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Roughly  Sorting:Sequentialand Parallel Approach
v

ToM  ALTMAN*  and  YosHIHIDE  IGARAsHI#

 We  study  sequential  and  parallel algorithms  on  roughly  sorted  sequences.  A  sequence  a={ai,  a:,  . . . , a.)  is k-

sorted  if for a]1  1 s  i, j-< n,  i<j-  k lmpties ais  eq, We  first show  a  rea]-tirne algorithrn  for dctermining if a given sequence  is k-

sorted  and  an  qn)-time a]gorithm  for finding the smallest  k for a  given sequence  to be k-sorted, Next, we  give twe  sequential

algerithms  that merge  two  k-sorted sequences  to form a  k-sorted sequence  and  completety  sort  a k-sorted sequence.  Their run-
ning  times  are  O(n) and  O(n log k), rcspectively,  Finally, parallel versions  of  the comptete-sorting  algorithm  are  presented,
Their parallcl running  times are  qjK2k) :og k), whereAt)  is the compuling  time  of  an  algorithm  used  foT finding the  median

among  t elements.
v

1. Introduction 2. k-Sortedness

 The  concept  of  roughly  sorting  ha$ appeared  in the
context  of  parallel sorting  on  a  mesh-connected  pro-
cessor  array.  Igarashi and  Sado  have  designed fast

parallel sorting  algorithms in which  roughly  sorted

subfiles  are  merged  [9, 101. Fundamental properties of

roughly  sorted  sequences  and  some  sequential

algorithms  have been studied  in [4, S]. The notions  of

presortedness and  nearly  sorted  lists [3, 7, 8] are related
to the ideas presented in this paper, but are  somewhat

different frorn the  roughly  sorted  lists we  will  study

here.

 A  number  of  applications  require  only  roughly  or

nearly  sorted  sequences  [5]. For example,  consider  a

sorted  file in which  the item values  are  occasionally  up-

dated. In many  cases,  the new  item values  may  not

differ greatly from the old  ones.  However, by replacing

the old  items with  new  ones,  the sorted  order  may  be
disturbed. Since re-sorting  the entire  file is costly,  it may
be more  eMcient  to leave it in a roughly  sorted  order.

We  may  then use  the algorithms  described below to ob-
tain a  completely  sorted  file.

  In this paper, we  present algorithms,  that create  and

manipulate  roughly  sorted  sequences  in both sequential
and  parallel environments.  In Section 2, we  formalize
our  notion  of  rough  sortedness  and  k-sorted sequences.
Algorithms that determine if a  sequence  is k-sorted and
the k-sortedness of  a sequence  are  given in Section 3. In
Section 4, we  present an  algorithm that merges  two  k-
sorted  sequences  into one  k-sorted sequence.  Finally, in
Section 5, we  design sequential  and  parallel algorithms

that completely  sort k-sorted sequences.
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  We  begin by formalizing our  notion of  roughly

sorted  sequences.  Let a=(ai,a2,...,an)  be  a se-

quence  ofn  items and  o==(ae,,  atr,, . . . , aa.)  the  corre-

sponding  completely  sorted  sequence  of  elements.

Definition 1 A  sequence  a  is k-sorted if and  onlyif  the
following conditon  is satisfied: for all i,A 1 -<isj-<n,
i-<j-k  implies ai  -< q･.
  The above  definition was  introduced by Igarashi and
Wood  [5]. The  radius  of  or is define to be the  smallest  k,
such  that cr is k-sorted, and  denoted  by ROUGH(od.  As
shown  by Estivill-Castro and  Wood  [4], the radius

presortedness measure  satisfies the  axioms  introduced
by Mannila [7].
Observation1 Suppose that a  sequence  or has no

duplicate entries.  If a  is k-sorted, then  for all i,
1i-oilsk. Hence, if a  is k-sorted, for all i, ai is no
more  than  k placcs away  from its proper position in a
completely,  or  O-sorted, sequence,
Observation 2[5I A  sequence  a  is k-sorted if and  only

if every  (2k+2) block of  or (i.e., a  sequence  of  (2k+2)
consecutive  elements  of  or) is k-sorted. This plays a key
role in the design of  our  algorithms.

3. Determination of  the Radius

  Several interesting problems arise  concerning  k-
sorted  sequences. In particular, we  might  ask  if a  given
sequence  is k-sorted. Second, we  might  wish  to com-

pute the radius  of  a given sequence.  We  show  that both
of these questions can  be answered  eMciently.

Lemma1  Given  a,  a  sequence  of  n elements  and  a

positive integer k, we  can  decide in real  time  (i.e., in n
steps)  whether  a  is k-sorted.
Proof: Imagine  a  bus with  a passenger capacity  of

k+1.  Suppose that the bus started  with  k+1  initial
passengers and  that at each  stop,  one  passenger gets off
and  another  gets on  (in a  FIFO  fashion). The driver
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always  remembers  max,  the weight  of  the heaviest
passenger that  got off  the bus so  far. Ifthe weight  of  the
incoming  passenger is less than  max,  the  driver stops

the bus and  declares: These people are  not  k-sorted.

  It is possible to implernent the above  with  two

pointers (always k+  1 positions apart)  to the sequenee  a

and  a  variable  max  in which  the value  of  the largest en-
countered  element,  outside  the current  (k+ 1) is stored.
Going left to right, the procedure  will always  identify
the first occurrence  of a  violation  of  k-sortedness of

oc  D

  Below, we  present an  eficient  algorithm  for determin-
ing ROUGH(a),  i.e., the radius  of  a.

Definition2 Let cr=(ai,  a2,...,a.)beasequenceof

n  items. The LR  characteristic  sequence  of  a  is defined
to be {bi, ...,  bn), where  for each  i(1 si<-  n)bi=  max

{ai, . . . , ai}.  This sequence  is denoted by LR(or). The
RL  characteristic  sequence  ofa  is defined to be (ci, . . . ,

c.), where  for each  i(1si-< n) ci=min  {ai, ...,  a.}.

This sequence  is denoted by RL(or),
Definition 3 Let or=  (a], ai,...,  a.)beasequence  of

n  items. Let LR(a)=  (bi, ...,  b.) and  RL(a)  =  (c], ...,
cn). The disorder measure  sequence  of  a  is defined to be
(d,,...,(L,), where  for each  i (1si-<n) di=max
({i-jlci<bi･}U{O}). This sequence  is denoted  by
DM<a).Theorem

 1 Let a=(ai,  ai,  ...,  a.) be  a  sequence  of

n  items. Then  ROUGH(or)=:max  {dildi is an  item of

DM(a)}.

Proof: Suppose that  ROUGH<a)=k.  If k=O,  then or

is completely  sorted  and  LR(or)==RL(a). Hence, in this
case  for any  i(1 sisn),  di=O, and  the assertion  of  the

threorem  holds.

  Suppose that k2  1. Then,  there  exists a pair of  i andj
such  that i-j--k and  ai<q.  Hence, for such  i,

a･li-j=k. On  the  other  hand, a, )q  for any  pair of  i
and  j such  that  i-j>-k+1.  Therefore, for any

i(l si-<  n),  di <  k +  1. z

  Below, we  present three  procedures which  construct

the LR, RL, and  the DM  sequences  of  a=(ai,  a2,  - ･ E ,

an).

precedure  LR(or, B[1 . . n]);
begin

  B[1]:=aT;
  for i:=2  to n
   if B[i-1]<ai then BEi]:=ai

   else B[il:=B[i-1]
end.procedure

 RL<a,  C[1 . . n]);
begin

  qn]:=an;
  for i: =n  

-1
 downto  1

   if C[i+1]>ai then C[i]:=ai
   else C[i]:=C[i+1]

end.procedure

 DM(B[1  ., n],  C[1 ,.  n], D[1 .. n]};
begin

 23o142SS79S  11613  12 16 IS IT ;8 ro IS lg21  19
     a  = {2, 3, 5, 1, 4, 2, 6, S, 7, D, 8, 11, 6, I3, 12, 16, IS, 17, IS, M,  IS, 19, 21, 19).

   
DM(a)=(O,1,2,S,3,4,O,O,1,2,S,4,5,O,1,D,1,O,e,O,1,2,3,4}.

Fig, 1 The  LR  and  RL  sequenees,  and  the  max  di from DM.

  i:=n;

  forJ':=n  downto  1 de

   whi]e  (j-<i) and  (i>O) and  (C[i]sBIJ'])
       and  ((j=1) or  (C[i])B[J'-1])) do

     begin

       D[i]:=i-j;
       i:==i-1;
     end

end.

  Using  procedure  LR, RL, and  DM,  we  can  decide
rnax  {dildi is an  item in DM(a)}  in linear time to n.

From  Theorem  1 , that  value  is equal  to ROU(}H(a), An
example  of  a  S-sorted sequence  or, its LR  and  RL  se-

quences, and  the  maximal  element  d-, from  the se-

quence  DM,  is shown  in Fig, 1.

4, Sequential k-Sorting

  In this section,  we  present three algorithms  that
operate  on  k-sorted sequences,  First, we  describe pro-
cedure  HALZE,  which  takes as input a 2k-sorted se-
quence  7 and  returns  a  (k- 1)-sorted sequence  di. Next,
in procedure  MERGE,  we  show  how  two  k-sorted se-
quences, a  and  fi, can  be merged  to produce a k-sorted
sequence  y. Finally, procedure  eMSORT  shows  how  a

k-sorted sequence  a  is sorted  in time  O(n log k).

procedure  HAL  V;E(y, O, k);
{Suppose y=  (ai, a2, ..,,a.). Assume  n=2kr.  If n  is
not  a  multiple  of  2k, the procedure  needs  a  minor

modification.}

begin
  1. for i:=:1 to r

     begin
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Fig. 2 The  order  of  ai,  during the  computation  by IL4L VE(y, i,
     k).

      ai: ==  alk(i- t)+1 ... azai;

      plR71F7:ION(ai, cri,, ai,)

     end;

 2. for i: =1  to  r-1

     begin

      Pi:=ai,or(i+l),;
      RARZr7;rOTV(fi,, Bi,, Bi,)
     end;

  3. crI:`CMI,fit,; ar:=fi(r-1},crri;

 4. for i:=2 to r-1

      or,:=B,,-t),B,,;

  5. for i: =1  to r

      A4R71r7:ION(ori, cri,, ai,);

 6. 0:=al,at,-,･ar,orr,
end.

 The median  of  n  items is defined as that item which  is
less than or  equal to half of  the n  items and  which  is
1arger than  or  equai  to the other  half of  the n  items.
Here, RAR7:l7:ION(a, fi, 7) finds the median  m  of  a

and  constructs  a  partition (fi, y) of  a  by m  (i.e., any

item in fismsany item in 7). A  computation  process
by HALPCE(y,  6, k) is depicted in Fig. 2.
Theorem  2 Let y be a 2k-sorted sequence  of  length n.
Then  HAL  P[E(7, O, k) returns  a  (k -  1)-sorted sequence

a of  7 in O(n) time.
Proof: We  use  the following notation:  For x  and  y, a
pair of  sequences,  xspt  means  that any  item in x  is not

greater than  any  item in ]. Since ? is initially 2k-sorted,
after Step 1, for each  i,

   al,  . . + oro-2).Sai,Sa(i+1),  . E . a,1  and  ai,Sori,.

Hence,  after  Step 2, for each  i,

       al,...ao-1),Sori,Sa(i+1},...orrr

Then, after  Step 3, for each  i,

         al,...a(i-o,Sori,Sai,...orrl.

Furthermore, we  can  show

t , eLLTMArv  ana  1 , tliAKAtiHL

         all ..+  ori, S  ori, S  a(i+od -.. orrl.

Therefore, j is a  (k -  1)-sorted sequence  of  y after  Step
6. Since the median  of  n items can  be found in O(n)
time (e.g., see [1]), the computing  time  of  HALP:E(y,
6, k) is O(n). D

  Procedure MEI?GE  below takes as input two  k-

sorted  sequences  or=(ai,  a2,...,a.)  and  B=(bi, b2,
. . . , b.), and  returns  the resulting  rnerged  k-sorted se-
quence  y of  length 2n. For simplicity,  we  assume  that k
is even  and  n=kr.  For n  and  k not  satisfying  these con-
ditions, the procedure with  a minor  modification  is still
valid.

procedure  MERGE(or,  fi, 7, k);
{? is a  queue  and  initially empty}

begin

  1. HALJ'ZE(a, a',  k12); HALJ':E(B, fi', k/2);

     {a'=aL,.,., an and  6' =bt,･･･,  bn}
  2. for i: =1  to 2r
     begin

      ai:=ak(i--1)l2+1  . - . akit2;

      tl:=bk(i-L)t2+t ･ ･ ･ bkin;

      amax?:  
=max

 (ai); bmax): =mex  (fii)
     end;

  3. p:=q:=1;
  4. while  (ps2r and  qs  2r)

     begin

      if amaxh  s  bmaxb then

      begin

        add  ap  to  7;

        all elements  in fi, not  greater than  amtzxb

        are  removed  from fi, and  added  to 7;
        p: 

=:p+
 1; if fi, is empty  then  q: ==q+  1

      end

      else

      begin

        add  Bq to 7;
        all elements  from a.  not  greater than  bmex,
        are  removed  from a.  and  added  to  7;
        q:=q+1;  if a,  is empty  then p:=p+1
      end

     end;

  5. if ps2r  then a,,...,  abe  are added  to 7;
  6. if qs2r  then fi,, ...,  fiu are added  to 7
end.

Theorem 3 Let ev and  fi be  two  k-sorted sequences  of

length n. Then  MERGE(or,  fi, 7, k) returns  in O(n) time
a k-sorted sequence  of  length 2n which  is merged  from
a  and  fi.
Proof: After Step 2, forany pair ofiandJ',  such  that

1 -< isj -< 2r, ai  -< c"  and  fii <- Il)･ (see Fig. 2). For each  t, at
the beginning  of  t-th iteration of  while  statement  of

Step 4, any  element  in 7 is not  greater than  any  element

in ap, ･･･,  ak,  fig, ....fih. On  the other  hand, dur-
ing the t-th iteration, the  number  of  items transferred
from or. and  E, to 7 is at most  k. Therefore, the se-
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quence in y is always k-sorted. Hence, at the end  of  com-

putation, y is a  k-sorted sequence  of  length 2n.
  From  Theorem  2, the computing  time at Step 1 is
O(n). Step 2 obviously  takes O(n) time as well. For each

iteration of  the while  statement,  the computing  time  is
O(k). Since r=  O(n/k), the computing  time at Step 4 is
O(n/k)O(k)=O(n). Therefore, the time  for
MERGE(or,  6, 7, k) is O(n), D

  Using procedure HALVE,  we  can  design a  very  sim-

ple algorithm that completely  sorts a k-sorted sequence
in time  O(n log k). It is a variation  of  the quicksort
algorithm in which  the partitioning element  is chosen  to

be the median  of  a  given subsequence.  For this reason,

we  call the algorithrn  eMSORT, As shown  in [4] and
[5], the running  time O(n log k) is optimal  within  a con-

stant  factor. The proof is based on  the decision tree
argument.  Algorithrn RHEilRSOR  T [5] also  complete-

Iy sorts  a k-sorted sequence  in O(n log k) time. Its con-
stant  factor is smaller  than  the constant  factor for
eMSORT. However,  as  shown  in the next  section,

QMSORThas  a  very  natural  and  direct implernentation

for parallel environments,  whereas  the  parallel irn-

plementation  of  RHEL4PSORT  seems  to be imprac-
tical.

procedure  9MSOR7<a, k);
begin

  for i:=k12, k14, ... downto 1 HALV]E(a, a,  i)
end.

  Observe that the procedure HALVE  reduces  a 2k-
sorted  into a  (k-1)-sorted sequence.  Hence it is

pointless to invoke HAL  ZE(a, cr, O). Moreover, to sort

1-sorted sequences,  one  may  use  algorithm  ONESORT
[5], which  has been  shown  to be optimal  in the  worst

case  and  to be close  to  the known  lower bound  in the
average  case.

  The  next  theorem  is an  immediate  consequence  of

Theorem  2.
Theorem4  QMSORT  sorts  a  k-sorted sequence  in
time  O(n log k).

  eMSORT  may,  of  course,  be used  to sort  an  ar-

bitrary sequence  of  n elements,  which  by definition is at
least (n-1)-sorted, in time  O(n log n),

5. Para]lelk-Sorting

  In this section,  our  model  of  computation  is the stan-
dard PRAM  without  concurrent  reads  or  writes.  First,
let us  examine  the problem  of  transforming  a  2k-sorted
sequence  of  n  elements  into a (k- 1)-sorted sequence.

 The procedure  PHALJ'ZE  takes as  input a 2k-sorted
sequence  r and  returns  a  (k- 1)-sorted sequence  6.

procedure  PHAL  Vt:E(y, j, k);
{Suppose 7=(ai,  a2,  .,.,  a.).  Assume  n=2kr.  If n  is
not  a  multiple  of  2k, the  procedure  needs  a  minor

modification.}

begin

  1. for i:=1 to rdo  in parallel
     begin

      ai:=a2kCi-l}+l  . . . alki;

      ppAR7:rTIO?V(ai, ai,, ai,)
     end;

  2, for i:=1 to r-1  do  in pgrallel
     begin

      Bi:=cri,a(i+t},;
      PPARZIrZrON(fii,  fii,, fii,)
     end;

  3. a]:=cr1,Pl,;  ar:=fi{r-])2ar2;

  4. for i:=2 to r-1  do in para]lel
      ai:=fi{i-1),fii,;

  5. for i:=1 to rdo  in paral]el
      pJMRT;r7;rON(ai,  ori,, ai,);

 6. a:=or1,al,...ar,a-
end.

  Let f(t) denote the time for finding the median  of  t

elements  used  in procedure PPAR7:l7:ION.
Lemma  2 The  computing  time  for PHALl':E(7, ", k)
by the PRAM  is 3f<2k) +O(1).

 We  now  present a  parallel algorithm  that sorts  a k-
sorted  sequence  or.

procedure  PeMSOR7<cr,  k);
begin
  for i: =k/2,  k14,  k18,  ...,

 PHAL  va(a, a,  i)
end.

downto  1

Theerem  5 PQMSORT  sorts  a k-sorted sequence  of

size n  in time O(f<2k) log k), using  O(n) processors.
Proof: The proofofcorrectness follows directly from

Theorem  2. The  overall  running  time for PQMSORTis
O(f(2k)  log k) by Lemma  2. o

  As stated  in Theorem  5 the computing  time of

P9MSORT  depends on  the eMciency  of  the median

finding algorithm  used.  For  example,  if we  choose  an

O(log k) median  finding algorithm,  the time complexity

of PQMSORT  becomes O(log2 k).
  The  next  procedure  is a  variation  of  PMeSOR  T, but
a hybrid of  parallel and  serial computation  for sorting
k-sorted sequences.

procedure HQMSOR7<a,  k)
{SuppOse or=(ai,  . . . , a.). Assume  n=2kr.  If n  is not

a multiple  of  2k, the procedure  needs  a minor  modifica-

tion,}begin

  1. for i:=1  to r  do in parallel
     begin

      ori:=a2k(i-1)+] . . . aMi;

      R,tlRTIr7;rON(ori, ori,, ai,)

     end;

 2. for i:=1 to r-1  do in parallel
     begin
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      fii:=ai,a(i+1),;
      RARZrTION(Pi,  fif,, fii,)
     end;

 3. for i:=1 to r-1  do in para][e]
     begin

      ai,:=Pi,;

      a(i+;),:= fiil
     end;

 4. for i:=1  to rdo  in parallel

     begin

      eMSOR  7<ai,, k);

      eMSOR7<ai,, k)
    end;

 5. a:=cr1,crt2+..arlar2

end.

Theorem  6 HeMSORT  sorts a  k-sorted sequence  of

size n in time O(k log k), using  (nlk) processors.
Proof:  At  Step 1 and  Step 2 the determination of  the
medians  of  each  ai  and  fii can  be performed  by a  single

processor in O(k) time. Step 4. takes O(k log k) steps.
Therefore, the computing  time is O(k log k). At Step 4
of  H9MSORT  the subsequence  in each  block of  size k
is sorted  sequentially  by eMSORT(ai,,k) and

QMSORT(cri,, k). Hence, the number  of  processors
needed  is O(nlk). D

6. CencludingRemerks

 We  haye designed a number  of  algorithms  for
roughly  sorted  sequences.  These algorithms, with  the ex-

ception  of  PCMSORTand  HeMSOI?Z  are  optimal  to
within  constant  factors. We  do not  yet know  the  op-

timal factors for the time complexities  of  these prob-

lems except  for the algorithms given in the  proof of
Lemma  1, We  are  interested in accurate  evaluations  of

these factors. It would  also be of  interest to  redesign

our  algorithms  using  a simpler  parallel model,  e.g., the
mesh-connected  processor array,  rather  than  the

PRAM  model  of  computation.
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