to adapt the set of forces based on the motion being
performed. For example, we could evaluate the ratio of states that
can track the sequence after applying a perturbation. If the ratio is
too high, then the forces applied are too low, and vice-versa.

Let xp
k denote a perturbed state outside the sets

χk−α, . . . ,χk, . . . ,χk+α, which we denote by χk−α:k+α. Note
that xp

k is the state obtained after applying a disturbance for a given
duration. We solve a trajectory optimization problem to attempt
to connect xp

k back to χk−α:k+α, where α ∈ N modulates how
important it is to start tracking near timestep k (the start of the
disturbance). This is done by choosing a nearby node xn in the
tree Γ that is connected to node x0

j , where j ∈ [k−α,k+α] . The
trajectory optimization searches for a new trajectory xc

1:N ,u
c
1:N−1

with CMA such that L(xM+ j−T :M ,x0
j:T ) is minimized after using

the LQR controllers starting from timestep N in the rollouts (i.e.,
finite-duration simulations) of the branch from node xn to the root
x0

T . In this work, we set N to 20 and the number of spline knots to
3. We stop the optimization when the cost function has a value less
than ζ. For long mocap sequences, we have found that we could
optimize the less expensive objective L(xM+ j−T :M−λ,x

0
j:T−λ

),
where λ ∈ N. This means that our control solutions are optimized
to track a portion of the mocap sequence only. This does not
cause difficulty if there are subsequent subtrees in the remainder
of the sequence, as will be discussed in the next paragraph. If
xc

N ∈ χk−α:k+α, we now have xp
k ∈ χk−α:k+α by performing LQR

stabilization on xc
1:N ,u

c
1:N and adding the new nodes to Γ (see

Fig. 2). We then repeat the process by sampling a new state. In this
work, we construct a random tree, not a rapidly exploring random
tree as in [Ted09] nor a dense random tree as in [ABvdPF17].
However, the algorithm is compatible with these approaches. The
method is described in Algorithm 1.

We now discuss how we determine if a state xr
k is inside χk−α:k+α

(lines 15 and 18). We start by finding the κ nearest nodes to xr
k in

Γ that are connected to a node in x0
k−α:k+α. We perform rollouts

(moving in the root direction) using the LQR controllers associated
with each of these nodes. For near real-time control, the rollouts
should have short durations (e.g., 3 s), so we do not necessarily
reach the root. We say that a method is near real-time when the
computation time for a motion is less than the execution time. We
evaluate L for each of the rollouts and choose the control solution
with the smallest value, i.e., the solution that tracks a portion of the
mocap sequence better. We execute this solution and move forward
in the sequence, and then repeat this process for new state (at a later
timestep), until the root is reached. In this work, we chose κ = 20
and the rollouts can be performed in parallel. The computation time
for a 3 s mocap sequence is about 0.15 s on our computer with four
cores. Note that by this process, a state xr

k that is outside the domain
of attraction of the nearest subtree can still be brought to track the
mocap sequence at a later timestep (see Fig. 3). This is the reason
we start by constructing the subtrees at the end of the sequence and
move sequentially to the start, i.e., doing so increases the likelihood
of a successful trajectory optimization.

Algorithm 1 Tracking-LQR-Tree(x0
1:T , u0

1:T−1, Q, R, F , α)

1: [A1:T−1,B1:T−1]← Linearize f (x,u) around (x0
1:T ,u

0
1:T−1)

2: L1:T−1 ← LQR(A1:T−1, B1:T−1, Q, R)
3: Γ.add_node(x0

T , 0, 0, NULL)
4: . . .

5: p← pointer to the node with x0
i+1

6: Γ.add_node(x0
i , u0

i , Li, p)
7: . . .

8: p← pointer to the node with x0
2,

9: Γ.add_node(x0
1, u0

1, L1, p)
10: for k = T −1 : h : 1 do
11: for fmax in F do
12: for λ = 1 : Λ do
13: Apply random external force of max magnitude fmax on

state x0
k

14: xp← the perturbed state
15: if xp /∈ χk−α:k+α then
16: xn← nearby node connected to a node in x0

k−α:k+α

17: Solve a trajectory optimization to connect xp to
χk−α:k+α

18: if xc
N ∈ χk−α:k+α then

19: (xc
1:N ,u

c
1:N−1)← the synthesized trajectory

20: [A1:N−1,B1:N−1]← Linearize f (x,u)
21: L1:N−1← LQR(A1:N−1, B1:N−1, Q, R)
22: p← pointer to the node that causes xc

N ∈ χk−α:k+α

23: Γ.add_node(xc
N−1, uc

N−1, LN−1, p)
24: . . .
25: p← pointer to the node with xc

2
26: Γ.add_node(xc

1, uc
1, L1, p)

Figure 2: Trajectory-Tracking-LQR-Tree. The blue region illus-
trates χ. The region is filled with LQR feedback. The long thick
arrow is x0

1:T and the red circles are the root nodes of the sub-
trees across the sequence. The blue circles are sampled states that
are successfully added to the tree. As can be seen in the figure, the
nodes do not always connect back to the red circles due to the α

term.

5. Results

To evaluate our method we need movement data from people of dif-
ferent sizes and shapes. To that end we use two sources of data. The
first comes from the public Dyna dataset [Dyn15], which contains
body shapes and motions of ten subjects with very different body
shapes. While most available mocap data in the world is captured
from relatively fit people, Dyna also contains motion of heavy peo-
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Figure 3: Feedback across a sequence. The orange circle is a per-
turbed state outside the domain of attraction of the nearest subtree.
The state diverges away from the mocap if only the controls of the
nearest subtree are used (top figure). The state can be steered back
to track the mocap if it enters the domain of attraction of another
subtree later in the sequence (bottom figure).

ple. We also use traditional motion capture data [cmu00] for which
we have no ground truth 3D shape information. For this data we
use MoSh to extract the 3D body shapes and SMPL-compatible
poses [LMB14].

We estimate the controller for the ground truth 3D shape for each
sequence. In the Supplemental Video, this source body is always
shown in red. When the target character has the same (estimated)
shape as the source character, it does not always perfectly track the
motion. This is due to differences in the joint and torque limits,
errors in the mocap data itself, local minima in the optimization,
and differences between our articulated rigid body and the human
body. Nevertheless, the resulting motions approximate the mocap,
look believable, and are driven by a physical controller that has
many advantages over simple retargeting as we show below.

We vary the body shapes among 10 different shapes from the Dyna
dataset and optimize their motion controller. These target bodies
are shown in green. Given this data we mix and match source and
target motions, for example taking the motion of a light person and
animating a heavy person and vice versa. Our evaluation is visual
and, for this purpose, we provide many examples in the Supple-
mental Video.

The supplemental video shows different characters performing a
turning-twist motion. Note that the heavier character stretches its
arms more and, interestingly, places it legs in a different configu-
rations than the other characters; to turn-twist, it pivots around one
foot instead of moving both feet. We also note that the lighter char-
acter has trouble keeping its arms at the same angle as the mocap

character and its more bouncy during the motion, while the charac-
ter with the original shape performs better overall.

When the characters have similar shape, the difference in their mo-
tion is subtle (e.g., a slightly lighter character being more bouncy or
a slightly heavier character bending more to perform a movement).
When the characters have vastly different shapes, the difference can
be drastic, even leading to tracking failures. When tracking fails, it
does so in a realistic way, similar to how one would expect a per-
son fail to perform the motion. We, however, note that the heavier
characters tend to have excessive motion in the lumbar spine when
performing recovery movements to stay in balance.

Consider, for example, the dancing motion in Fig. 4. Here the
source character is substantially slimmer than the target. It is there-
fore able to crouch lower and move quicker than the heavy charac-
ter. To avoid losing balance, the heavy character takes a few steps
forward to stabilize itself, and then takes a few steps backwards to
get back near the mocap motion. What is interesting is that the steps
taken have a natural look and they emerge entirely from the opti-
mization. Imposing foot contact constraints, as is custom in classic
spacetime constrained optimization [Gle98], would have discour-
aged this natural behavior.

We also present the results for a challenging air-kick motion by a
slim character in the supplemental video. We show that with high
torque limits (±300 Nm), the heavy character performs the motion
reasonably well. The result seems unnatural since we would not ex-
pect a heavy character to jump this high. With more severe torque
limits, ±100 Nm and ±50 Nm respectively, we get a more satis-
fying result: the character jumps with a lower height than in the
former, and just slides on the floor in the latter.

An example showing the importance of the action timing is shown
in the supplemental video, where a heavy character tracks two con-
secutive kicking motions (Fig. 5). The usual time horizon for our
optimization is 0.8 s (that is two time windows of 0.4 s each). We
see the character losing balance on a kick with the usual time hori-
zon. When the time horizon is progressively increased, the charac-
ters improves its motion, for instance by discovering that it cannot
stretch its leg back as much as the mocap character.

We also present results where the destination character is holding
an object (a stick and a block), while the mocap character does not.
The object’s weight has a visible effect on the motion; the heavier
the object, the more it affects the movement and makes it hard to
perform. However, the object can also be helpful to the character;
e.g., the stick is used to maintain balance in difficult postures.

We tested the robustness of our solutions by applying on the char-
acter random external disturbances that are up to 500 N for 0.1 s.
We show how the LQR-tree succeeds in performing the motion
whereas the LQR controller fails. In Fig. 6, we compare the re-
actions to a disturbance on the foot in the air when the character
is kicking. As the character is about to fall in one direction, it ro-
tates its arms in the opposite direction, thereby allowing itself to
rotate back up and continue performing the motion. We have cho-
sen α = 25 timesteps (see Sec. 4.2). A small value of α makes it
more difficult to find a solution, while a large value means that we
can skip tracking a portion of the sequence. The ankles and the
torso movements are at times too jittery when recovering from a
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Figure 4: Recovery steps. This sequence illustrates how a heavy character can lose balance when getting up too quickly from a crouch
position. In order not to lose balance, the character takes a few recovery steps forward. After avoiding the risk of falling, it takes a few steps
backwards to return to its desired position, and continue dancing.

Figure 5: Time Horizon. The first sequence uses a 0.8 s window horizon in the optimization, the second 0.9 s, and the third 1.0 s. Note that
in the second sequence, the heavy character does not kick as high as in the first sequence to avoid falling, but it still falls when performing
the back kick. In the third sequence, the character decides to stretch its leg backwards, but to keep its foot on the floor.

disturbance. This indicates that tighter torque limits and more se-
vere control costs (see Sec. 4.1), ideally dependent on the subject’s
shape, are needed on these joints.

In the supplemental video, we also show robustness in a boxing
sequence. To obtain a robust controller for this 2.3s sequence, we
build subtrees at 0.1s intervals with Algorithm 1. We set Λ to 100
and F = [50,100,150]. Each perturbed state (xp in Algorithm 1)
that is steered back to the sequence with a trajectory optimization
of N timesteps requires N − 1 nodes to be added to the tree. We
provide the numbers of perturbed states and nodes in the subtrees
from k = 230 to k = 180 in Table 1. Some portions of the sequence
require far fewer nodes than others. For instance, only 3 perturbed
states were added to the subtree at timestep 30, yet the controller is
resilient to impulses on the order of 15 Ns. To obtain comparable
performance at timestep 90, a subtree with 16 perturbed states is
constructed. Constructing the tree for this sequence took two days
of computation time. We now discuss the memory requirements.
For each node in the tree, we store the vector of feedforward con-
trols of dimension H, the state vector of dimension W and the feed-

back matrix term L of dimension H×W . A perturbed state added to
the tree requires (N−1)× (H×W +H +W ) entries. In this work,
we have H = 50 , W = 113 and N = 21. A tree with 500 perturbed
states would require 116260 entries, which is less than a megabyte.

Our Trajectory-Tracking-LQR-Trees method shares similarities
with the impressive method of [LvdPY16]. Their method divides
the sequence in control fragments and linear feedback policies are
learned for each fragment. This is akin to our approach of dividing
the sequence with subtrees, except that we show how to learn non-
linear feedback policies (i.e., we show how linear feedback policies
can be connected together to increase robustness). They compute
reduced-order linear feedback policies requiring access to a large
cluster, while we compute full-order linear feedback policies (i.e.,
linear quadratic regulators) that are provably optimal and that can
be computed on a single computer in a few seconds. Another dif-
ference is that their feedback action terms are limited to the waist,
the hips and the knees (i.e, perturbations to other body parts must
be corrected with motion in these joints), while we allow feedback
to occur through all joints. Lastly, they only show robustness to
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Figure 6: Robustness. The red line is an external force applied on the characters. The yellow character has an LQR controller. The orange
character has an LQR-tree controller.

Timestep k 230 220 210 200 190 180
# Perturbed states 7 9 5 17 11 4
# Nodes in subtree 140 180 100 180 220 80

Table 1: Tree statistics. The table provides the number of perturbed
states xp that are steered back to the sequence and the total number
of nodes in the subtrees at various timesteps. This corresponds to
the boxing mocap in the supplemental video.

Random Impulse (Ns) 5 50 75 125 250
# Successful PD (100 trials) 3 4 0 1 0
# Successful LQR (100 trials) 89 28 20 8 5

Table 2: PD vs LQR. The table compares the number of times a
PD controller and a LQR controller can track a standing balance
motion when increasingly larger impulses are applied on the char-
acter.

external disturbances applied to the character’s trunk along its fac-
ing direction, while we show robustness to disturbances in random
locations and directions on the character. A promising topic for fu-
ture work is to merge both methods by building random trees with
linear feedback policies obtained with linear regression.

We perform the following experiment to evaluate the difference be-
tween PD and LQR control. Given a standing balance motion of
0.8 s, we compare in Table 2 the number of times out of 100 tri-
als that a single PD and LQR controller can withhold and continue
successfully tracking the sequence when an impulse is applied on
the first timestep. The data shows that the LQR controller has a suc-
cess rate of 89% compared to 3% for the PD controller given a 5 Ns
impulse. The LQR controller is able to withstand an impulse distur-
bance fifty times larger than the PD controller before degrading to
a similar success rate. This explains why [ABvdPF17] reports PD-
Trees with hundreds of perturbed states to be robust to impulses of
about 10 Ns, while our LQR-Trees are an order of magnitude less
in size for the same robustness.

6. Discussion

The experiments demonstrate that our method produces different
motions for different body shapes, that these motions are plausible
and appropriate for the shape, and that our new LQR-tree formula-
tion is robust to external forces.

One of our experiments also highlights several limitations of our
approach. In the supplemental video, we show how a thin character

tracks the running-in-place motion of a heavy character, and how a
heavy character tracks the running-in-place motion of a thin char-
acter. We note that the thin character stretches its arms too widely,
trying to imitate the heavy character. But while the heavy charac-
ter has a good reason to stretch its arms (i.e. it helps it maintain
balance), the light character is more stable and does not need to
do this. Consequently the motion lacks perceptual believability, but
we note that this might also be the intention of a motion capture
session.

With multiple examples of the same motion by people of different
shapes, one could develop a method to determine which portions
of a motion should be tracked closely. We also note that the heavy
character has difficulty running at the same pace as the thin charac-
ter. A method could be developed to adjust the timing of the motion,
so that a heavy character could run at a more comfortable pace.

Using LQR controllers instead of the PD controllers in [AB-
vdPF17] makes the process of finding robust solutions more ef-
ficient, as a single LQR controller often replaces dozens of PD
controllers. This comes at a very modest computational cost (com-
puting the gains), but at a memory cost (storing the gains), which
becomes an issue as the trees grow larger.

One application of our work with objects is in the film industry. For
example, when actors simulate a fighting scene with swords, sticks,
batons, etc., they are not usually given actual weapons, but replicas
that have very little weight. In the final motion, the actor looks like
they are holding a massive, heavy object, but the motion may not
reflect the weight of the object.

The cases where the physical character departs from the mocap
motion (e.g., by losing balance) are very interesting. Our method
provides indicators on which portions of a motion will be difficult
for people of different shape and strength. When combined with a
more detailed musculoskeletal model, it could be useful in health-
care, e.g., to predict how an elderly person’s gait would change
with a prosthesis. Increasing the time horizon could provide a way
to model how people learn motor skills. When attempting to learn
a motor skill (e.g. karate, yoga, aerobic exercise, dance, etc.), a
novice watches an expert perform the movement, and then attempts
to replicate it. Since the novice is not fully aware of his own limita-
tions, he misses here and there, stumbles and falls over. Next time,
he has a better idea of what he can and cannot perform. Instead
of following the expert exactly, he adapts the experts movements
to his own body. In other words, it is as if the novice has a longer
horizon. By varying the time horizon, we have a way to model how
the motion changes as the performer moves from being a novice to
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an expert. It would be very interesting to compare our results with
experimental data.

In summary, we have presented a method to take motion capture
data from a source person and transfer it realistically to different
target bodies in a way that is perceptually realistic and can adapt
to external forces. The results suggest that this physics-based ap-
proach is viable for generating varied and realistic animations from
mocap data.
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