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Arbitrarily Fast Switched Distributed Stabilization of Partially

Unknown Interconnected Multiagent Systems:

A Proactive Cyber Defense Perspective
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Abstract

A design framework recently has been developed to stabilize interconnected multiagent systems in a distributed

manner, and systematically capture the architectural aspect of cyber-physical systems. Such a control theoretic

framework, however, results in a stabilization protocol which is passive with respect to the cyber attacks and

conservative regarding the guaranteed level of resiliency. We treat the control layer topology and stabilization

gains as the degrees of freedom, and develop a mixed control and cybersecurity design framework to address

the above concerns. From a control perspective, despite the agent layer modeling uncertainties and perturbations,

we propose a new step-by-step procedure to design a set of control sublayers for an arbitrarily fast switching of

the control layer topology. From a proactive cyber defense perspective, we propose a satisfiability modulo theory

formulation to obtain a set of control sublayer structures with security considerations, and offer a frequent and

fast mutation of these sublayers such that the control layer topology will remain unpredictable for the adversaries.

We prove the robust input-to-state stability of the two-layer interconnected multiagent system, and validate the

proposed ideas in simulation.

I. INTRODUCTION

In response to the advances in embedded sensing, computation, and wireless communication, multiagent and

cyber-physical systems (MASs and CPSs) have attracted significant attention during the past two decades. The

preliminary studies in the literature of MASs were mainly focused on the simple integrator or linear time-invariant

(LTI) agent models in order to achieve consensus in MASs, by creating a meaningful connection between control

and graph theories [1]. Later, this attention was shifted toward more complicated models, e.g., with (completely

known) interconnected LTI agents [2], and noninterconnected agents subject to local (agent-level) modeling

uncertainties [3].

In parallel to the above studies, [4] articulated the concept of a multilayer control structure according to a

graph theoretic consensus viewpoint. It provides an appropriate foundation to study the control aspects of the

increasingly important CPSs [5]. Based on a completely known MAS of interconnected single integrators, [6]

reported a graph theoretic formulation to capture the architectural aspect of CPSs. Nevertheless, a CPS might

be subject to various cyber and physical abnormalities to be addressed using a mixed control and cybersecurity

framework (e.g., see [7] and [8]).

From a control perspective, after a few preliminary studies, [9] proposed a mixed control and graph theoretic

framework to stabilize an interconnected MAS in a distributed manner. That design framework, in particular,

enables a designer to capture the architectural aspect of (single or multiagent) CPSs with separate agent (physical)

and control (cyber) layers. Nevertheless, while robust with respect to the modeling uncertainties, that approach

does not guarantee the stability of interconnected MAS in the presence of cyber attacks.

Reference [10] developed another distributed stabilization protocol to simultaneously guarantee a level of

resiliency against the denial of service (DoS) attacks over the control layer, and robustness with respect to the

modeling uncertainties over the agent layer. That method is based on the concept of average dwell time, which

is known to be conservative, e.g., according to section IV in [11]. Moreover, it is not straightforward to expand

the theoretical side of that work to a distributed DoS scenario, when an attacker persistently blocks (multiple)

individual communication links, instead of blocking the control layer communications for short periods of time in

a centralized manner [10]. It is possible to reduce the conservatism using a mode-dependent average dwell time
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formulation [12] and expand that to a distributed DoS attack scenario. Nevertheless, such purely control-oriented

viewpoints mainly are suitable for the resiliency analysis of a readily compromised systems, or are passive or

reactive with respect to the attacks (with no reaction to the attacks, or with a conservative reaction only after the

time that an attack is detected).

In the literature of computer science, the above issues have been addressed by cyber resilience or agility

techniques, which proactively (without any indication of the attack) change the network communication paths in

order to make the routing topology unpredictable and, therefore, rescue the attacked traffic [13]-[15]. Via such

route randomization or multipath routing, it is shown that the these cyber agility techniques raise the network

infrastructures’ bar against attacks, such as the distributed DoS attack, which is the focus of this paper. Such a

moving target defense concept recently has attracted interest in the control systems community. We refer to [16]

and [17] for single dynamical systems. In particular, focusing on a control design problem, [17] relies on the

redundancy in the physical components of the underlying system and its moving target defense idea is based on

an average dwell time condition, which would be conservative (see the previous paragraph). Also, [18] relies on

the closed-loop system matrices of the completely known LTI (single dynamical) systems, and its MAS-related

analysis is based on the decoupled second-order agents, which will not be applicable to the design problem for

a more general MAS in Section III (with high-order interconnected agents subject to the nonlinear modeling

uncertainties).

We propose a new design framework that synergistically combine the cybersecurity and control algorithms in

order to effectively handle the multitude of cyber and physical challenges for interconnected MASs. Namely, for a

fully heterogeneous interconnected MAS, we consider the modeling uncertainties and nonvanishing perturbations

over the agent layer, and distributed DoS attacks over the control layer. From a control viewpoint, we broaden

the design aspect to an arbitrarily fast switched distributed stabilization protocol, while capturing the architectural

aspect of CPSs (to separately study the cybersecurity concerns). From a cybersecurity viewpoint, we propose a

control-aware satisfiability modulo theory (SMT) formulation to develop a set of control layer (communication)

subgraphs that satisfy multiple security constraints. We further rely on the arbitrarily fast switching capability

of our design in order to secure the control layer communication against distributed DoS attacks, via a highly

frequent mutation between the alternative control sublayers. In particular, unlike [10] and [19], we do not restrict

the class of (persistent) DoS attacks by any average dwell time means. To validate the feasibility of the proposed

proactive cyber defense strategy, we theoretically prove the robust input-to-state stability (ISS) of the two-layer

interconnected MAS (with its cybersecurity-aware control sublayer topologies) and, in simulation, discuss its

effectiveness in the presence of the distributed DoS attacks.

In the rest of this paper, we overview a few definitions (Section II), propose the main results (Section III),

discuss a simulation study (Section IV), and summarize the paper (Section V).

II. PRELIMINARIES

We use 0 to denote a matrix of all zeros with compatible dimension, diag{.} a (block) diagonal matrix of

the elements in {.}, col{xi} an ordered column vector of xi ∈ R
n for a set of i, ‖.‖ the (induced) 2-norm of

its input vector (matrix), ⊗ Kronecker product, and A ≻ B (V̄ ≻ 0) a positive definite matrix A − B ∈ R
n×n

(scalar function V̄ ). Also, < indicates positive semi-definiteness. We propose two graph topologies Ga and Gc

which admit selfloops (i.e., an edge that goes out and returns to the same node without passing others), unlike

traditional cases [20], and can be disconnected.

An agent layer digraph Ga with N nodes represents the physical interaction of agents’ dynamics. It is

characterized by a modified adjacency matrix Aa = [aaij ] ∈ R
N×N where N ≥ 1 is the total number of

agents, aaij 6= 0 if the ith agent is affected by the jth agent’s dynamics for i, j ∈ {1, 2, ..., N}, and aaij = 0
otherwise. Compared to the standard definition, selfloops j = i are admitted, and both positive and negative signs

are acceptable for aaij . Information about all agent-layer neighbors of an agent i, including the ith agent if there

is a selfloop, is given by a set N a
i . Only a scalar ‖Aa‖ is shared with the control layer designer, such that the

interconnection topology (structure and edge weights) remains confidential. It enables a designer to eliminate the

predictability of the control layer topology, to be discussed in the first paragraph of Subsection III-B.
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A control layer is built by M ≥ 1 control sublayer(s), to be determined by a piecewise constant switching

signal σ ∈ {1, 2, ...,M}. Each control sublayer’s undirected graph Gcσ is represented by a modified Laplacian

matrix Hcσ = [hcσij ] ∈ R
N×N where i, j ∈ {1, 2, ..., N}, hcσij = −acσij , and hcσii =

∑

j∈N cσ
i

acσij +scσi , N cσ
i denotes

the neighbor set of the control node i (without selfloops), acσij ≥ 0 edge weights, and scσi > 0 selfloop weights of

control node i (scσi = 0 if there is not a selfloop). Each (fixed) control sublayer topology Gσ
c can be disconnected;

however, there is at least one selfloop in each connected component of Gσ
c . Consequently, all eigenvalues of Hcσ

are real-valued positive scalars to be sorted as 0 < µσ1 ≤ µσ2 ≤ ... ≤ µσN [9]. We use both structure and

weights (i.e., topology) of each subgraph Gcσ as the design degrees of freedom in Subsections III-B and III-C.

In particular, G01
cσ abstracts the structure of Gcσ, to be determined using the cybersecurity Algorithms 1 and 2.

We let {tk}k∈Z≥0
be the switching time sequence for σ(t), and assume that there exists a dwell time τd > 0

such that multiple switchings will not happen at the same time: infk∈Z≥0
(tk+1− tk) ≥ τd, the adjacent switching

intervals [tk, tk+1) do not have overlaps, and the control sublayer Gcσ remains fix during each switching time

interval. Unlike [11] and [12], we neither restrict the length of τd by any means nor use it in the derivations of

this paper.

Over a control layer, selfloops determine the control layer configuration (see subsection 3.1 in [21]). Over

an agent layer, selfloops model local or agent-level modeling uncertainty when an agent’s modeling uncertainty

depends on its own state variables (see the description of agents (1)).

III. MAIN RESULTS

In this section, we lay the foundation of this paper (Subsection III-A), develop a new framework to design

and validate a control layer (Subsections III-B and III-C), and provide a theoretical analysis for the proposed

two-layer (closed-loop) interconnected MAS (Subsection III-D).

A. Problem Foundation

We consider an MAS of N interconnected agents:

ẋi(t) = Aixi(t) +Bui
ui(t) +Bfifi(yi(t), t) +Bdi

di(t)
yi(t) = Cyi

∑

j∈N a
i
aaijxj(t)

(1)

where i ∈ {1, 2, ..., N} denotes the agent number; xi ∈ R
nx state variable of agent i; ui ∈ R

nu control input;

di ∈ R
nd nonmeasurable, nonvanishing, external perturbation (disturbance or process noise); and yi ∈ R

ny

interconnection variable. The known Ai ∈ R
nx×nx is the ith agent’s system matrix, Bui

∈ R
nx×nu control

allocation matrix, Bdi
∈ R

nx×nd perturbation allocation matrix, and Bfi ∈ R
nx×ng uncertainty allocation matrix.

Each pair (Ai, Bui
) represents a stabilizable system, and Bdi

and Bfi can be in the range space of Bui
(matched

scenario) or not (unmatched scenario). This enables a designer to model an MAS subject to the mixed matched

and unmatched modeling uncertainties.

The unknown interconnection matrices Cyi
∈ R

ny×nx satisfy the norm conditions ‖Cyi
‖2 ≤ γcyi. The nonlinear

functions fi : R
ny×R≥0 → R

ng satisfy Lipschitz condition to ensure the existence and uniqueness of the solutions

to the nonlinear differential equations (1) [22]. To avoid a conservative Lipschitz-based stabilization approach, we

assume that each nonlinear function satisfies a norm condition fT
i (yi, t)fi(yi, t) ≤ γfiy

T
i yi. We also assume that

only two constants, γcy = maxi(γcyi) > 0 and γf = maxi{γfi} > 0, are known to the control layer designer. (A

Lipschitz constant satisfies this norm condition; however, it would end in a larger (more conservative) constant

compared to γf .)

Model (1) enables us to consider an interconnected MAS subject to both agent-level modeling uncertainties

(via selfloops with unknown aaii over the agent layer: i ∈ N a
i ) and MAS-level modeling uncertainties (via non-

selfloop edges with unknown aaij : j 6= i and j ∈ N a
i ), because the agents’ neighbor sets N a

i (over agent layer)

are unknown.

We propose the following communication-based, switched distributed stabilization protocol:

ui(t) =
( ∑

j∈N cσ(t)
i

a
cσ(t)
ij (vi(t)− vj(t)) + s

cσ(t)
i vi(t)

)
(2)

3



in which each virtual stabilization signal vi is locally computed by the associated agent i:

vi(t) = Kixi(t) (3)

where Ki ∈ R
nu×nx denotes the ith agent’s stabilization gain, to be designed.

We aggregate the interconnected agents (1) for all i ∈ {1, 2, ..., N} to find a model of the agent layer:

ẋ(t) = Āx(t) + B̄uu(t) + B̄ff(y, t) + B̄dd(t)
y(t) = C̄y(Aa ⊗ Inx

)x(t)
(4)

where Ā := diag{Ai}, B̄u := diag{Bui
}, B̄f := diag{Bfi}, B̄d := diag{Bdi

}, C̄y := diag{Cyi
}, x := col{xi},

u := col{ui}, d := col{di}, y := col{yi}, and f := col{fi}. We also aggregate the distributed stabilization

protocols (2) for all i, and reach to the following model of the switched control layer (with multiple sublayers):

u(t) = (Hcσ(t) ⊗ Inu
)v(t) (5)

where v := col{vi} := K̄x, and K̄ := diag{Ki}. Now we are ready to articulate the main objective of this paper.

(See [23] for the definitions of comparison functions and ISS.)

Objective: In the presence of modeling uncertainties and nonvanishing perturbations (over agent layer) and

distributed DoS attacks (over control layer), design a distributed protocol to guarantee both robust ISS and

proactive security for a two-layer (closed-loop) interconnected MAS (4) and (5):

‖x(t)‖ ≤ β(‖x(0)‖, t) + κ(‖d(t)‖∞) (6)

for K L -function β, K∞-function κ, and d ∈ L∞(R≥0).

Modified based on [23] and [24], we also define a common ISS Lyapunov function to prove robust distributed

ISS in Subsection III-D.

Definition 1: A function V̄ : R
n → R≥0 is a smooth, common ISS Lyapunov function for the two-layer

interconnected MAS (4) and (5) if the following inequalities are satisfied:

κ1(‖x‖) ≤ V̄ (x) ≤ κ2(‖x‖)
˙̄V (x) ≤ −κ3(‖x‖) + γ(‖d‖)

for all σ ∈ {1, 2, ...,M}, and for K∞ functions κ1, κ2, κ3, and γ. ◭

B. Control Layer Design Framework: Stabilization

In order to go beyond the ideas of [10] and establish proactive cyber defense, we propose a design procedure

to simultaneously:

1) make the control layer (communication) topology independent of the agent layer (interconnection) topology,

i.e., to capture the architectural aspect of CPSs, and

2) reconfigure the control layer topology in an arbitrarily fast manner.

Note that at least a subset of communication links would be predictable when a known agent layer topology

is included in the control layer topology [19], or if we follow the (average dwell time-based) resiliency bounds

in [10] and create a slow-varying switching signal. Instead, we propose the following design procedure to develop

a control layer with an arbitrarily fast switching of multiple sublayers (Modified from [12] and [25] to develop

a “common” ISS Lyapunov function in Subsection III-D).

Design Procedure 1: (A mixed optimal control and graph theoretic formulation)

1) For each control sublayer σ ∈ {1, 2, ...,M}, develop a control layer graph topology Gcσ based on a

cooperative configuration: Set a few scσi > 0 to define selfloops, and assign N cσ
i and a

cσ(t)
ij > 0 to a graph
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in which each connected component has a control node with a selfloop. Let µmin := minσ{µσ1} > 0
where µσ1 is the smallest (positive) eigenvalue of Hcσ associated to each Gcσ.

2) For each agent i ∈ {1, 2, ..., N}, design a candidate robust ISS gain Ki as follows:

a) Let Qi ∈ R
nx×nx and Ri ∈ R

nu×nu be two positive definite design matrices, and Qfi = Qi + Rf a

modified state weighting matrix where Rf = (afγfγcy‖Aa‖
2+ad)Inx

for two positive design scalars

af and ad.

b) Find the optimal solution v′i = Kix
′
i ∈ R

nu of the following modified linear quadratic regulator (LQR)

problem:
minv′

i∈Ci

∫∞
0 (x′Ti Qfix

′
i + v′Ti Riv

′
i)dτ

subject to ẋ′i = Aix
′
i + µminBui

v′i

in which Ci is the set of all static linear state feedback stabilizing signals v′i for the networked nominal

dynamics ẋ′i = Aix
′
i + µminBui

v′i.

3) Gcσ and Ki build a set of valid control sublayers if the following condition is satisfied:

Q̄vσ := Q̄+ K̄T
(
R̄+ 2R̄Ēcσ

)
K̄ −

1

af
P̄ B̄f B̄

T
f P̄ ≻ 0 (7)

and Q̄ := diag{Qi}, R̄ := diag{Ri}, P̄ := diag{Pi}, and Ēcσ :=
(
( Hcσ

µmin
− IN )⊗ Inu

)
< 0. The matrices

Pi ∈ R
nx×nx are the unique positive definite solutions of the following algebraic Riccati equations (AREs):

AT
i Pi + PiAi +Qfi − µ2

minPiBui
R−1

i BT
ui
Pi = 0. (8)

The term “modified” highlights the required modifications to obtain a state weighting matrix Qfi and the pres-

ence of µmin in the networked nominal dynamics of the modified LQR formulation. The existence and uniqueness

of the solutions Pi are guaranteed by the stabilizability and observability of the triple ((Qfi)
1/2, Ai, µminBui

)
where ((Qfi)

1/2)T (Qfi)
1/2 = Qfi, pointing out that each (Ai, µminBui

) is stabilizable due to that of (Ai, Bui
)

and positiveness of µmin. We recommend to develop a set of control sublayers Gcσ (or Hcσ) with sufficiently

positive µmin in order to avoid controllability issues in the modified LQR problems (or, equivalently, singularity

in AREs (8)).

Remark 1: Arbitrarily fast switching has already been used in the literature of MASs. However, to the best of

our knowledge, the existing studies should be limited to the consensus (vs. stabilization) problem for completely

known, homogeneous, or purely LTI MASs with noninterconnected dynamics (e.g., see [26]). Such developments

are not necessarily applicable to the considered problem in this paper. ◭

C. Control Layer Design Framework: Cybersecurity

In the previous subsections, we proposed a switched distributed stabilization protocol (2) with all stabilization

gains and control sublayer topologies as the design degrees of freedom, and developed a step-by-step procedure

to design and validate a set of control sublayers for the robust ISS of a two-layer interconnected MAS (4) and (5)

with an arbitrarily fast switching. Together with a control-oriented recommendation at the end of the previous

subsection, the Step 1 of that procedure gives insights to determine a control layer configuration from a large-

scale system viewpoint [27]. To better leverage the power of the proposed distributed stabilization protocol (2),

along the Step 1 of Design Procedure 1, we propose a new formulation to determine a set of candidate control

sublayer structures that simultaneously satisfy multiple cybersecurity and distributed control constrains:

1) Full connectivity: To ensure that the conditions of the control subgraphs in Section II are satisfied, while

taking into account the agents’ capability or willingness to provide their absolute measurements to the

control layer (e.g., see subsection 3.1 and section 5 in [21]).

2) Centrality distribution: To have a sufficient number of active selfloops to reduce attack vulnerability by

avoiding a single point of failure over the control layer.
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3) Non-overlapping paths: To ensure that an attacker will not be able to compromise multiple control sublayers

by a single attack on a common inter-controller communication link (i.e., to increase the cost of attack).

4) Low risk: By excluding the high risk communication links that have been compromised in the recent past.

Note that these conditions would naturally disqualify centralized (with all-to-all) and decentralized (with only

selfloops) configurations from the Step 1 of Design Procedure 1. Further, the above planning is a generalization

of the 0-1 knapsack problem [28], which is NP-hard. Therefore, we reformulate it as a satisfiability problem

using a generalized Boolean/arithmetic logic of SMT [29]. (While satisfiability problems are NP-complete in

general, the recent advances in SMT solvers have made them scalable to the problems with millions of variables

[30].)

In conjunction with the Step 1 of Design Procedure 1, we propose Algorithm 1 to generate a set G 01
cσ of

M control sublayer structures G01
cσ = (V, E01

cσ ), where V = {1, 2, . . . , N} denotes the node set and E01
cσ =

{αcσ
ij ∀ (i, j) ∈ V ×V} edge set over each G01

cσ . The edge weights αcσ
ij of this outcome graph are either 1 when

an edge is determined by the proposed algorithms, or 0 otherwise. Further, to introduce fewer parameters in this

subsection, we use αcσ
ii to denote the existence of a selfloop around any node i. These two points are unlike the

definitions of (real-valued) acσij ∈ R≥0 and scσi ∈ R≥0 for the final Gcσ (see Section II). An integer-valued T

denotes the number of the nodes that are required to have selfloops (i.e., for the centrality distribution). Each

integer-valued scalar θi ∈ {0, 1} determines whether we can add a selfloop to a node i and use the absolute

measurement of that agent, or not. Each integer-valued scalar rij ∈ {0, 1} indicates whether a link (i, j) (therefore,

(j, i)) is a high risk link or not. Further, each integer-valued scalar ηij ∈ {0, 1} memorizes whether a link (i, j)
(therefore, (j, i)) has been inactive in all prior control sublayer graphs or not, i.e., an ηij = 1 means that link

has not been used previously.

Based on a logic (notation) similar to the standard SMT references, e.g., [29], Algorithm 2 describes the

proposed SMT formulation to generate a candidate control sublayer structure G01
cσ that satisfies the aforementioned

user-defined conditions 1 to 4. In particular, we first consider a directed (sub) graph design problem, in order

to determine the communication paths over each control sublayer. Constraint (9) ensures the soundness of the

resulting control layer subgraphs, by limiting all integer-valued αcσ
ij to either 0 or 1. Constraint (10) ensures only

the nodes with selfloop capability will be asked to share their absolute measurements over the control sublayers

(see subsection 3.1 in [21]). Constraint (11) ensures that T nodes in the outcome sublayer graph will have active

selfloops (to avoid a single point of failure). Constraint (12) ensures that all the high-risk, recently compromised

communication links (known based on the history of the underlying two-layer interconnected MAS) will be

excluded from the control layer. Constraint (13) ensures that any link which has been used in the prior control

sublayers (developed by the proposed algorithm) will not be used in the new sublayer graph. Constraint (14)

ensures that any node without an active selfloop will be connected to a node with an active selfloop (either

Algorithm 1: generateAllGraphs

Inputs: M , N , T , {θi}, {rij}
Output: G 01

cσ

%initialization

V = {1, . . . , N}
for every (i, j) ∈ V × V do

ηij = 0

%Generate all (sub) graphs

for σ = 1 to M do

G01
cσ = generateOneGraph(V, T, {rij}, {θi}, {ηij}, σ)

G 01
cσ = G 01

cσ ∪ G01
cσ

for every (i, j) ∈ V × V, i 6= j do
ηij = ηij ∨ ¬αcσ

ij

6



Algorithm 2: generateOneGraph

Inputs: V , T, {rij}, {θi}, {ηij}, σ
Output: G01

cσ

%Define SMT model Λ, with following constraints

0 ≤ αcσ
ij ≤ 1, ∀(i, j) ∈ V × V (9)

αcσ
ii ≤ θi, ∀i ∈ V (10)
∑

i∈V

αcσ
ii = T (11)

αcσ
ij ≤ rij ∀(i, j) ∈ V × V (12)

αcσ
ij ≤ ηij , ∀(i, j) ∈ V × V (13)

(αcσ
ij = 1) ∧ (αcσ

jk = 1) → (αcσ
kk = 1) ∧ (αcσ

jj = 0)

∀i, ∀j 6= i, ∀k 6= j (14)

∑

j∈V

αcσ
ij = 1, ∀i ∈ V (15)

%Solve the SMT model

{αcσ
ij } = solveSMTModel(Λ)

%Build a symmetric (sub) graph structure

αcσ
ji = 1, ∀αcσ

ij = 1
E01

cσ = {αcσ
ij ∀(i, j) ∈ V × V}

G01

cσ = (V , E01

cσ)

directly or via an intermediary node). Constraint (15) ensures that every node has either an active selfloop or

has a path to (receive information from) exactly one node with an active selfloop. A solver solveSMTModel(.)
(e.g., see [29]) determines the satisfiable assignments to the unknown variables for an SMT model Λ, in order

to obtain the active communication links. Finally, an edge set E01
cσ is built, in order to offer the structure of a

symmetric control sublayer G01
cσ with undirected communication links.

The exclusion of high risk links enhances the resilience of the control layer to the potential distributed DoS

attacks. However, we ensure the cyber agility via a consistent mutation of the control sublayers (see Design

Procedure 1, and Algorithms 1 and 2) based on an arbitrarily fast switching strategy. Such an arbitrarily fast and

unordered switching would turn a control layer’s communication links (or topology) into a set of unpredictable

moving targets. Next to the fact that the candidate sublayers have no common inter-controller communication

link, 1) it would be hard(er) for an attacker to study the underlying two-layer interconnected MAS in order to plan

and execute a distributed DoS attack, and 2) a distributed DoS attack that targets a specific set of inter-controller

communications in any one of these candidate sublayers, will not be effective against others.

We need to mention that the proposed SMT formulation is based on the notion of directed subgraphs, which

would end in the structurally nonsymmetric control sublayers (see [11] and [21]). We manually set αcσ
ji = 1 if the

SMT solver assigns αcσ
ij = 1 to a pair (i, j) ∈ V × V , in order to build a control sublayer graph with undirected

communication links. This viewpoint is along the practices in computer science, where the computer networks’

communication links are full-duplex. We also need to mention that the proposed SMT formulation determines

the structure G01
cσ of a control sublayer topology Gcσ. We manually select the weights of edges and selfloops, and

design a set of distributed stabilization gains, such that the validation condition (7) is satisfied. Expanding the

high-dimension approach in [31] (limited to the first and second order agents) to the agent model (1), an interested

reader might be able to combine that high-dimension modified LQR formulation with the low-dimension one in
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Step 2 of Design Procedure 1 in order to automatically determine a set of robust edge weights and selfloops

based on the subgraph structures of Algorithms 1 and 2.

D. Theoretical Analysis

In this subsection, we derive a few key properties of the proposed design framework, and analyze ISS for

the resulting two-layer interconnected MAS (4) and (5) with a security-oriented, arbitrarily fast switching of the

control sublayers.

Analytically, we know that the stabilization gains Ki are characterized as follows [32]:

Ki = −µminR
−1
i BT

ui
Pi. (16)

We aggregate each (8) and (16), and further find ĀT P̄ + P̄ Ā + Q̄f − µ2
minP̄ B̄uR̄

−1B̄T
u P̄ = 0 and K̄ +

µminR̄
−1B̄T

u P̄ = 0 where Q̄f := diag{Qfi}. We postmultiply both of the above equalities by x, premultiply

the second one by xT , and after a few manipulations find the following design properties for each fixed control

sublayer (known as the optimality conditions in the literature of optimal control for single dynamical systems

[32]).

Design Properties 1: The following equalities hold for each control sublayer of Design Procedure 1 and

Algorithms 1 and 2, to be used in a two-layer interconnected MAS (4) and (5):

2vT R̄+ µminV̄
T
x B̄u =0

xT Q̄fx+ vT R̄v + V̄ T
x (Āx+ µminB̄uv) =0.

where V T
x := ∂V̄

∂x and V̄ (x) := xT P̄ x. ◭

Now we propose the main result of this subsection.

Theorem 1: If Gcσ and Ki are developed according to Subsections III-B and III-C, robust ISS is guaranteed

for the interconnected MAS (4) and (5) despite the modeling uncertainties and nonvanishing perturbations over

the agent layer, and arbitrarily fast switching of the control layer (communication) topology.

Proof : To facilitate the derivations of this proof, we first substitute the control layer (5) in the agent layer

dynamics (4), add and subtract µminB̄uv, and rewrite the two-layer interconnected MAS of this paper as follows:

ẋ = Āx+ µminB̄uv
︸ ︷︷ ︸

Networked nominal dynamics

+ B̄ff(y) + µminB̄uĒcσv + B̄dd
︸ ︷︷ ︸

Uncertainties and perturbations over Ga and Gc

(17)

in which B̄dd represents the nonvanishing perturbations and B̄ff(z) the actual modeling uncertainties over the

agent layer, and µminB̄uĒcσv a fictitious uncertainty over the control layer, that is introduced to formulate

a low-dimension modified LQR problem in Design Procedure 1, despite the fact that we are dealing with a

high-dimension (or MAS-level) robust ISS problem.

We define a candidate common ISS Lyapunov function:

V̄ (x) = xT P̄ x ≻ 0

which is the same as that of Design Properties 1 (a consequence of the mixed optimal and graph theoretic

formulation in Design Procedure 1). As a key point, unlike the multiple Lyapunov functions in [11] and [12],

we point out that this P̄ does not vary depending on the active control sublayer (or switching mode σ).

Along the uncertain trajectories of the two-layer interconnected MAS (17) and based on Design Properties 1, we

find:
˙̄V = V̄ T

x ẋ

= V̄ T
x (Āx+ µminB̄uv) + µminV̄

T
x B̄uĒcσv + V̄ T

x B̄ff(y) + V̄ T
x B̄dd

= −xT Q̄fx− vT R̄v − 2vT R̄Ēcσv + 2xT P̄ B̄ff(y) + 2xT P̄ B̄dd.
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We use Young’s inequality as follows:

˙̄V ≤ −xT Q̄fx− vT R̄v − 2vT R̄Ēcσv + aff
Tf + adx

Tx+ 1
af
xT P̄ B̄f B̄

T
f P̄ x+ 1

ad
dT B̄T

d P̄
2B̄dd

≤ −xT
(
Q̄+ K̄T R̄K̄ + 2K̄T R̄ĒcσK̄ − 1

af
P̄ B̄f B̄

T
f P̄

)
x+ γd‖d‖

2 ≤ −xT Q̄vσx+ γd‖d‖
2

≤ −xT Q̄vx+ γd‖d‖
2

where γd := ‖P̄ B̄d‖
2, and 0 ≺ Q̄v 4 Q̄vσ for all σ ∈ {1, 2, ...,M}. Since the characteristics of the candidate

common ISS Lyapunov function (or the matrix P̄ ) and its decay rate along the uncertain trajectories (or Q̄v and

γd) are independent of σ, we find that V̄ is a valid common ISS Lyapunov function (see Definition 1). Thus,

we conclude robust ISS for the two-layer interconnected MAS of this paper under an arbitrarily fast switching

of the control layer topology. �

Remark 2: In the absence of perturbations, i.e., when d(t) = 0, we find ˙̄V ≤ −xT Q̄vx ≺ 0 (asymptotic

convergence of all state trajectories to the origin). Using Rayleigh-Ritz inequality, we reach to λmin(P̄ )‖x‖2 ≤

V̄ ≤ λmax(P̄ )‖x‖2 and ˙̄V ≤ −λmin(Q̄v)‖x‖
2, which guarantee the robust exponential convergence of all state

trajectories to the origin: ‖x(t)‖ ≤ κe exp
−σet ‖x(0)‖ where κe =

√
λmax(P̄ )
λmin(P̄ )

and σe =
λmin(Q̄v)
2λmax(P̄ )

[22]. ◭

Remark 3: As an alternative to the proposed Design Procedure 1, an interested reader can restrict the design

to Ri = rInu
with r ∈ R>0 for all agents, or to a set of Ri and Hcσ that satisfy

R̄Ēcσ+(R̄Ēcσ)T

2 < 0 for all

σ, in order to remove 2K̄T R̄ĒcσK̄ from the validation matrix Q̄vσ in (7). Consequently, that high-dimension

validation matrix will turn into a set of N low-dimension conditions Qvi = Qi +KT
i RiKi −

1
af
PiBfiB

T
fi
Pi ≻ 0

(one for each control node), and a σ-independent Q̄v = diag{Qvi} will directly appear (instead of Q̄vσ) in the

proof of Theorem 1. ◭

IV. SIMULATION VERIFICATION

Now we demonstrate the feasibility of the proposed ideas for an interconnected MAS (1), with an (unknown)

interconnection topology Ga shown over the agent layer in Fig. 1, where each black arrow represents an edge

weight equal to 1 and orange arrow −1. Together with the agent dynamics in Appendix I, this builds an unstable

(open-loop) agent layer with divergent trajectories.

We follow the steps of the proposed Design Procedure 1 and SMT-based Algorithms 1 and 2, and develop

a control layer with M = 5 sublayers as depicted in Fig. 1. In particular, as a few conditions in the proposed

cybersecurity Algorithms 1 and 2, we set T = 3, r14 = r37 = r38 = 0, and θ2 = θ5 = 0 (other parameters are

relatively evident). Each edge with a cyan color represents a weight equal to 2, and black equal to 4. We obtain the

robust distributed ISS gains K1 = [−5.2632,−6.6137], K2 = [−4.8272,−6.3715], K3 = [−1.8623,−3.8913],
K4 = [−5.0504,−6.4468], K5 = [5.0014, 5.1293], K6 = [5.1795, 4.9353], K7 = [5.3290, 5.4146], and K8 =
[3.8166, 3.7070] such that the validation condition (7) is satisfied.

It is a common practice to assume that an attacker does not have unlimited resources [33]. Thus, we assume

three communication links (including one selfloop) can be compromised per each sublayer (see dotted arrows

over the control sublayers in Fig. 1). Despite this assumption, the divergent trajectories in Fig. 2 demonstrate

that a smart attacker can easily compromise the underlying two-layer interconnected MAS if its control layer

topology is fixed.

To examine the power of the proposed proactive cyber defense strategy, we consider an attack scenario where

the attacker (persistently) attacks on (the dotted edges of) the control sublayer 5 over t ∈ [0, 2), 4 over t ∈ [2, 4),
3 over t ∈ [4, 6), 2 over t ∈ [6, 8), and 1 over t ∈ [8, 10], in addition to the permanently compromised (potential)

communication capabilities between the control nodes 1 and 4, 3 and 7, and 3 and 8. Note that the two-layer

interconnected MAS starts under a DoS attack, and persistently remains under attack. This is different from the

existing switching-based studies [10] and [19], where the attack frequently goes off and, in average, the system

has (enough) time to recover after each DoS. As shown in Fig. 3, via an arbitrarily fast switching of the control

sublayers, the proposed distributed protocol ensures ISS for the two-layer interconnected MAS in the presence

of various abnormalities.
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Fig. 1: A two-layer interconnected MAS with five control sublayers, where ai denotes the agent and Ki the

stabilization gains associated to each node i according to (3). Ki is the same for each control node, to be found

by following the dashed vertical lines. In simulation of Fig. 2, only control sublayer 1 is active. In simulation of

Fig. 3, all control sublayers are frequently active, one at each time, according to subplot (a) in that figure. For

the sake of visibility, the color of each control sublayer’s frame is the same as its nodes. The dotted horizontal

arrows denote the compromised (blocked) communication links by distributed DoS attacks.
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Fig. 2: Compromised system: Divergent trajectories show that a smart attacker, with limited resources, can easily

compromise a fixed (predictable) control sublayer 1.
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(b) Robust ISS behavior under the distributed DoS, modeling uncertainties, nonvanishing perturbations, and very fast

switching.

Fig. 3: Proactive cyber defense: Robust ISS for the two-layer interconnected MAS in Fig. 1 under a (time-varying)

persistent, distributed DoS attack, as explained in Section IV.
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All individual subsystems should be asymptotically stable in order to guarantee the asymptotic stability of an

arbitrarily fast switched system (subsection 2.1.1, [24]). In the ISS simulation results of this section, the two-layer

interconnected MAS may temporarily face an attack on a few of its communication links, which violates such a

condition. This could be problematic pointing to the fact that the underlying agent layer is unstable. However, due

to the “non-overlapping paths” and “centrality distribution” conditions in the developments of Subsection III-C,

a fast mutation among the control sublayers ensures that the final moving target defense strategy will end in a

two-layer interconnected MAS that (with an abuse of the words) is “more (input-to-state) stable than unstable.”

Indeed, over a time interval, the agent layer dynamics see a (time varying) control layer topology for which the

conditions of Section II are satisfied by the union of the activated control sublayers. Further computer science-

oriented investigation on this subject is left for the future. However, without any technical modifications, we

need to mention that an increase in the number of nodes (in simulation) will increase the power of the proposed

moving target defense strategy to handle the (unmeasured) cyber attacks in a proactive manner, because it will

increase the number of possible control sublayer structures that would satisfy the conditions of Subsection III-C.

V. SUMMARY

We systematically study the robust input-to-state stability and proactive security in an interconnected multiagent

system (subject to multiple cyber and physical abnormalities), based on a synergistic combination of various

concepts from the literature of controls, graph theory, and computer science. In particular, we design a set

of cybersecurity-aware, robust control sublayers based on a mixed optimal control, graph, and satisfiability

modulo theory formulation. Then, relying on the arbitrarily fast switching capability of the proposed distributed

stabilization protocol and the designed cybersecurity-aware control sublayers, we offer a moving target defense

strategy, and enhance the cybersecurity aspect of the two-layer interconnected multiagent system in a proactive

manner. The proposed systematic framework may pave the way for an effective and comprehensive study of the

cyber-physical multiagent systems from both control and cybersecurity viewpoints [8], with an application to

power systems (with their inherently interconnected dynamics) [34].

APPENDIX I

In Fig. 1, according to model (1), the (unstable) nominal part of interconnected MAS is characterized by the

following matrices for l ∈ {1, 2, 3, 4} and m ∈ {5, 6, 7, 8}:

Al =

[
0 1
−1 0.25

]

Bul
=

[
0
1

]

Am =

[
0 1

0.25 −1

]

Bum
=

[
0.25
−1

]

and the modeling uncertainty and perturbation matrices are:

Bf1 = Bu1
Bd1

= Bu1
(matched scenario)

Bf2 =

[
0.5
−1

]

Bd2
=

[
0.25
−0.75

]

Bf3 =

[
0.25
−0.75

]

Bd3
=

[
0.5
1

]

Bf4 = Bu4
Bd4

= Bu4
(matched scenario)

Bf5 =

[
−0.5
0.5

]

Bd5
= Bu5

Bf6 =

[
0
1

]

Bd6
= Bf6

Bf7 =

[
0
−1

]

Bd7
=

[
0.5
0.5

]

Bf8 = Bu8
Bd8

=

[
0
1

]

.

13



Also, the (unknown) nonlinearities and interconnection matrices are f1(z1) = 0.5 tanh(z1), f2(z2) = −0.4 sin(z2),
f3(z3, t) = 0.5 sin(t) tanh(z3), f4(z4) = −0.4 tanh(z4), f5(z5) = −0.5 sin(z5), f6(z6, t) = 0.4 sin(t) sin(z6),
f7(z7) = 0.5z7, and f8(z8) = 0.4 tanh(z8), as well as Cl = [0, 1] for l ∈ {1, 2, 3, 4}, and Cm = [−1, 0]
for m ∈ {5, 6, 7, 8}. The nonmeasurable, nonvanishing, external perturbations are dp(t) = 1

3 sin(πt), and

dq(t) =
1
3 sin(2πt) for p ∈ {1, 3, 5, 7} and q ∈ {2, 4, 6, 8}.

REFERENCES

[1] Knorn S., Chen Z., Middleton R., “Overview: Collective Control of Multiagent Systems,” IEEE Transactions on Control of Network

Systems, 3(4):334–347, 2015.

[2] Oh K.-K., Moore K., Ahn H.-S., “Disturbance Attenuation in a Consensus Network of Identical Linear Systems: An H∞ Approach”,

IEEE Transactions on Automatic Control, 59(8):2164-2169, 2014.

[3] Ai X., Yu J., Jia Z., Shen Y., Ma P., Yang D., “Adaptive Robust Consensus Tracking for Nonlinear Second-Order Multi-Agent Systems

with Heterogeneous Uncertainties,” International Journal of Robust and Nonlinear Control, 27:5082–5096, 2017.

[4] Rieger C., Moore K., Baldwin T., “Resilient Control Systems: A Multi-Agent Dynamic Systems Perspective,” IEEE International

Conference on Electro-Information Technology, USA, 2013.

[5] Antsaklis P., “Goals and Challenges in Cyber-Physical Systems Research: Editorial of the Editor in Chief,” IEEE Transactions on

Automatic Control, 59(12):3117–3119, 2014.

[6] Egerstedt M., “From Algorithms to Architectures in Cyber-Physical Networks,” Cyber-Physical Systems, 1(2-4):67–75, 2015.

[7] Cardenas A., Amin S., Sastry S. “Research Challenges for the Security of Control Systems,” Workshop on Hot Topics in Security,

USA, 2008.

[8] Chong M., Sandberg H., and Teixeira A., “A Tutorial Introduction to Security and Privacy for Cyber-Physical Systems,” European

Control Conference, Italy, 2019.

[9] Rezaei V., Stefanovic M., “Event-Triggered Cooperative Stabilization of Multiagent Systems with Partially Unknown Interconnected

Dynamics,” Automatica, 130:109657, Aug 2021.

[10] Rezaei V., “Event-Triggered Distributed Stabilization of Partially Unknown Interconnected Multiagent Systems with Abnormal Agent

and Control Layers,” IEEE Conference on Decision and Control, USA, 2021.

[11] Rezaei V., “Robust Distributed Stabilization of Interconnected Multiagent Systems with Switched Control Sublayers,” AIAA Science

and Technology Forum and Exposition, USA, 2021.

[12] Rezaei V., Stefanovic M., “Mode-Dependent Switched Distributed Stabilization of Partially Unknown Interconnected Multiagent

Systems,” American Control Conference, USA, 2021.

[13] Jafarian J.H., Al-Shaer E., Duan Q., “Formal Approach for Route Agility Against Persistent Attackers,” European Symposium on

Research in Computer Security, pp. 237-254, Springer, 2013.

[14] Zhou Z., Xu C., Kuang X., Zhang T., Sun L., “An Efficient and Agile Spatio-Temporal Route Mutation Moving Target Defense

Mechanism,” IEEE International Conference on Communications, China, 2019.

[15] Bhardwaj A., El-Ocla H., “Multipath Routing Protocol Using Genetic Algorithm in Mobile Ad Hoc Networks,” IEEE Access,

8:177534-177548, 2020.

[16] Griffioen P., Weerakkody S., Sinopoli B., “A Moving Target Defense for Securing Cyber-Physical Systems,” IEEE Transactions on

Automatic Control, 66(5):2016-2031, 2021.

[17] Kanellopoulos A., Vamvoudakis K., “A Moving Target Defense Control Framework for Cyber-Physical Systems,” IEEE Transactions

on Automatic Control, 65(3):1029-1043, 2020.

[18] Giraldo J., Cardenas A., Moving Target Defense for Attack Mitigation in Multi-Vehicle Systems, In Proactive and dynamic Network

Defense, pp. 163-190, Springer, 2019.

[19] Feng S., Tesi P., De Persis C., “Towards Stabilization of Distributed Systems under Denial-of-Service,” IEEE Conference on Decision

and Control, Australia, 2017.

[20] Mesbahi M., Egerstedt M., Graph Theoretic Methods in Multiagent Networks, Princeton, 2010.

[21] Rezaei V., Stefanovic M., “Distributed Stabilization of Interconnected Multiagent Systems using Structurally Nonsymmetric Control

Layers,” IFAC World Congress, Germany, 2020.

[22] Khalil H., Nonlinear Systems, Prentice-Hall, 2003.

[23] Sontag, E., Input to State Stability: Basic Concepts and Results, In: Nistri P., Stefani G. (eds) Nonlinear and Optimal Control Theory.

Lecture Notes in Mathematics, Vol 1932, Springer, 2008.

[24] Liberzon D., Switching in Systems and Control, Springer, 2003.

[25] Rezaei V., Stefanovic M., “Distributed Input-to-State Stabilization of Heterogeneous Interconnected Multiagent Systems with Partially

Unknown Dynamics,” Mediterranean Conference on Control and Automation, Italy, 2021.

[26] Valcher M., Zorzan I., “On the Consensus of Homogeneous Multi-Agent Systems with Arbitrarily Switching Topology,” Automatica,

84:79-85, 2017.

[27] Lunze J., Feedback Control of Large-Scale Systems, Prentice-Hall, 1992.

[28] Sahni S., “Approximate Algorithms for the 0/1 Knapsack Problem,” Journal of the ACM, 22(1):115-124, 1975.

[29] Bjørner N., de Moura L., “Z3
10 : Applications, Enablers, Challenges and Directions,” Sixth International Workshop on Constraints

in Formal Verification, 2009.

[30] de Moura L., Bjørner N., Formal Methods: Foundations and Applications, In: Satisfiability Modulo Theories: An Appetizer, Springer,

2009.

14



[31] Rezaei V., Stefanovic M., “Multi-Layer Distributed Protocols for Robust Cooperative Tracking in Interconnected Nonlinear Multiagent

Systems,” International Journal of Robust and Nonlinear Control, 29(12):3859–3891, 2019.

[32] Lin F., Robust Control Design: An Optimal Control Approach, Wiley, 2007.

[33] Jajodia S., Ghosh A., Swarup V., Wang C., Wang X., Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats,

Springer Science & Business Media, 2011.

[34] Zhou Q., Shahidehpour M., Paaso A., Bahramirad S., Alabdulwahab A., Abusorrah A., “Distributed Control and Communication

Strategies in Networked Microgrids,” IEEE Communications Surveys and Tutorials, 22(4):2586-2633, 2020.

15


	I Introduction
	II Preliminaries
	III Main Results
	III-A Problem Foundation
	III-B Control Layer Design Framework: Stabilization
	III-C Control Layer Design Framework: Cybersecurity
	III-D Theoretical Analysis

	IV Simulation Verification
	V Summary
	References

