
1

WSPDS:
Web Services Peer-to-peer Discovery Service†

Farnoush Banaei-Kashani, Ching-Chien Chen, and Cyrus Shahabi
Computer Science Department,

University of Southern California,
Los Angeles, California 90089

[banaeika,chingchc,shahabi]@usc.edu

Abstract— The Web Services infrastructure is a dis-
tributed computing environment for service-sharing. In this
environment, resource discovery is required as a primitive
functionality for users to be able to locate the services, the
shared resources. A discovery service with centralized ar-
chitecture, such as UDDI, restricts the scalability of this
environment as it grows to the scales comparable with the
size of the web itself. In addition, current extensively used
web service standards (e.g. UDDI, WSDL), do not support
discovery at a semantic level. In this paper, we introduce
WSPDS (Web Services Peer-to-peer Discovery Service), a
fully decentralized and interoperable discovery service with
semantic-level matching capability. We believe the peer-to-
peer architecture of the semantic-enabled WSPDS not only
satisfies the design requirements for efficient and accurate
discovery in distributed environments, but also is compati-
ble with the nature of the Web Services environment as a
self-organized federations of peer service-providers without
any particular sponsor.

Keywords— Web Services discovery, Peer-to-peer
discovery, Ontology, Semantic matching

I. Introduction

The Web Services programming infrastructure
is the current generation of a succession of sys-
tems proposed to develop distributed applications:
RPC, CORBA, DCOM, and now Web Services. A
web service is a self-contained application module
with well-described functionality that can be in-
voked across the web. The Web Services program-
ming environment is a distributed computing envi-
ronment in which participants share their services;
hence, a service-sharing environment. Each partic-
ipant can potentially act both as a service provider
and as a client. As a service provider, the partic-
ipant builds and optionally shares its services for
public use. As a client, on the other hand, the
participant can develop distributed applications by
discovery and seamless integration of the public ser-
vices with its own private services.

The Web Services infrastructure is adopted more
rapidly and widely as compared to its predecessors.

† This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC), IIS-0082826 (ITR), IIS-0238560
(CAREER), IIS-0324955 (ITR) and IIS-0307908, and unre-
stricted cash gifts from Okawa Foundation and Microsoft.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

One could anticipate popularity of this infrastruc-
ture in advance, because it is an extension of the
successful browser-based web-programming tech-
nology to a general distributed application devel-
opment environment. However, more importantly,
success of this infrastructure must be attributed to
its fundamental features:
• Loose coupling: services developed and deployed
independently using heterogeneous platforms can
be integrated seamlessly to build distributed appli-
cations with new functionalities; hence, interoper-
ability. Loose coupling is mainly enabled by XML-
based SOAP communication specification, which
allows platform-independent information exchange
between services.
• Full decentralization: all communications of the
interacting entities are in a peer-to-peer fashion,
without any central coordination; hence, scalabil-
ity.
• Semantic level search: this feature allows web
service requesters to search for published web ser-
vices not only based on keywords, but also based
on ontological concepts.

A. Discovery Service for Web Services

In general, in a distributed computing system a
discovery service locates (or discovers) resources
dispersed across the system in response to re-
source discovery queries issued by the system enti-
ties. With Web Services, resources are the services
shared on the web. To be specific, a discovery ser-
vice for Web Services is itself a web service that
locates the service description document(s) of the
service(s) that hit a service query. A service de-
scription document (e.g., a WSDL file) provides
both abstract and concrete information required
for proper invocation of a service. A service query
characterizes a set of services with particular char-
acteristics, such as name, abstract(or description),
interface model, etc., to be located.

B. Design Issues and Approaches for Discovery
Service

To be compatible with the fundamental features
of the Web Services infrastructure (as discussed

Communication with Neighbor

C
om

m
un

ic
at

io
n

w
ith

 U
se

r

Neighbor Query

U
se

r
Q

ue
ry

Response to Neighbor Query

Local
Inspection
Documents

Communication
Engine

Local Query
Engine

R
es

po
ns

e
to

 U
se

r
Q

ue
ry

A
 W

S
P
D

S
 S

er
ve

nt

Fig. 1. WSPDS Architecture

above), a discovery service should support the fol-
lowing requirements:
• Interoperablity, to be integrable with other web
services, to support different service description
standards, and to be portable to different plat-
forms;
• Scalability, to grow to the web scales without be-
ing a performance bottleneck;
• Efficiency, to support the dynamic environment
of the Web Services with frequent changes/updates
of the location of the services and their description
documents;
• Fault tolerance, to be resistant to unwanted
breakdowns and malicious attacks.
• Semantic based discovery, to find a match based
on the common conceptual space of service re-
questers and providers.

We argue that as compared to a centralized ar-
chitecture (e.g., UDDI [1], the currently used stan-
dard for globally publishing and locating web ser-
vices), a decentralized design for the Web Services
discovery service is more scalable (obviously), more
fault tolerant (by eliminating the single point of
failure), and more efficient (by reducing the over-
head of centralized update of the discovery service).
Distributed directory services and peer-to-peer ser-
vices are two alternative service models with decen-
tralized architecture. Distributed directory servers
are usually dedicated facilities that are built and
maintained under unique management to provide
service to the clients of a distributed environment.
However, the Web Services infrastructure is a self-
organized federation of peer entities without any
particular sponsor for the system. It is desirable
that the federation lives, changes, and expands
independent of any distinct service facility with
global authority. With peer-to-peer services, the
role of distinct service providers is eliminated. Sys-
tem entities all cooperate to provide a service as a
result of group collaboration in a distributed fash-

ion. Entities are peers in functionality and each
entity is potentially both a server and a client of
the peer-to-peer service; hence, sometimes entities
are referred to as servents (i.e., server and client).

The Web Services discovery service can be im-
plemented as a peer-to-peer service, eliminating de-
pendency on a distinct service provider. Each ser-
vent serves others by providing information about
its own web services in response to queries, and in
turn, as a client it issues discovery queries to locate
the web services that are not available locally. Ser-
vents build a network in which each servent has a
few other servents as neighbors. When a servent re-
ceives a request for a web service from the local user
and cannot find the web service locally, as a client it
originates a discovery query and propagates the re-
quest into the network through its neighbors. Ser-
vents collaborate based on a distributed algorithm
to disseminate the query. During propagation of
the query, if a servent finds the requested web ser-
vice locally, it responds to the originator by pro-
viding its location and description.

Additionally, in order to achieve efficient query
propagation in a peer-to-peer environment, the
linkage between servents should be built based on
the hosted data contents (e.g., web service descrip-
tions) of the servents. Finally, a more accurate
match will be accomplished by annotating both the
advertised web services and users’ requests with
globally shared concepts.

II. Peer-to-peer Discovery Service for
Web Services

The Web Services infrastructure is a self-
organized federation of service providers for service-
sharing. Thus, a peer-to-peer architecture is an
appropriate choice for the discovery service in this
environment. Considering the usual autonomous
behavior of the service providers, an unstructured
peer-to-peer discovery service is preferred. Here,
we introduce WSPDS (Web Services Peer-to-peer
Discovery Service), a fully decentralized and in-
teroperable discovery service with an unstructured
peer-to-peer architecture.

A. Architecture

WSPDS is a distributed discovery service im-
plemented as a cooperative service. A network
of WSPDS servents collaborate to resolve discov-
ery queries raised by their peers. Figure 1 depicts
an unstructured peer-to-peer network of WSPDS
servents. Each servent is composed of two en-
gines, communication engine and local query en-
gine, standing for the two roles that a servent plays:
1. Communication and Collaboration: the commu-
nication engine provides the interface to user and

also represents the servent in the peer-to-peer net-
work of servents. This engine is responsible for the
following tasks:

• Receiving service queries from users, resolving
the queries by local query (through the local
query engine) and global query (via its peer
servents), and finally merging the received re-
sponses to reply to the user query; and

• Receiving queries from its neighbors in the peer-
to-peer network, resolving the queries by local
query, and sending the response (if not empty)
to the network as well as forwarding the query
(if query has still some time to live, i.e., TTL >
0) to other neighbors in the network.

2. Local query: the local query engine receives the
queries from the communication engine, queries the
local site (where the servent is running) for match-
ing services, and sends responses to the communi-
cation engine.

In the following sections, we first explain the im-
plementation of the two engines to build a primitive
WSPDS network based on the basic peer-to-peer
network specification Gnutella[2]. The primitive
WSPDS supports only keyword-matching queries.
Thereafter, we describe our approach to add onto-
logical concepts to the primitive WSPDS to achieve
semantic-based peer-to-peer network construction
(termed Sem-WSPDS) and service discovery.

III. Construction of a Primitive
Peer-to-Peer Network of WSPDS

Servents

A. Communication Engine

Consider to build a peer-to-peer network of
WSPDS servents based on Gnutella protocol.
The communication engine of a WSPDS servent
exchanges SOAP-enveloped query/response mes-
sages with 1) user applications/services, or 2)
other WSPDS servents. The only difference be-
tween these two types of communications is a
unique identifier and a TTL field embedded in the
MessageDescriptor of the messages exchanged be-
tween two servents (with the second case above),
for peer-to-peer collaboration purposes. Obviously,
these fields are not required for the messages com-
municated between a user application and WSPDS
servent (the first case). Figure 2 shows sample com-
munications between a WSPDS servent and a user.

Figure 5 (see the appendix) depicts the main
routine that implements the communication and
message handling tasks of the communication en-
gine. Instead, here we focus on the mechanisms
implemented by the communication engines of the
peer servents to 1) build and maintain the peer-
to-peer network of servents, and 2) execute coop-

erative discovery. These mechanisms are mostly
compatible with the Gnutella peer-to-peer network
specification [2] enhanced by our novel technique
termed probabilistic flooding. In [3], we prove that
this technique improves scalability of Gnutella’s
flooding-based dissemination mechanism by up to
99%, effectively eliminating the major drawback of
this Gnutella-like peer-to-peer discovery system.

A.1 Network Setup

Each servent maintains a list of the most recently
active servents of the network, denoted as servent
cache. Each time a servent is re-activated, it probes
the servents listed in the servent cache to find k
nodes that are still active and designates them as
its neighbors. In this way, a new servent can join
the peer-to-peer network based on the local infor-
mation without any unique global control. For the
first time a servent is activated, the servent cache
contains access points of a few WSPDS servents
associated with some large service providers that
are almost always active. When a servent joins the
network, it periodically uses a Gnutella-like ping-
pong mechanism to find other active servents in the
network and refreshes its local servent cache to be
updated for the next re-activation.

A.2 Cooperative Discovery

To discover a service requested by user, a servent
originates a query (enveloped in a SOAP message)
in the network of servents. The servents collaborate
to propagate the query based on the probabilistic-
flooding dissemination mechanism. Dissemination
of a query is restricted by its TTL. A servent that
receives a copy of the query message decreases TTL
of the query by 1, and if TTL > 0, forwards the
query to each of its neighbors with the probability
p (p is in the interval [0.01, 0.1]).

Besides forwarding the query messages, when a
servent receives a query it also inspects the local
site for matching services. If the local inspection
results in discovering one or more services, the ser-
vent prepares a response message and sends it back
towards the originator of the query. The response
message traverses the path of the query message
in the reverse order. To enable returning the re-
sponse messages to the originator, a query origi-
nator marks its query message by a unique iden-
tifier. The servents in the path of a query cache
the identifiers of the query in a short-lived buffer.
When they receive a response message, they match
the identifier of the response message (which is the
same as the identifier of the corresponding query)
against the buffered identifiers and forward the re-
sponse message to the neighbor from which they
have received the corresponding query.

POST /WSPDS.asmx HTTP/1.1

Host: micron34.usc.edu

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: http://micron34.usc.edu/SearchService

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

 <SearchService xmlns="http://micron34.usc.edu/">

 <ServiceName>Video Service</ServiceName>

 <ProviderName>VideoInfo Tech</ProviderName>

 <tModel>VideoInterface</tModel>

 <ServiceCategory>Graphics</ServiceCategory>

 </SearchService>

</soap:Body>

</soap:Envelope>

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

 <SearchServiceResponse xmlns="http://micron34.usc.edu/">

 <SearchServiceResult>

 http://www.videoinfotech.com/video.wsdl

 http://video.videoinfotech.com/video2.wsdl

 </SearchServiceResult>

 </SearchServiceResponse>

</soap:Body>

</soap:Envelope>

a. Query b. Response

Fig. 2. Sample Keyword-based Query/Response SOAP Messages of WSPDS Servent

<wsil:service>
 <wsil:name>GeoService</wsil:name>
 <wsil:abstract>A web service to find the geographical areas (city, country and island)
 located at a given latitude.</wsil:abstract>
 <wsil:description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"
 location="http://micron34.usc.edu/geoservice.wsdl"/>
</wsil:service>

GeographicalArea

City IslandCountry

subClass
subClass

subClass

DMSCoordinate

Latitude Longitude

subClass subClass

a. WSIL of GeoService b. Utilized ontologies(left:geo-ont.daml, right:coord.daml)

Fig. 3. WSIL and ontologies used in GeoService

B. Local Query Engine

WSPDS queries allow keyword-matching queries
on service name/abstarct, provider name and
tModel[1](see Figure 2-a). These are the most com-
mon features currently used with discovery directo-
ries (e.g., UDDI) and service inspection documents
(e.g., WSIL documents [4]) to characterize a ser-
vice. This set of query features is extendible to
support future interesting features (e.g. QoS) of
the service.

The query engine applies the WSIL specification
to inspect the local site and find services matching
(string-based) with the received query. A WSIL
document (e.g., Figure 3-a) lists references to the
description documents (e.g., WSDL) and (possibly)
UDDI records for the services available at the local
site. For each service, the WSIL file also provides
some metadata, such as web service name. The
local query engine of the WSPDS servent parses
the WSIL document of the local site and matches
the query against the metadata in the WSIL doc-
ument itself, as well as the metadata in the refer-
enced service description documents and directory
records. Pointers to the locations of the WSDL for
the matching services are included in the response
message. Due to the extensibility of WSIL specifi-
cation, the query engine of the WSPDS servent can
support future service description specifications.

IV. Construction of a Semantic-enabled
Peer-to-Peer network (Sem-WSPDS)

of WSPDS Servents

There are two major drawbacks with the primi-
tive WSPDS network described in previous section.
First, as compared to the centralized architectures,
the architecture of WSPDS has higher overhead of

query dissemination. With probabilistic flooding,
this overhead is significantly reduced. However, as
we illustrate in the following sections, we believe
that a content-based peer-to-peer network, such as
QDN [5], can further reduce the overhead. Second,
keyword-matching is insufficient for discovering de-
sired web services, because it ignores semantic cor-
respondences. Since web service advertisers and
requesters may look at the same service from dif-
ferent perspectives and express the service identity
in different ways, a discovery service should rely on
the semantic information to evaluate the similarity
between the query and the advertised web services.

A. Semantic-annotated Web Service Description

There have been a number of efforts to add se-
mantics to web service description. Ontology has
been identified as the basis for semantic annotation.
An ontology specifies shared expressions of con-
cepts and agreements on the terminology/meaning
for communication. DAML-S profile module [6]
and semantic-annotated WSDL [7] are two emerg-
ing web service descriptions based on ontology.

DAML-S profile module is a DAML+OIL ontol-
ogy for describing web services by defining “what
a service does”. It can be used for discovery at the
semantic level. Semantic-annotated WSDL is an
XML-formatted web service description document
based on WSDL, and is extended with DAML+OIL
ontologies for the purpose of representing WSDL in
a machine interpretable form like DAML-S profile
module. Both DAML-S and semantic-annotated
WSDL techniques can be utilized to add ontologies
to web service descriptions and accomplish auto-
mated semantic web services discovery. Our discov-
ery service relies on the use of semantic-annotated
WSDL to describe web services interfaces, because

WSDL has been accepted as the industry standard
for web service description and most of the existing
web services support WSDL standards. In addi-
tion, WSDL provides communication level details
of web services and numerous tools are developed
based on WSDL. WSIL and semantic-annotated
WSDL can provide the same capability as DAML-
S profile module without adding significant com-
plexity to the basic standards. Currently, both
DAML-S and semantic-annotated WSDL only ap-
ply ontologies on the operational interfaces (i.e. in-
put and output parameters of the operations of the
web services), not on the web service names or de-
scriptions. In this paper, we consider the semantic-
matching on the operational interfaces only.

Figure 6 (see the appendix) shows the descrip-
tion of a GeoService web service, which finds the
geographical areas, such as city, country and is-
land, located at a given latitude. The WSDL file
utilizes an approach similar to that of Sivashan-
mugam et al. [7] to annotate the input/output
parameters of operations (e.g. getLocByLat) with
ontology (see Figure 3-b). The input Latitude is
restricted to the concept Latitude as defined in
the coord.daml ontology, while the output is anno-
tated with the concept GeographicalArea defined
in geo-ont.daml ontology. The GeoService’s WSIL
file stored in the registry is shown in Figure 3-a.
The service name/abstract can be queried directly
from the WSIL, while input/output parameters for
each operation can be retrieved by tracing the “de-
scription:location” pointer of WSIL to a semantic-
annotated WSDL. A possible user query is illus-
trated in Figure 4-a. The query searches for ser-
vice(s) that accept instances of Latitude as input,
and generate instances of City as output.

B. Querical Data Network (QDN)

A QDN is a federation of a dynamic set of
peer, autonomous nodes communicating through a
transient-topology interconnection. An identity for
each QDN node is defined based on its data con-
tent. A node joins the QDN by linking to some
other QDN nodes, selecting the nodes of “simi-
lar” identity with higher probability. The nodes
who know the identity of their neighbors, route the
query to the neighbor that has the most similar
identity to the target content (see [5] for more de-
tails about QDN). To illustrate how to build QDN
connections between WSPDS servents and how to
perform capability matching between the web ser-
vices on the QDN, in the following sections, we
consider a rather simple scenario where each node
registers only one web service with one operation.
Under such circumstance, the identify of each ser-
vent is defined as the ontologies associated with the
input/output parameters. For the case where there

are multiple web services with various operations
on the same node, we map each web service oper-
ation to a virtual node and build the QDN based
on the virtual nodes.

C. Communication Engine

The communication engine of a WSPDS servent
exchanges SOAP-enveloped query/response mes-
sages with 1) user applications/services, or 2) other
WSPDS servents. These messages are annotated
with ontologies (see Figure 4 for example).

C.1 Network Setup

During the network setup phase, the linkages be-
tween nodes are constructed based on the data con-
tents of the servents. A newly added node n joins
the QDN by linking to some other nodes in a range
geographically close to n. To select the neighbors,
the new node applies a semantic matching function
to evaluate the similarity between its input/output
and those of the other nodes, respectively. The new
node links to the nodes that have more similar in-
put/output. The semantic matching function re-
lies on the MatchMaker algorithm proposed in [8]
to compute the semantic similarity. MatchMaker
utilizes DAML+OIL logic to infer the similarity.

C.2 Cooperative Discovery

To discover a requested service, a SOAP-
enveloped query is originated at a servent in the
network (see Figure 4-a). Each servent that re-
ceives the query forwards it to the neighbor that
has the most similar identity to the query (again,
we use MatchMaker to calculate the similarity). In
addition to forwarding the query messages, when a
servent receives a query it also inspects WSIL and
the semantic-annotated WSDL (whose location is
specified in WSIL) on the local site for matching lo-
cal services based on input and output ontologies.
If the local inspection results in discovering one or
more services, the servent prepares a response mes-
sage and sends it back towards the originator of the
query. The response message traverses the path of
the query message in the reverse order.

D. Local Query Engine

WSPDS queries allow semantic-matching queries
on the service operational interfaces. It is ex-
tendible to support future interesting features (if
semantic-enabled) such as service categories and
QoS. The query engine applies the WSIL specifi-
cation and the semantic-annotated WSDL to in-
spect the local site and find services matching with
the received query. Pointers to the locations of the
WSDL for the matching services are included in the
response message. The match between the service

SOAPAction: http://micron34.usc.edu/SearchService

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<SearchService xmlns="http://micron34.usc.edu/">

<OperationInput resource="http://micron34.usc.edu/

coord.daml#Latitude">Lat

</OperationInput>

<OperationOutput resource="http://micron34.usc.edu/
geo-ont.daml#City">City

</OperationOutput>

</SearchService>

</soap:Body>

</soap:Envelope>

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<SearchServiceResponse xmlns="http://micron34.usc.edu/">

<SearchServiceResult>

http://micron34.usc.edu/geoservice.wsdl

</SearchServiceResult>

</SearchServiceResponse>

</soap:Body>

</soap:Envelope>

a. Query b. Response

Fig. 4. Sample Ontology-based Query/Response SOAP Messages of WSPDS Servent

and the request is performed by comparing their in-
put and output ontologies. The semantic-matching
also uses the main idea of MatchMaker algorithm;
i.e., the outputs of the query should be subsumed
by the outputs of the service provided. Moreover,
if inputs of the query subsume the inputs of the
service, MatchMaker ranks the provided services
based on their input matching. For example, con-
sider the advertised GeoService web service shown
in Figure 6 and the query shown in Figure 4-a.
Their inputs match exactly, because they are re-
stricted to the same ontological concepts (i.e. Lat-
itude). Their outputs are also matching, since the
query concept City is a subclass of the service con-
cept GeographicalArea. Therefore, the web service
that is able to answer the geographical areas lo-
cated at a given Latitude, commits to provide the
cities at the specified latitude.

V. Related Work

A significant amount of recent research on web
services has focused on dynamic and automated
web service composition [9, 10]. Towards this end,
a vital step is to automatically and accurately dis-
cover the web services with desired capabilities.
The idea of using peer-to-peer (P2P) and ontol-
ogy to discovery web services has been proposed by
[11, 12]. The P2P network utilized in our system
is content-based and has a different architecture as
compared to that of [11]. In addition, our approach
is different from [12] both on the architecture of
P2P network and the utilization of semantic en-
abled web service description document. Another
feature that differentiate our system from theirs is
that all messages exchanged among WSPDS ser-
vent are enveloped in SOAP.

VI. Conclusion

We developed WSPDS that is a decentralized
discovery service with peer-to-peer architecture for
the Web Services infrastructure. The primitive
prototype of WSPDS is based on a variation of
the Gnutella peer-to-peer network and keyword-
matching between the web service descriptions.

This service is currently available online. We are
in the process of improving the primitive imple-
mentation based on the two concepts of content-
based peer-to-peer computing and ontology-based
matching. We have already developed major com-
ponents (i.e., semantic-matching and QDN-linking
routines) of the enhanced WSPDS, and expect to
publish it for public use in near future.

References
[1] UDDI.org, “UDDI: Universal Description, Discovery and

Integration of web services,” 2002, http://www.uddi.org/.
[2] Gnutella, “Gnutella RFC,” 2002, http://rfc-

gnutella.sourceforge.net/.
[3] F. Banaei-Kashani and Cyrus Shahabi, “Criticality-based

analysis and design of unstructured peer-to-peer networks
as complex systems,” in Third International Workshop
on Global and Peer-to-Peer Computing (GP2PC) in con-
junction with CCGrid’03, May 2003.

[4] K. Ballinger, P. Brittenham, A. Malhotra, W.A. Nagy,
and S. Pharies, “Specification: Web Services In-
spection Language (WS-Inspection) 1.0,” November
2001, http://www.ibm.com/developerworks/library/ws-
wsilspec.html.

[5] F. Banaei-Kashani and C. Shahabi, “Searchable Quer-
ical Data Networks,” in Proceedings of the Interna-
tional Workshop on Databases,Information Systems and
Peer-to-Peer Computing in conjunction with VLDB’03,
September 2003.

[6] DAML-S Coalition, “DAML-S: Web Service Description
for the Semantic Web,” in Proceedings of the First Inter-
national Semantic Web Conference, 2002.

[7] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,
“Adding Semantics to Web Services Standards,” in Pro-
ceedings of the International Conference on Web Ser-
vices, 2003.

[8] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara, “Se-
mantic Matching of Web Services Capabilities,” in Pro-
ceedings of the First International Semantic Web Con-
ference, 2002.

[9] J. Cardoso and A. Sheth, “Semantic e-Workflow Compo-
sition,” Journal of Intelligent Information Systems, vol.
21, no. 3, pp. 191–225, November 2003.

[10] S. Ghandeharizadeh, C. Knoblock, C. Papadopoulos,
C. Shahabi, E. Alwagait, J. L. ambite, M. Cai, C.-C. Chen,
P. Pol, R. Schmidt, S. Song, S. Thakkar, and R. Zhou,
“Proteus: A System for Dynamically Composing and In-
telligently Executing Web Services,” in Proceedings of the
International Conference on Web Services, 2003.

[11] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Ound-
hakar, and J. Miller, “METEOR-S WSDI: A Scalable In-
frastructure of Registries for Semantic Publication and Dis-
covery of Web Services,” Journal of Information Technol-
ogy and Management, under review.

[12] M. Paolucci, K. P. Sycara, T. Nishimura, and N. Srini-
vasan, “Using DAML-S for P2P Discovery,” in Proceedings
of the International Conference on Web Services, 2003.

Appendix

if (message is received from user) { //message is a user query
forward the query to the local query engine;
forward the query to all neighbors;

}
else //message is received from a neighboring servent;

switch (MessageDescriptor) {
case “RESPONSE”:

ID=decodeDescriptor(MessageDescriptor);
if (ID is one of my descriptor IDs) {

merge the Result (from response) into the MergedResult with the same ID;
if (time to respond to the user query is over)

return the MergedResult to user;
} else if (ID is in my routing table)

forward the message according to the corresponding routing table entry;
case “QUERY”:

(ID,TTL)=decodeDescriptor(MessageDescriptor);
add ID to the routing table;
send the query to the local query engine;
if (any matching service is found)

respond to the query;
if (TTL > 0)

forward the query to each neighbor (except the sender) with probability ‘p’;
case “PONG”:

ID=decodeDescriptor(MessageDescriptor);
if (ID is one of my descriptor IDs)

add RespondingHostAddress to the servent cache ;
else if (ID is in my routing table)

route the pong message according to the corresponding routing table entry;
case “PING”:

(ID,TTL)=decodeDescriptor(MessageDescriptor);
add ID to the routing table;
if (local resources are sufficient for accepting a new neighbor)

respond with pong;
if (TTL > 0)

forward the ping message to all neighbors (except the sender);
}

Fig. 5. Message Processing at the Communication Engine (based on Gnutella) of a WSPDS Servent

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" targetNamespace="http://micron34.usc.edu/" ...>
 <types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://micron34.usc.edu/">
 <s:element name="getLocByLat">
 <s:complexType> <s:sequence>
 <!-- Add ontology to input parameter using resource tag -->
 <s:element minOccurs="1" maxOccurs="1" name=" Latitude "
 resource="http://micron34.usc.edu/coord.daml#Latitude"/>
 </s:sequence> </s:complexType>
 </s:element>
 <s:element name="getLocByLatResponse">
 <s:complexType> <s:sequence>
 <!-- Add ontology to input parameter using resource tag -->
 <s:element minOccurs="0" maxOccurs="1" name=" getLocByLatResult "
 resource="http://micron34.usc.edu/geo-ont.daml#GeographicalArea "/>
 </s:sequence> </s:complexType>
 </s:element>
 </s:schema>
 </types>
 <message name="getLocByLatSoapIn">
 <part name="parameters" element="s0:getLocByLat" />
 </message>
 <message name="getLocByLatSoapOut">
 <part name="parameters" element="s0:getLocByLatResponse" />
 </message>
 <portType name="GeoServiceSoap">
 <operation name="getLocByLat">
 <input message="s0:getLocByLatSoapIn" />
 <output message="s0:getLocByLatSoapOut" />
 </operation>
 </portType>
 <binding name="GeoServiceSoap" type="s0:GeoServiceSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="getLocByLat">
 <soap:operation soapAction="http://microsoft.com/webservices/getLocByLat" style="document" />
 <input> <soap:body use="literal" /> </input>
 <output> <soap:body use="literal" /> </output>
 </operation>
 </binding>
 <service name="GeoService">
 <port name="GeoServiceSoap" binding="s0:GeoServiceSoap">
 <soap:address location="http://micron34.usc.edu/geoservice.asmx" />
 </port>
 </service>
</definitions>

Fig. 6. A WSDL document (geoservice.wsdl) annotated with ontologies(geo-ont.daml and coord.daml)

