
Information Processing Society of Japan

NII-Electronic Library Service

InformationProcessing Society of Japan

Roughly Sorting:Sequentialand Parallel Approach
v

ToM ALTMAN* and YosHIHIDE IGARAsHI#

 We study sequential and parallel algorithms on roughly sorted sequences. A sequence a={ai, a:, . . . , a.) is k-

sorted if for a]1 1 s i, j-< n, i<j- k lmpties ais eq, We first show a rea]-tirne algorithrn for dctermining if a given sequence is k-

sorted and an qn)-time a]gorithm for finding the smallest k for a given sequence to be k-sorted, Next, we give twe sequential

algerithms that merge two k-sorted sequences to form a k-sorted sequence and completety sort a k-sorted sequence. Their run-
ning times are O(n) and O(n log k), rcspectively, Finally, parallel versions of the comptete-sorting algorithm are presented,
Their parallcl running times are qjK2k) :og k), whereAt) is the compuling time of an algorithm used foT finding the median

among t elements.
v

1. Introduction 2. k-Sortedness

 The concept of roughly sorting ha$ appeared in the
context of parallel sorting on a mesh-connected pro-
cessor array. Igarashi and Sado have designed fast

parallel sorting algorithms in which roughly sorted

subfiles are merged [9, 101. Fundamental properties of

roughly sorted sequences and some sequential

algorithms have been studied in [4, S]. The notions of

presortedness and nearly sorted lists [3, 7, 8] are related
to the ideas presented in this paper, but are somewhat

different frorn the roughly sorted lists we will study

here.

 A number of applications require only roughly or

nearly sorted sequences [5]. For example, consider a

sorted file in which the item values are occasionally up-

dated. In many cases, the new item values may not

differ greatly from the old ones. However, by replacing

the old items with new ones, the sorted order may be
disturbed. Since re-sorting the entire file is costly, it may
be more eMcient to leave it in a roughly sorted order.

We may then use the algorithms described below to ob-
tain a completely sorted file.

 In this paper, we present algorithms, that create and

manipulate roughly sorted sequences in both sequential
and parallel environments. In Section 2, we formalize
our notion of rough sortedness and k-sorted sequences.
Algorithms that determine if a sequence is k-sorted and
the k-sortedness of a sequence are given in Section 3. In
Section 4, we present an algorithm that merges two k-
sorted sequences into one k-sorted sequence. Finally, in
Section 5, we design sequential and parallel algorithms

that completely sort k-sorted sequences.

iDepartment

 of Computer Science, University ef Kentucky, Lex-
ington, Kentucky 40S06, U.S.A.

"Department
 of Computer Science, Gunma University; Kiryu,

376, Japan.

 We begin by formalizing our notion of roughly

sorted sequences. Let a=(ai,a2,...,an) be a se-

quence ofn items and o==(ae,, atr,, . . . , aa.) the corre-

sponding completely sorted sequence of elements.

Definition 1 A sequence a is k-sorted if and onlyif the
following conditon is satisfied: for all i,A 1 -<isj-<n,
i-<j-k implies ai -< q･.
 The above definition was introduced by Igarashi and
Wood [5]. The radius of or is define to be the smallest k,
such that cr is k-sorted, and denoted by ROUGH(od. As
shown by Estivill-Castro and Wood [4], the radius

presortedness measure satisfies the axioms introduced
by Mannila [7].
Observation1 Suppose that a sequence or has no

duplicate entries. If a is k-sorted, then for all i,
1i-oilsk. Hence, if a is k-sorted, for all i, ai is no
more than k placcs away from its proper position in a
completely, or O-sorted, sequence,
Observation 2[5I A sequence a is k-sorted if and only

if every (2k+2) block of or (i.e., a sequence of (2k+2)
consecutive elements of or) is k-sorted. This plays a key
role in the design of our algorithms.

3. Determination of the Radius

 Several interesting problems arise concerning k-
sorted sequences. In particular, we might ask if a given
sequence is k-sorted. Second, we might wish to com-

pute the radius of a given sequence. We show that both
of these questions can be answered eMciently.

Lemma1 Given a, a sequence of n elements and a

positive integer k, we can decide in real time (i.e., in n
steps) whether a is k-sorted.
Proof: Imagine a bus with a passenger capacity of

k+1. Suppose that the bus started with k+1 initial
passengers and that at each stop, one passenger gets off
and another gets on (in a FIFO fashion). The driver

v

v

v

Jburnat of biformation Processing, Vbt, i2, No. 2, i989

NII-Electronic

Information Processing Society of Japan

NII-Electronic Library Service

InformationProcessing Society of Japan

N.

.

hu

N

v

always remembers max, the weight of the heaviest
passenger that got off the bus so far. Ifthe weight of the
incoming passenger is less than max, the driver stops

the bus and declares: These people are not k-sorted.

 It is possible to implernent the above with two

pointers (always k+ 1 positions apart) to the sequenee a

and a variable max in which the value of the largest en-
countered element, outside the current (k+ 1) is stored.
Going left to right, the procedure will always identify
the first occurrence of a violation of k-sortedness of

oc D

 Below, we present an eficient algorithm for determin-
ing ROUGH(a), i.e., the radius of a.

Definition2 Let cr=(ai, a2,...,a.)beasequenceof

n items. The LR characteristic sequence of a is defined
to be {bi, ..., bn), where for each i(1 si<- n)bi= max

{ai, . . . , ai}. This sequence is denoted by LR(or). The
RL characteristic sequence ofa is defined to be (ci, . . . ,

c.), where for each i(1si-< n) ci=min {ai, ..., a.}.

This sequence is denoted by RL(or),
Definition 3 Let or= (a], ai,..., a.)beasequence of

n items. Let LR(a)= (bi, ..., b.) and RL(a) = (c], ...,
cn). The disorder measure sequence of a is defined to be
(d,,...,(L,), where for each i (1si-<n) di=max
({i-jlci<bi･}U{O}). This sequence is denoted by
DM<a).Theorem

 1 Let a=(ai, ai, ..., a.) be a sequence of

n items. Then ROUGH(or)=:max {dildi is an item of

DM(a)}.

Proof: Suppose that ROUGH<a)=k. If k=O, then or

is completely sorted and LR(or)==RL(a). Hence, in this
case for any i(1 sisn), di=O, and the assertion of the

threorem holds.

 Suppose that k2 1. Then, there exists a pair of i andj
such that i-j--k and ai<q. Hence, for such i,

a･li-j=k. On the other hand, a,)q for any pair of i
and j such that i-j>-k+1. Therefore, for any

i(l si-< n), di < k + 1. z

 Below, we present three procedures which construct

the LR, RL, and the DM sequences of a=(ai, a2, - ･ E ,

an).

precedure LR(or, B[1 . . n]);
begin

 B[1]:=aT;
 for i:=2 to n
 if B[i-1]<ai then BEi]:=ai

 else B[il:=B[i-1]
end.procedure

 RL<a, C[1 . . n]);
begin

 qn]:=an;
 for i: =n

-1
 downto 1

 if C[i+1]>ai then C[i]:=ai
 else C[i]:=C[i+1]

end.procedure

 DM(B[1 ., n], C[1 ,. n], D[1 .. n]};
begin

 23o142SS79S 11613 12 16 IS IT ;8 ro IS lg21 19
 a = {2, 3, 5, 1, 4, 2, 6, S, 7, D, 8, 11, 6, I3, 12, 16, IS, 17, IS, M, IS, 19, 21, 19).

DM(a)=(O,1,2,S,3,4,O,O,1,2,S,4,5,O,1,D,1,O,e,O,1,2,3,4}.

Fig, 1 The LR and RL sequenees, and the max di from DM.

 i:=n;

 forJ':=n downto 1 de

 whi]e (j-<i) and (i>O) and (C[i]sBIJ'])
 and ((j=1) or (C[i])B[J'-1])) do

 begin

 D[i]:=i-j;
 i:==i-1;
 end

end.

 Using procedure LR, RL, and DM, we can decide
rnax {dildi is an item in DM(a)} in linear time to n.

From Theorem 1 , that value is equal to ROU(}H(a), An
example of a S-sorted sequence or, its LR and RL se-

quences, and the maximal element d-, from the se-

quence DM, is shown in Fig, 1.

4, Sequential k-Sorting

 In this section, we present three algorithms that
operate on k-sorted sequences, First, we describe pro-
cedure HALZE, which takes as input a 2k-sorted se-
quence 7 and returns a (k- 1)-sorted sequence di. Next,
in procedure MERGE, we show how two k-sorted se-
quences, a and fi, can be merged to produce a k-sorted
sequence y. Finally, procedure eMSORT shows how a

k-sorted sequence a is sorted in time O(n log k).

procedure HAL V;E(y, O, k);
{Suppose y= (ai, a2, ..,,a.). Assume n=2kr. If n is
not a multiple of 2k, the procedure needs a minor

modification.}

begin
 1. for i:=:1 to r

 begin

Information Processing Society of Japan

NII-Electronic Library Service

InformationProcessing Society of Japan

iJV

al.1 ai ct-!

-SSNSSSSSstfS")

 The Lnitial configrcrttion of t 2k-serted seqoeoce T=ai ･- an .

eqF:)i tt{-1)] a(-):ailah a(t+t)1 aU+t)1

(b)Mptstep1.

{c)Aficrsmp2.

{d)Afterstep4.

ESSSSY S pm S ZZZZZZ

Fig. 2 The order of ai, during the computation by IL4L VE(y, i,
 k).

 ai: == alk(i- t)+1 ... azai;

 plR71F7:ION(ai, cri,, ai,)

 end;

 2. for i: =1 to r-1

 begin

 Pi:=ai,or(i+l),;
 RARZr7;rOTV(fi,, Bi,, Bi,)
 end;

 3. crI:`CMI,fit,; ar:=fi(r-1},crri;

 4. for i:=2 to r-1

 or,:=B,,-t),B,,;

 5. for i: =1 to r

 A4R71r7:ION(ori, cri,, ai,);

 6. 0:=al,at,-,･ar,orr,
end.

 The median of n items is defined as that item which is
less than or equal to half of the n items and which is
1arger than or equai to the other half of the n items.
Here, RAR7:l7:ION(a, fi, 7) finds the median m of a

and constructs a partition (fi, y) of a by m (i.e., any

item in fismsany item in 7). A computation process
by HALPCE(y, 6, k) is depicted in Fig. 2.
Theorem 2 Let y be a 2k-sorted sequence of length n.
Then HAL P[E(7, O, k) returns a (k - 1)-sorted sequence

a of 7 in O(n) time.
Proof: We use the following notation: For x and y, a
pair of sequences, xspt means that any item in x is not

greater than any item in]. Since ? is initially 2k-sorted,
after Step 1, for each i,

 al, . . + oro-2).Sai,Sa(i+1), . E . a,1 and ai,Sori,.

Hence, after Step 2, for each i,

 al,...ao-1),Sori,Sa(i+1},...orrr

Then, after Step 3, for each i,

 al,...a(i-o,Sori,Sai,...orrl.

Furthermore, we can show

t , eLLTMArv ana 1 , tliAKAtiHL

 all ..+ ori, S ori, S a(i+od -.. orrl.

Therefore, j is a (k - 1)-sorted sequence of y after Step
6. Since the median of n items can be found in O(n)
time (e.g., see [1]), the computing time of HALP:E(y,
6, k) is O(n). D

 Procedure MEI?GE below takes as input two k-

sorted sequences or=(ai, a2,...,a.) and B=(bi, b2,
. . . , b.), and returns the resulting rnerged k-sorted se-
quence y of length 2n. For simplicity, we assume that k
is even and n=kr. For n and k not satisfying these con-
ditions, the procedure with a minor modification is still
valid.

procedure MERGE(or, fi, 7, k);
{? is a queue and initially empty}

begin

 1. HALJ'ZE(a, a', k12); HALJ':E(B, fi', k/2);

 {a'=aL,.,., an and 6' =bt,･･･, bn}
 2. for i: =1 to 2r
 begin

 ai:=ak(i--1)l2+1 . - . akit2;

 tl:=bk(i-L)t2+t ･ ･ ･ bkin;

 amax?:
=max

 (ai); bmax): =mex (fii)
 end;

 3. p:=q:=1;
 4. while (ps2r and qs 2r)

 begin

 if amaxh s bmaxb then

 begin

 add ap to 7;

 all elements in fi, not greater than amtzxb

 are removed from fi, and added to 7;
 p:

=:p+
 1; if fi, is empty then q: ==q+ 1

 end

 else

 begin

 add Bq to 7;
 all elements from a. not greater than bmex,
 are removed from a. and added to 7;
 q:=q+1; if a, is empty then p:=p+1
 end

 end;

 5. if ps2r then a,,..., abe are added to 7;
 6. if qs2r then fi,, ..., fiu are added to 7
end.

Theorem 3 Let ev and fi be two k-sorted sequences of

length n. Then MERGE(or, fi, 7, k) returns in O(n) time
a k-sorted sequence of length 2n which is merged from
a and fi.
Proof: After Step 2, forany pair ofiandJ', such that

1 -< isj -< 2r, ai -< c" and fii <- Il)･ (see Fig. 2). For each t, at
the beginning of t-th iteration of while statement of

Step 4, any element in 7 is not greater than any element

in ap, ･･･, ak, fig,fih. On the other hand, dur-
ing the t-th iteration, the number of items transferred
from or. and E, to 7 is at most k. Therefore, the se-

v

v

v

v

v

Information Processing Society of Japan

NII-Electronic Library Service

InformationProcessing Society of Japan

.

v

-

v

L..

quence in y is always k-sorted. Hence, at the end of com-

putation, y is a k-sorted sequence of length 2n.
 From Theorem 2, the computing time at Step 1 is
O(n). Step 2 obviously takes O(n) time as well. For each

iteration of the while statement, the computing time is
O(k). Since r= O(n/k), the computing time at Step 4 is
O(n/k)O(k)=O(n). Therefore, the time for
MERGE(or, 6, 7, k) is O(n), D

 Using procedure HALVE, we can design a very sim-

ple algorithm that completely sorts a k-sorted sequence
in time O(n log k). It is a variation of the quicksort
algorithm in which the partitioning element is chosen to

be the median of a given subsequence. For this reason,

we call the algorithrn eMSORT, As shown in [4] and
[5], the running time O(n log k) is optimal within a con-

stant factor. The proof is based on the decision tree
argument. Algorithrn RHEilRSOR T [5] also complete-

Iy sorts a k-sorted sequence in O(n log k) time. Its con-
stant factor is smaller than the constant factor for
eMSORT. However, as shown in the next section,

QMSORThas a very natural and direct implernentation

for parallel environments, whereas the parallel irn-

plementation of RHEL4PSORT seems to be imprac-
tical.

procedure 9MSOR7<a, k);
begin

 for i:=k12, k14, ... downto 1 HALV]E(a, a, i)
end.

 Observe that the procedure HALVE reduces a 2k-
sorted into a (k-1)-sorted sequence. Hence it is

pointless to invoke HAL ZE(a, cr, O). Moreover, to sort

1-sorted sequences, one may use algorithm ONESORT
[5], which has been shown to be optimal in the worst

case and to be close to the known lower bound in the
average case.

 The next theorem is an immediate consequence of

Theorem 2.
Theorem4 QMSORT sorts a k-sorted sequence in
time O(n log k).

 eMSORT may, of course, be used to sort an ar-

bitrary sequence of n elements, which by definition is at
least (n-1)-sorted, in time O(n log n),

5. Para]lelk-Sorting

 In this section, our model of computation is the stan-
dard PRAM without concurrent reads or writes. First,
let us examine the problem of transforming a 2k-sorted
sequence of n elements into a (k- 1)-sorted sequence.

 The procedure PHALJ'ZE takes as input a 2k-sorted
sequence r and returns a (k- 1)-sorted sequence 6.

procedure PHAL Vt:E(y, j, k);
{Suppose 7=(ai, a2, .,., a.). Assume n=2kr. If n is
not a multiple of 2k, the procedure needs a minor

modification.}

begin

 1. for i:=1 to rdo in parallel
 begin

 ai:=a2kCi-l}+l . . . alki;

 ppAR7:rTIO?V(ai, ai,, ai,)
 end;

 2, for i:=1 to r-1 do in pgrallel
 begin

 Bi:=cri,a(i+t},;
 PPARZIrZrON(fii, fii,, fii,)
 end;

 3. a]:=cr1,Pl,; ar:=fi{r-])2ar2;

 4. for i:=2 to r-1 do in para]lel
 ai:=fi{i-1),fii,;

 5. for i:=1 to rdo in paral]el
 pJMRT;r7;rON(ai, ori,, ai,);

 6. a:=or1,al,...ar,a-
end.

 Let f(t) denote the time for finding the median of t

elements used in procedure PPAR7:l7:ION.
Lemma 2 The computing time for PHALl':E(7, ", k)
by the PRAM is 3f<2k) +O(1).

 We now present a parallel algorithm that sorts a k-
sorted sequence or.

procedure PeMSOR7<cr, k);
begin
 for i: =k/2, k14, k18, ...,

 PHAL va(a, a, i)
end.

downto 1

Theerem 5 PQMSORT sorts a k-sorted sequence of

size n in time O(f<2k) log k), using O(n) processors.
Proof: The proofofcorrectness follows directly from

Theorem 2. The overall running time for PQMSORTis
O(f(2k) log k) by Lemma 2. o

 As stated in Theorem 5 the computing time of

P9MSORT depends on the eMciency of the median

finding algorithm used. For example, if we choose an

O(log k) median finding algorithm, the time complexity

of PQMSORT becomes O(log2 k).
 The next procedure is a variation of PMeSOR T, but
a hybrid of parallel and serial computation for sorting
k-sorted sequences.

procedure HQMSOR7<a, k)
{SuppOse or=(ai, . . . , a.). Assume n=2kr. If n is not

a multiple of 2k, the procedure needs a minor modifica-

tion,}begin

 1. for i:=1 to r do in parallel
 begin

 ori:=a2k(i-1)+] . . . aMi;

 R,tlRTIr7;rON(ori, ori,, ai,)

 end;

 2. for i:=1 to r-1 do in parallel
 begin

Information Processing Society of Japan

NII-Electronic Library Service

InformationProcessing Society of Japan

IS8 T. Al.IMAN and Y, IGARAsH]

 fii:=ai,a(i+1),;
 RARZrTION(Pi, fif,, fii,)
 end;

 3. for i:=1 to r-1 do in para][e]
 begin

 ai,:=Pi,;

 a(i+;),:= fiil
 end;

 4. for i:=1 to rdo in parallel

 begin

 eMSOR 7<ai,, k);

 eMSOR7<ai,, k)
 end;

 5. a:=cr1,crt2+..arlar2

end.

Theorem 6 HeMSORT sorts a k-sorted sequence of

size n in time O(k log k), using (nlk) processors.
Proof: At Step 1 and Step 2 the determination of the
medians of each ai and fii can be performed by a single

processor in O(k) time. Step 4. takes O(k log k) steps.
Therefore, the computing time is O(k log k). At Step 4
of H9MSORT the subsequence in each block of size k
is sorted sequentially by eMSORT(ai,,k) and

QMSORT(cri,, k). Hence, the number of processors
needed is O(nlk). D

6. CencludingRemerks

 We haye designed a number of algorithms for
roughly sorted sequences. These algorithms, with the ex-

ception of PCMSORTand HeMSOI?Z are optimal to
within constant factors. We do not yet know the op-

timal factors for the time complexities of these prob-

lems except for the algorithms given in the proof of
Lemma 1, We are interested in accurate evaluations of

these factors. It would also be of interest to redesign

our algorithms using a simpler parallel model, e.g., the
mesh-connected processor array, rather than the

PRAM model of computation.

Acknowledgements

 The authors wish to thank Mrs, Jaleh Razaie for
checking and testing the algorithms in this paper. They
also wish to thank an anonymous referee for pointing
out errors in an earlier version of this paper.

Referenees

1. AHo, A. V., HopcRoFr, J. E. and ULLMAN, J. D., 71te Design
and AnaOtsis of Computer Aigorithms, Addison-Wesley Publishing
Company, t974.
2. B[LARDI, G. and PREpARATA, F., A Minimum Area VLSt Ar-
chitecture for O(logN) Time Sorting, Prec. 16th Annuai ACM
opmp. on Theory of Computing (1984). 64-70.
3. CooK,C. R. and KiM, D. J,, Best Sorting Algorithms for Nearly
Sorted Lists, CA CM, 13 (19SO), 620-624.
4. EsTlvlLL-CAsTRo, V, and WooD, D., A New Measu;e of
Presortedness, Technical Report CS-87-S8, Department of Cemputer
Science, University of Waterloo, 19S7.
5. IGARAsHI, Y. and WooD, D,, Roughly Sorting: A Generalization
of Sorting, Technical Report CS-87-5S, Department of Computer
Science, University of Waterloo, 19S7.
6. LELGHToN T,, Tight Bounds on the Complexity of Paraltel Sor-
ting, IEEE 7)'ans. Comput., C-34 (198S), 344-354.
7. MANNILA, H., Measures of Presortedness and Optimal Sorting
Atgorithms, IEEE 7?zTns. (lomput., C-34 (198S), 31S-32S.
S. MEHLHoRN, K,, Sorting Presorted Files, 4-th GI CotVZ on zaeory
of Cbmputer Science (1979), 199-212.
9. SADo, K. and IGARAsHt, Y,, A Divide-and-Conquer Method of

the Parallel Sort, Teeh. Report ALS4-6S, IECEJ, 198S.
10. SADo, K. and IGARAsHI, Y,, A Fast Parallel Pseudo-Merge Sort
Algorithm, Tech. Report ALS5-16, IECEJ, 198S.

(Received June 13, l988; revised January 19, l989)

v

v

v

v

v

